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Abstract. Gromov asked whether every one-ended word-hyperbolic
group contains a hyperbolic surface group. We prove that every
one-ended double of a free group has a hyperbolic surface subgroup
if (1) the free group has rank two, or (2) every generator is used
the same number of times in the amalgamating words. To prove
this, we formulate a stronger statement on Whitehead graphs and
prove its specialization by combinatorial induction for (1) and the
characterization of perfect matching polytopes by Edmonds for (2).

1. Introduction

A hyperbolic surface group is the fundamental group of a closed sur-
face with negative Euler characteristic. We will denote by Fn the free
group of rank n with a fixed basis An = {a1, . . . , an}. A double of a
free group is the fundamental group of a graph of groups where there
are two free vertex groups and at least one infinite cyclic edge group;
here, each edge group is amalgamated along the copies of some word
in the free group (Figure 1). If U is a list of words in Fn, we denote
by D(U) the double of Fn where a cyclic edge group is glued along the
copies of each word in U .

We study the existence of hyperbolic surface subgroups in doubles
of free groups. This is motivated by the following remarkable question
due to Gromov.

Question 1 (Gromov [14, p. 277]). Does every one-ended word-hyperbolic
group have a hyperbolic surface subgroup?
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Question 1 has been answered affirmatively for the following cases.

(1) Coxeter groups [11].
(2) Graphs of free groups with infinite cyclic edge groups with non-

trivial second rational homology [6].
(3) The fundamental groups of closed hyperbolic 3-manifolds [16].

A basic, but still captivating case is when the group is given as
a double of a free group. Using (2), Gordon and Wilton [12] were
able to construct explicit families of examples of doubles that contain
hyperbolic surface groups; they showed that those families virtually
have nontrivial second rational homology. The existence of a hyperbolic
surface subgroup is not known for doubles with trivial virtual second
rational homology. This leads us to the next question.

Question 2. Does every one-ended double of a nonabelian free group
have a hyperbolic surface subgroup?

Our first main result resolves Question 2 for rank-two case:

Theorem 1. A double of a rank-two free group is one-ended if and
only if it has a hyperbolic surface subgroup.

Our second main result on Question 2 is on the free groups in which
every generator appears the same number of times in the amalgamating
words. More precisely, let U be a list of words in Fn. When approaching
Question 2 for D(U), one can always assume that U is minimal in the
sense that no automorphism of Fn reduces the sum of the lengths of
the words in U . This is because the isomorphism type of D(U) is
invariant under the automorphisms of Fn. We say U is k-regular if
each generator in An appears exactly k times in U . Our second main
result answers Question 2 affirmatively for a minimal, k-regular list of
words.

Theorem 2. Suppose U is a minimal, k-regular list of words in Fn
when n > 1. If D(U) is one-ended, then D(U) contains a hyperbolic
surface group.

Here is an overview of our proof. We first explain why Tiling Conjec-
ture [19, 17] implies an affirmative answer for Question 2 in Section 2.
And then we reformulate Tiling Conjecture into a purely graph theo-
retic conjecture in Section 3. We resolve this graph theoretic conjecture
in two special cases. In Section 4, we prove it for regular graphs and
deduce Theorem 2. Here we use the characterization of perfect match-
ing polytopes of graphs by Edmonds [10]. In Section 5, we prove it for
4-vertex graphs and deduce Theorem 1.
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2. Polygonality and Doubles of Free Groups

Kim and Wilton [19] proved that the double along a polygonal word
contains a hyperbolic surface group (Theorem 7). Their proof relied on
the subgroup separability of free groups and the normal form theorem
for graphs of groups. In this section, we give a self-contained geometric
proof. Then we describe Tiling Conjecture and its implication.

2.1. Basic definitions and notations. Each word in Fn can be writ-
ten as w = x1x2 · · ·xl where xi ∈ An∪A−1n ; each xi is called as a letter of
w, and the subscript of xi is taken modulo l. We say that w is cyclically
reduced if xi+1 6= x−1i for each i = 1, 2, . . . , l. With respect to the given
basis An, we denote the Cayley graph of Fn by Cayley(Fn). There
is a natural free action of Fn on Cayley(Fn), so that Cayley(Fn)/Fn
is a bouquet of circles. Let α1, . . . , αn denote the oriented circles in
Cayley(Fn)/Fn corresponding to a1, . . . , an. The loop obtained by a
concatenation αpiα

q
j · · ·αrk where p, q, . . . , r ∈ Z is said to read the word

api a
q
j · · · ark.

Given a list U of nontrivial words u1, u2, . . . , ur in Fn, take two copies
Γ and Γ′ of Cayley(Fn)/Fn. To Γ and Γ′, we glue a cylinder along the
copies of the closed curve reading ui, for each i. Let X(U) be the
resulting space and let D(U) = π1(X(U)) be the fundamental group
of X(U); see Figure 1. In the literature, D(U) is called a double of
Fn along U , or simply a double [1]. If we let Bn and V = {v1, . . . , vr}
denote the copies ofAn and U respectively, then a presentation of D(U)
is given as:

D(U) ∼= 〈An,Bn, t2, t3, . . . , tr | u1 = v1, u
ti
i = vi for i = 2, . . . , r〉.

Since the isomorphism type of D(U) does not change if some words in
U are replaced by their conjugates, we may always assume that every
word in U is cyclically reduced.

2.2. Non-positively curved cubical complexes. We briefly sum-
marize elementary facts on CAT(0)-spaces; a standard reference for
this subject is [4]. We denote by E2 the Euclidean plane. Let X
be a geodesic metric space. For a geodesic triangle ∆ ⊆ X, there is
a geodesic triangle ∆′ ⊆ E2 of the same side-lengths and a length-
preserving map f : ∆ → ∆′. We say that X is a CAT(0)-space if
dX(x, x′) ≤ dE2(f(x), f(x′)) for every choice of ∆, f and x, x′ ∈ ∆.
A metric space X is non-positively curved if each point in X has a
neighborhood which is a CAT(0)-space. We will need the following.
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⇡1 = D(U) for U = {u1, u2, . . .} ✓ F
Figure 1. A construction of X(U), where π1(X(U)) = D(U).

Proposition 3 (see [4, p. 201]). Let X and Y be complete geodesic
spaces. If X is non-positively curved and f : Y → X is locally an
isometric embedding, then Y is non-positively curved and f∗ : π1(Y )→
π1(X) is injective.

Let I denote the unit interval. A cube complex is a piecewise-
Euclidean cell complex X inductively defined as follows: for all k, the
k-skeleton X(k) is obtained from X(k−1) by attaching k-dimensional
unit cubes Ik such that the restriction of each attaching map to a
(k− 1)-face of Ik is a (k− 1)-dimensional attaching map. If X = X(2),
we say that X is a square complex. A finite-dimensional cube com-
plex is known to be a complete geodesic metric space [3]. For a cube
complex X and v ∈ X(0), LinkX(x) is defined to be the set of unit vec-
tors from v toward X; in particular, a link is naturally equipped with
a piecewise-spherical metric. We will only consider cube complexes
that are finite-dimensional and locally compact. Moreover, we always
assume that given cube complexes are simple, in the sense that no ver-
tex has a link containing a bigon; hence, each link will be a simplicial
complex [15]. A simplicial complex L is a flag complex if every com-
plete subgraph of L(1) is the 1-skeleton of some simplex in L. Gromov
gave a combinatorial formulation of non-positive curvature for a cube
complex.

Proposition 4 (Gromov [13]). A cube complex X is non-positively
curved if and only if the link of each vertex is a flag complex.

Recall that for a simplicial complex L and a set of vertices S in L, a
full subcomplex L′ on S is the maximal subcomplex of L whose vertex
set is S. A map f : Y → X between cube complexes is cubical if f
maps each cube to a cube of the same dimension. Locally an isometric
cubical map has a combinatorial characterization as follows.
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Proposition 5 ([8, 9]). Let X and Y be cube complexes and f : Y → X
be a cubical map. Then f is locally an isometric embedding if the
following are true for each vertex y ∈ Y (0).

(i) The induced map on the links Link(f ; y) : LinkY (y)→ LinkX(f(y))
is injective.

(ii) The image of Link(f ; y) is a full subcomplex of LinkX(f(y)).

2.3. Polygonality. We let U be a list of cyclically reduced words
u1, . . . , ur in Fn. For a word w = x1x2 . . . xl ∈ Fn, x1x2, x2x3, . . . , xl−1xl, xlx1
are called length-2 cyclic subwords of w. The Whitehead graph W (U)
of U is constructed as follows [30]:

(i) the vertex set of W (U) is An ∪ A−1n ;
(ii) For each length-2 cyclic subword xy of a word in U , we add an

edge joining x and y−1 to W (U).

A polygonal disk means a topological 2-disk P equipped with a graph
structure on the boundary ∂P ≈ S1. We let Z(U) denote the presen-
tation 2-complex of Fn/〈〈U〉〉. This means, Z(U) is obtained from its
1-skeleton Cayley(Fn)/Fn by attaching a polygonal disk Di along the
loop reading ui for each i = 1, 2, . . . , r. Here, ∂Di is regarded as a
|ui|-gon. Let αj denote the oriented loop in Z(U)(1) = Cayley(Fn)/Fn
reading aj. The link of the unique vertex in Z(U) is seen to be the
Whitehead graph of U , by identifying the incoming (outgoing, respec-
tively) portion of αj with the vertex aj (a−1j , respectively) in W (U).

Let us fix a point di in the interior of Di and triangulate Di so that
each triangle contains di and one edge of ∂Di. Remove a small open
neighborhood of di for each i, to get a square complex Z ′; see Figure 2
(a). We obtain a square complex structure on X(U) by taking two
copies of Z ′ and gluing the circles corresponding to the boundary of
the neighborhood of each di. The unique vertex of Z(U) gives two
special vertices of X(U). Note that the link of each special vertex
is the barycentric subdivision W (U)′ of W (U). Since W (U) has no
loops, W (U)′ is a bipartite graph without parallel edges. It follows
from Proposition 4 that X(U) is non-positively curved.

A side-pairing on polygonal disks P1, . . . , Pm is an equivalence rela-
tion on the sides of P1, . . . , Pm such that each equivalence class consists
of two sides, along with a choice of a homeomorphism between the two
sides of each equivalence class. For a given side-pairing ∼ on polygonal
disks P1, . . . , Pm, one gets a closed surface S =

∐
i Pi/ ∼ by identify-

ing the sides of Pi by ∼. The surface S is naturally equipped with a
two-dimensional CW-structure. A graph map φ : G→ Cayley(Fn)/Fn
induces an orientation and a label by An on each edge e of G, so that
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(a) Z ′ (b) S′

Figure 2. Square complex structures on Z ′ and on S ′.
A single and a double arrow denote the generators a and
b, respectively. Figure (a) shows a punctured Di in Z ′,
divided into squares. Figure (b) is a punctured Pi in S ′,
where ∂Pi → Cayley(F )/F reads (b−1aba2)2.

the oriented loop φ(e) reads the label of e. An edge labeled by ai is
called an ai-edge. An immersion is a locally injective graph map.

Definition 6 ([19, 17]). Let U be a list of cyclically reduced words in
Fn. We say U is polygonal if there exist a side-pairing ∼ on some polyg-
onal disks P1, P2, . . . , Pm and an immersion S(1) → Cayley(Fn)/Fn
where S =

∐
i Pi/ ∼ such that the following hold:

(i) the composition ∂Pi → S(1) → Cayley(Fn)/Fn reads a nontrivial
power of a word in U for each i;

(ii) the Euler characteristic χ(S) of S is less than m.

In this case, we call S a U-polygonal surface.

Remark. (1) Polygonality has been defined for a set of words [19,
17], but we generalize to a (possibly redundant) list of words.
The main implication of polygonality still holds, as described
in Theorem 7.

(2) Polygonality of a list of words depends on the choice of a free-
basis. An example given in [19] is the word w = abab2ab3 in
F2 = 〈a, b〉. It was shown that while w is not polygonal, the
automorphism (a 7→ ab−2, b 7→ b) maps w to a polygonal word
ab−1a2b.

Theorem 7 ([19, 17]). If U is a polygonal list of words in Fn, then
D(U) contains a hyperbolic surface group.

Proof. Let S be a closed surface obtained from a side-pairing ∼ on
polygonal disks P1, P2 . . . , Pm, equipped with immersions ∂Pi → S(1) →
Cayley(Fn)/Fn satisfying the conditions in Definition 6. Choose a point
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pi in the interior of Pi and triangulate Pi so that pi is the common ver-
tex, similarly to the triangulation of Di in Z(U). There is a natural
extension φ : S → Z(U) of the immersion S(1) → Cayley(F )/F . In
particular, φ respects the triangulation and is locally injective away
from p1, . . . , pm. We obtain a square complex S ′ from S by taking out
small open disks around p1, . . . , pm; see Figure 2 (b). Similarly to what
we have done for Z ′, we glue two copies of S ′ along the corresponding
boundary components. The resulting square complex S ′′ is a closed
surface such that χ(S ′′) = 2χ(S ′) = 2(χ(S)−m) < 0. With the square
complex structure on X(U) described previously, we have a locally in-
jective cubical map φ′′ : S ′′ → X(U). For a vertex v ∈ S ′′(0), Link(f ; v)
embeds LinkS′′(v) ≈ S1 onto a cycle in a link W (U)′ of X(U). Since
each cycle in W (U)′ is a full subcomplex, Propositions 3 and 5 imply
that φ′′ is locally an isometric embedding and so, φ′′∗ is injective. �

2.4. Tiling Conjecture and its implication. A list U of words in
Fn is said to be diskbusting if one cannot write Fn = A ∗ B in such
a way that A,B 6= {1} and each word in U is conjugate into A or
B [7, 29, 28].

Conjecture 8 (Tiling Conjecture; see [19, 17]). A minimal and disk-
busting list of cyclically reduced words in Fn is polygonal when n > 1.

We note that D(U) is one-ended if and only if U is diskbusting [12].
By [19, 17] and Theorem 7, the double along a polygonal list contains
a hyperbolic surface group. Hence, if Tiling Conjecture is true, then
every one-ended double of a nonabelian free group has a hyperbolic
surface subgroup, answering Question 2. Moreover, one would be able
to precisely describe when doubles contain hyperbolic surface groups
as follows.

Proposition 9. Let n > 1. Suppose that every minimal and disk-
busting list of cyclically reduced words in Fm is polygonal for all m =
2, 3, . . . , n. Then for a list U of cyclically reduced words in Fn, D(U)
contains a hyperbolic surface group if and only if Fn cannot be written
as Fn = G1 ∗ G2 ∗ · · ·Gn in such a way that each Gi is infinite cyclic
and each word in U is conjugate into one of G1, . . . , Gn.

For the proof, we need the following:

Lemma 10. A double of Z is virtually Z× Fs for some s ≥ 0.

Proof. We let m1, . . . ,mk be given positive integers and M be their
least common multiple. We consider a graph of spaces X where there
are two vertex spaces and k edge spaces joining the two vertex spaces
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as follows. The vertex spaces are circles denoted by α and β, and each
edge space Ei is a cylinder whose boundary components are attached
to αmi and βmi for i = 1, . . . , k. Then the double of Z along the words
m1, . . . ,mk is π1(X). There exists a degree-M cover Y of X with

precisely two vertex spaces and
∑k

i=1mi edge spaces; the vertex spaces
are circles projecting onto αM and βM , and Ei lifts to mi cylinders
whose attaching maps are homeomorphisms, for i = 1, . . . , k. Note
that π1(Y ) ∼= Z× Fs where s+ 1 =

∑k
i=1mi. �

Proof of Proposition 9. There exists a maximum k such that Fn = G1∗
· · · ∗ Gk for some nontrivial groups G1, . . . , Gk and each word in U is
conjugate into one of the G1, . . . , Gk. Note that 1 ≤ k ≤ n.

For the forward implication, suppose k < n. Then we may assume
that G1 has rank m > 1. Let U1 be the list of all the words in U
conjugate into G1. Then suitably chosen conjugates of the words in U1

form a diskbusting list U ′1 in the rank-m free group G1. We note that
DU ′1) ⊆ D(U ′1) ⊆ D(U ′1 ∪ (U \U1)) ∼= D(U); here, the second inclusion
can be seen by Propositions 3 and 5. From the hypothesis, a free basis
B of G1 can be chosen so that U ′1 is polygonal as a list of words written
in B. By Theorem 7, DU ′1) contains a hyperbolic surface group; hence,
so does D(U).

For the backward implication, assume k = n and we claim that
D(U) does not contain a hyperbolic surface group. Since we are only
interested in the isomorphism type of D(U), we may assume that each
word in U is contained in one of G1, . . . , Gn, by taking conjugation if
necessary. By choosing the basis An of Fn from the bases of G1, . . . , Gn,
one may write An = {a1, . . . , an} and Gi = 〈ai〉 for i = 1, . . . , n. One
sees that up to homotopy equivalence, X(U) is obtained from graphs of
spaces of the form considered in Lemma 10 by adding closed intervals
and circles. So, D(U) ∼= π1(X(U)) can be written as a free product such
that each free factor has a finite-index subgroup isomorphic to Z× Fs
for some s ≥ 0. In particular, D(U) does not contain a hyperbolic
surface group. �

Remark. Tiling Conjecture would actually imply that the fundamental
group of every one-ended graph of virtually free groups with virtually
cyclic edge group either is virtually Z×Fm for some m > 0 or contains
a hyperbolic surface group [18]. Moreover, since minimal diskbusting
words are generic [24, 5], Tiling Conjecture (Conjecture 8) would imply
that polygonal words are generic.
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3. Combinatorial Formulation of Tiling Conjecture

Throughout this section, we let U be a list of cyclically reduced words
in Fn for some n > 1.

3.1. Terminology on graphs. We allow graphs to have parallel edges
or loops; a loop is an edge with only one endpoint. For a graph G, we
write V (G) and E(G) to denote the vertex set and the edge set of G,
respectively. The degree degG(v) of a vertex v is the number of edges
incident with v, assuming that loops are counted twice. A graph is k-
regular if every vertex has degree k, and it is regular if it is k-regular for
some k. A cycle is a (finite) 2-regular connected graph. For a set X of
vertices, we write δG(X) to denote the set of edges having endpoints in
both X and V (G)\X. In particular, δG(v) is the set of non-loop edges
incident with v. For two distinct vertices x and y of a graph G, the local
edge-connectivity λG(x, y) is the maximum number of pairwise edge-
disjoint paths from x to y in G. We omit the subscript G in degG, δG,
and λG if the underlying graph G is clear from the context. Menger’s
theorem [23] states that λ(x, y) = min{|δ(X)| : x ∈ X, y 6∈ X}.
3.2. Whitehead graph and the associated connecting map. The
following characterization of a minimal set of words is given in [2, Sec-
tion 8]: a set A of cyclically reduced words in Fn is not minimal if and
only if for some i, there exists a set C of edges in the Whitehead graph
W (A) such that |C| < deg(ai) and W (A) \ C has no path from ai to
a−1i . By Menger’s theorem [23], it follows that A ⊆ Fn is minimal if
and only if

λ(ai, a
−1
i ) = deg(ai) for each i.

Also, a minimal set A ⊆ Fn is diskbusting if and only if W (A) is
connected [30, 29, 28]. These results on sets of words immediately
generalize to lists of words as follows.

Proposition 11 ([30, 2, 29, 28]). A list U of cyclically reduced words
in Fn is minimal and diskbusting if and only if W (U) is connected and
λ(v, v−1) = deg(v) for each vertex v of W (U).

There is a canonical fixed point free involution µ on An ∪ A−1n such
that µ(a) = a−1 for all a ∈ An ∪ A−1n . For each vertex v of W (U),
the connecting map σv associated with W (U) at v is a bijection from
δ(v) to δ(µ(v)) defined as follows. For an edge e given by xixi+1 in a
word w = x1x2 . . . xl in U , σx−1

i+1
maps the edge e joining xi and x−1i+1 to

the edge f joining xi+1 and x−1i+2 created by the consequently following
length-2 cyclic subword xi+1xi+2 of w. We assume that xl+1 = x1 and
xl+2 = x2. We note that if σy−1 ◦ σx−1(e) is well-defined for an edge
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a−1
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a−1
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(b) W (U)

Figure 3. Each corner of a cell Dj in Z(U) corresponds
an edge in W (U). Here, F2 = 〈a, b〉 and U = {b−1aba2}.
In these two figures, we note that σa−1(e) = e′ and
σa(e

′) = e.

e and vertices x 6= y−1, then there exists a word w in U such that xy
is a length-2 cyclic subword of w or w−1. The proof of the following
observation is now elementary.

Lemma 12. Let U be a list of cyclically reduced words in Fn. In W (U),
consider an edge f0 and vertices x1, x2, . . . , xl where l > 0, such that
xi+1 6= x−1i for i = 1, . . . , l. Suppose that

σx−1
l
◦ σx−1

l−1
◦ · · · ◦ σx−1

1
(f0)

is well-defined and equal to f0. Then x1x2 · · · xl is a nontrivial power
of a cyclic conjugation of a word in U . �

Connecting maps can be described in Z(U). The link of a vertex
p in a polygonal disk P is called the corner of P at p. Suppose an
edge e is incident with a−1i in W (U), where e corresponds to the corner
of a vertex x in some Dj attached to Z(U). Since we are assuming
that every word in U is cyclically reduced, there exists a unique ai-
edge α outgoing from x. Choose the other endpoint y of α, and let
e′ ∈ E(W (U)) correspond to the corner of Dj at y; see Figure 3. Then
we observe that σa−1

i
(e) = e′ and σai(e

′) = e.

3.3. Graph-theoretic formulation of Tiling Conjecture. The polyg-
onality was described in terms of Whitehead graphs [17, Propositions 17
and 21]. But this description required infinitely many graphs to be ex-
amined. In the following lemma, we obtain a simpler formulation of
polygonality requiring only one finite graph to be examined.

Lemma 13. Let n > 1. A list U of cyclically reduced words in Fn
is polygonal if and only if W (U) has a nonempty list of cycles such
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that one of the cycles has length at least three and for each pair of
edges e and f incident with a vertex v, the number of cycles in the
list containing both e and f is equal to the number of cycles in the list
containing both σv(e) and σv(f). Here, σv denotes the connecting map
associated with W (U) at v.

We prove the necessity part by similar arguments to [17, Proposi-
tions 17 and 21]. The sufficiency part is what we mainly need for this
paper.

Proof. We denote by µ the involution on the vertices of W (U) defined
by µ(a±1i ) = a∓1i .

To prove the necessity, assume U is polygonal; we can find a U -
polygonal surface S =

∐
1≤i≤m Pi/∼ as in Definition 6. In particular,

each edge in S(1) is oriented and labeled by An. Put S(0) = {v1, . . . , vt}.
Fix pi in the interior of each Pi. In Section 2.2, we have seen that there
exists a map φ : S → Z(U) such that φ is locally injective away from
p1, . . . , pm. Since S is a closed surface and φ is locally injective at vi,
the image of each LinkS(vi) by φ is a cycle, say Ci, in W (U).

Choose a vertex v ∈ W (U) and two edges e, f incident with v. With-
out loss of generality, we may assume that v = a−1 for some generator
a ∈ An and C1, . . . , Ct′ is the list of the cycles among C1, . . . , Ct which
contain both e and f . Then for each i = 1, . . . , t′, there exists a unique
a-edge ei outgoing from vi. Let vi′ be the endpoint of ei other than
vi. There exist exactly two polygonal disks Qi and Ri sharing ei in S,
so that Link(φ; vi) sends the corner of Qi at vi to e, and that of Ri

at vi to f . By the definition of a connecting map, Link(φ; vi′) maps
the corners of Qi and Ri at vi′ to σa−1(e) and σa−1(f), respectively;
see Figure 4, which is similar to [17, Figure 7]. The correspondence
e ∪ f → σa−1(e) ∪ σa−1(f) defines an involution on the list of length-2
subpaths of C1, . . . , Ct. The conclusion follows.

For the sufficiency, consider a list of cycles C1, . . . , Ct in W (U) sat-
isfying the given condition. For each Ci, let Vi be a polygonal disk
such that ∂Vi is a cycle of the same length as Ci. We will regard ∂Vi
as the dual cycle of Ci, in the sense that each edge of ∂Vi corresponds
to a vertex of Ci and incident edges correspond to adjacent vertices.
Choose a linear order ≺ on {(v, e) : e ∈ δ(v)} for each v ∈ V (W (U))
such that (v, e) ≺ (v, e′) if and only if (µ(v), σv(e)) ≺ (µ(v), σv(e

′)).
An edge g of ∂Vi will be labeled by (a, {e, f}) if the vertex v of W (U)
corresponding to g is labeled by a or a−1 for some a ∈ An, and e and
f are the two edges of Ci incident with v; see Figure 5 (a) and (b).
Considered as a side of Vi, g will be given with a transverse orienta-
tion, which is incoming into Vi if v ∈ An and outgoing if v ∈ A−1n . If
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vi ei vi′

e

f

σa−1(e)

σa−1(f)

Qi

Ri

(a) S

b−1
f

a−1

e

b c
σa−1(f)

a

σa−1(e)

c−1

(b) W (U)

Figure 4. Consecutive corners in S and their images by
a connecting map. F3 = 〈a, b, c〉, and single, double and
triple arrows denote the labels a, b and c, respectively.

we and wf denote the vertices of g corresponding to e and f respec-
tively, and (v, e) ≺ (v, f), then we shall orient g from wf to we. Define
a side-paring ∼0 on V1, . . . , Vt such that ∼0 respects the orientations,
and moreover, an incoming side labeled by (a, {e, f}) is paired with
an outgoing side labeled by (a, {σa(e), σa(f)}) for each a ∈ An and
e, f ∈ δ(a) where e and f are consecutive edges of some cycle Ci; the
existence of such a side-pairing is guaranteed by the given condition.
Consider the closed surface S0 =

∐
i Vi/∼0. Denote by η and ζ the

numbers of the edges and the faces in S0, respectively. Each edge in S0

is shared by two faces, and each face has at least two edges; moreover,
at least one face has more than two edges by the given condition. So,
2ζ <

∑
i(the number of sides in Vi) = 2η.

By the duality between Ci and Vi, each corner of Vi corresponds to
an edge in Ci. Then the link of a vertex q of S0 corresponds to the
union of edges in W (U) written as the following sequence

f0, f1 = σx−1
1

(f0), f2 = σx−1
2

(f1), . . . , fl = σx−1
l

(fl−1)

so that f0 = fl = σx−1
l
◦σx−1

l−1
◦ · · · ◦σx−1

1
(f0) for some vertices x1, . . . , xl

of W (U); see Figure 5 (c). By Lemma 12, x1 · · ·xl can be taken as a
nontrivial power of a word in U . We will follow the boundary curve α
of a small neighborhood of q with some orientation, and whenever α
crosses an edge of S0 with the first component of the label being a ∈ An,
we record a if the crossing coincides with the transverse orientation of
the edge, and a−1 otherwise. Let wq ∈ F be the word obtained by
this process. Then wq = x1 · · · xl, up to taking an inverse and cyclic
conjugations.

Let S be a surface homeomorphic to S0. We give S a 2-dimensional
cell complex structure, by letting the homeomorphic image of the dual
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(a,e)≺(a,f)
a

a−1 b−1

c−1

b

f

e

(a) Ci

wf

we

(a,{e,f})g

f

e

(b) Vi

q

Vj Vi

(a,{σa(e),σa(f)}) (a,{e,f})

σa(f) f

f1=σa(e) f0=e

(c) S0

q

f0

f2f1

(d) Link(q)

Figure 5. Constructing Vi and S0 from Ci in the proof
of Lemma 13. In this example, we note from (d) that
f1 = σa(f0), f2 = σc−1(f1) and f0 = σb−1(f2).

graph of S
(1)
0 to be S(1). In particular, the 2-cells P1, . . . , Pm in S are

the connected regions bounded by S(1). The transverse orientations
and the first components of the labels of the sides in V1, . . . , Vt in-
duce orientations and labels of the sides of P1, . . . , Pm. By duality, the
boundary reading of each Pi in S is of the form wq for some vertex q
of S0; hence, ∂Pi reads a nontrivial power of a word in U . Finally, if
we let ν be the number of the vertices in S0, then

χ(S)−m = χ(S0)− ν = −η + ζ < 0. �

Remark. There is a polynomial-time algorithm to decide whether a list
of words in a free group is polygonal [17]. We note that diskbusting
property can also be determined in polynomial time [30, 29, 28, 25].

A graph is non-acyclic if it contains at least one cycle. We now
restate Tiling Conjecture combinatorially as follows.
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Conjecture 14. Let G = (V,E) be a non-acyclic graph with a fixed
point free involution µ : V → V and a bijection σv : δ(v) → δ(µ(v))
for every vertex v such that λ(v, µ(v)) = deg(v) and σµ(v) = σ−1v . Then
there exists a nonempty list of cycles of G such that for each pair of
edges e and f incident with a vertex v, the number of cycles in the
list containing both e and f is equal to the number of cycles in the list
containing both σv(e) and σv(f). Moreover, the list can be required to
contain at least one cycle of length greater than two if G has a connected
component which has at least four vertices.

Proposition 15. Let n′ > 1. Tiling Conjecture holds for all n =
2, . . . , n′ if and only if Conjecture 14 holds for graphs on 2n′ vertices.

Proof. (Conjecture 14 ⇒ Tiling Conjecture) Let 2 ≤ n ≤ n′ and let
U be a minimal and diskbusting list of cyclically reduced words in
Fn. If Conjecture 14 holds for 2n′, then it holds for 2n because we
can add isolated vertices. By Proposition 11, the connected graph
W (U) is equipped with the fixed point free involution µ(v) = v−1 on
V (W (U)) and the associated connecting map σv at each vertex v such
that λ(v, µ(v)) = deg(v) and σµ(v) = σ−1v . Note that W (U) is non-
acyclic; because otherwise deg(v) = λ(v, µ(v)) ≤ 1 for each vertex v
and therefore W (U) would be disconnected, as W (U) has at least four
vertices. The conclusion of Conjecture 14 along with Lemma 13 implies
that U is polygonal.

(Tiling Conjecture ⇒ Conjecture 14) We let G, µ, σv be as in the
hypothesis of Conjecture 14 such that |V (G)| = 2n′. Let n = n′. Since
for each vertex v, v and µ(v) belong to the same connected component
of G, we may assume that G is connected by taking a non-acyclic
component of G. If |V (G)| = 2, then the list of all bigons is a desired
collection of cycles. So we assume G is connected and |V (G)| ≥ 4.
Label the vertices of G as a1, a

−1
1 , . . . , an, a

−1
n so that a−1i = µ(ai). Then

G can be regarded as the Whitehead graph of a list U of cyclically
reduced words in Fn. Proposition 11 implies that U is minimal and
diskbusting, as well. As we are assuming Tiling Conjecture for Fn, U
is polygonal. Lemma 13 completes the proof. �

In Sections 4 and 5, we will prove Conjecture 14 for regular graphs
and four-vertex graphs, respectively. This amounts to proving Tiling
Conjecture for k-regular lists of words and for rank-two free groups.

4. Regular Graph and Proof of Theorem 2

We will prove that Conjecture 14 holds for regular graphs. It turns
out that we can prove a slightly stronger theorem.
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Theorem 16. Let k > 1. Let G = (V,E) be a k-regular graph with a
fixed point free involution µ : V → V such that λ(v, µ(v)) = k for every
vertex v ∈ V . Then there exists a nonempty list of cycles of G with
positive integers m1, m2 such that every edge is in exactly m1 cycles
in the list and each adjacent pair of edges is contained in exactly m2

cycles in the list.

Theorem 2 is now an immediate corollary of the following.

Corollary 17. A minimal, diskbusting, k-regular list of words in Fn is
polygonal when n > 1.

Proof of Corollary 17. Let U be such a list. By Proposition 11, W (U)
satisfies the hypotheses of Theorem 16, and moreover, W (U) is con-
nected and k-regular. Since W (U) has 2n vertices and n > 1, it has
two adjacent edges e and f , not parallel to each other. By Theorem 16,
there must be a cycle in the list containing both e and f and that cycle
must have length at least three. Lemma 13 completes the proof. �

A graph H is a subdivision of G if H is obtained from G by replacing
each edge by a path of length at least one. We remark that Conjec-
ture 14 is also true for all subdivisions of k-regular graphs if k > 1,
because every edge appears the same number of times in Theorem 16.

Let us start proving Theorem 16. A graph G = (V,E) is called a
k-graph if it is k-regular and |δ(X)| ≥ k for every subset X of V with
|X| odd. In particular if k > 0, then every k-graph must have an even
number of vertices, because otherwise |δ(V (G))| ≥ k.

It turns out that every k-regular graph with the properties required
by Conjecture 14 is a k-graph.

Lemma 18. Let G = (V,E) be a k-regular graph with a fixed point free
involution µ such that λ(v, µ(v)) = k for every vertex v ∈ V . Then G
is a k-graph.

Proof. Supposes X ⊆ V and |X| is odd. Then there must be x ∈ X
with µ(x) /∈ X because µ is an involution such that µ(v) 6= v for all
v ∈ V . Then there exist k edge-disjoint paths from x to µ(x) and
therefore |δ(X)| ≥ k. �

By the previous lemma, it is sufficient to consider k-graphs in order
to prove Theorem 16. By using the characterization of the perfect
matching polytope by Edmonds [10], Seymour [27] showed the following
theorem. This is also explained in Corollary 7.4.7 of the book by Lovász
and Plummer [21]. A matching is a set of edges in which no two are
adjacent. A perfect matching is a matching meeting every vertex.
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Theorem 19 (Seymour [27]). Every k-graph is fractionally k-edge-
colorable. In other words, every k-graph has a nonempty list of perfect
matchings M1, M2, . . ., M` such that every edge is in exactly `/k of
them.

For sets A and B, we write A∆B = (A \B) ∪ (B \ A).

Lemma 20. Let k > 1. Every k-graph has a nonempty list of cycles
such that every edge appears in the same number of cycles and for each
pair of adjacent edges e, f , the number of cycles in the list containing
both e and f is identical.

Proof. Let M1, M2, . . ., M` be a nonempty list of perfect matchings
of a k-graph G = (V,E) such that each edge appears in `/k of them.
Then for distinct i, j, the set Mi∆Mj induces a subgraph of G such
that every vertex has degree 2 or 0. Thus each component of the
subgraph (V,Mi∆Mj) is a cycle. Let C1, C2, . . ., Cm be the list of
cycles appearing as a component of the subgraph of G induced by
Mi∆Mj for each pair of distinct i and j. We allow repeated cycles.
This list is nonempty because k > 1 and so there exist i, j such that
Mi 6= Mj.

Since each edge is contained in exactly `/k of M1, M2, . . ., M`, every
edge is in exactly `

k
(` − `

k
) cycles in the list. For two adjacent edges

e and f , since no perfect matching contains both e and f , there are
(`/k)2 cycles in C1, C2, . . ., Cm using both e and f . �

Lemmas 18 and 20 clearly imply Theorem 16. We also note that
even the minimality assumption can be lifted for rank-two free groups:

Corollary 21. Let U be a k-regular list of cyclically reduced words in
F2. Then U is diskbusting if and only if U is polygonal; in this case,
D(U) contains a hyperbolic surface group.

Proof. We note that a k-regular 4-vertex graph is always a k-graph.
For the sufficiency, we recall that if U is diskbusting in F2, then

W (U) is connected [29, 28]. Since a connected 4-vertex graph contains
at least one pair of incident edges which are not parallel, Lemma 20
implies that W (U) contains a list of cycles, not all bigons, such that
each pair of incident edges appears the same number of times in the
list. Lemma 13 proves the claim.

For the necessity, we note that the proof of the sufficiency part of
Proposition 9 shows if U is not diskbusting in F2, then D(U) does not
contain a hyperbolic surface group. �
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5. Graphs on four vertices

Let G be a graph with a fixed point free involution µ : V (G) →
V (G) and a bijection σv : δ(v) → δ(µ(v)) for each vertex v so that
λ(v, µ(v)) = deg(v) and σµ(v) = σ−1v . For a vertex w of G, a permuta-
tion π on δ(w) is called w-good if {e, σw(π(e))} is a matching of G for
every edge e incident with w. Note that {e, f} is a matching of G if
and only if either e = f or e, f share no vertex. In particular, if x is
an edge joining w and µ(w), then σw(π(x)) = x.

A permutation π on a set X induces a permutation π(2) on 2-element
subsets of X such that π(2)({x, y}) = {π(x), π(y)} for all distinct x, y ∈
X. A w-good permutation π on δ(w) is uniform if π(2) has a list of
orbits X1, X2, . . ., Xt satisfying the following.

(i) If {x, y} ∈ Xi, then x and y do not share a vertex other than w
or µ(w) in G.

(ii) There is a constant c > 0 such that for every edge e ∈ δ(w),

|{(Xi, F ) : 1 ≤ i ≤ t, F ∈ Xi and e ∈ F}| = c.

The following lemma shows that in order to prove Conjecture 14 for
4-vertex graphs, it is enough to find a w-good uniform permutation on
the edges incident with a vertex w of minimum degree.

Lemma 22. Let G be a connected 4-vertex graph with a fixed point
free involution µ : V (G) → V (G) such that λ(v, µ(v)) = deg(v) for
each vertex v. Let w be a vertex of G with the minimum degree. Let
σw : δ(w)→ δ(µ(w)) be a bijection.

If there is a w-good uniform permutation π on δ(w), then G admits
a nonempty list of cycles satisfying the following properties.

(a) For distinct edges e1, e2 ∈ δ(w), the number of cycles in the list
containing both e1 and e2 is equal to the number of cycles in the
list containing both σw(e1) and σw(e2).

(b) There is a constant c1 > 0 such that each edge appears in exactly
c1 cycles in the list.

(c) There is a constant c2 > 0 such that for a vertex v ∈ V (G) \
{w, µ(w)} and each pair of distinct edges e1, e2 ∈ δ(v), exactly c2
cycles in the list contain both e1 and e2.

(d) The list contains a cycle of length at least three.

Proof. We say that a list of cycles is good if it satisfies (a), (b), (c), and
(d). We proceed by induction on |E(G)|. Let u be a vertex of G other
than w and µ(w). If deg(u) = deg(w), then the conclusion follows by
Theorem 16. Therefore we may assume that deg(u) > deg(w). There
should exist an edge e joining u and µ(u). Moreover G \ e is connected
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because otherwise G would not have deg(w) edge-disjoint paths from
w to µ(w).

By the induction hypothesis, G \ e has a good list of cycles C ′1, C
′
2,

. . ., C ′s. Note that we use the fact that deg(u) > deg(w) so that G \ e
has degG\e(v) edge-disjoint paths from v to µ(v) for each vertex v of
G \ e. Let c′1, c

′
2 be the constants given by (b) and (c), respectively, for

the list C ′1, C
′
2, . . ., C

′
s of cycles of G \ e.

Since π is w-good uniform, π(2) has a list of orbits X1, X2, . . ., Xt

satisfying (i) and (ii), where each edge in δ(w) appears c times in this
list.

Suppose that {x, y} ∈ Xi. Then {π(x), π(y)} ∈ Xi. If x, y ∈
δ(µ(w)), then we let Cxy be a cycle formed by two edges x = σw(π(x))
and y = σw(π(y)). If x, y /∈ δ(µ(w)), let Cxy be a list of two cycles, one
formed by three edges e, x, y, and the other formed by three edges e,
σw(π(x)), σw(π(y)). If exactly one of x and y, say y, is incident with
µ(w), then let Cxy be the cycle formed by four edges e, x, y = σw(π(y)),
σw(π(x)). Since x and y never share u or µ(u) by (i), Cxy always con-
sists of one or two cycles of G.

Let C1, C2, . . . , Cp be the list of all cycles in Cxy for each member
{x, y} of Xi for all i = 1, 2, . . . , t. Notice that we allow repetitions of
cycles.

We claim that the list C1, C2, . . . , Cp satisfies (a). For each occur-
rence of x, y ∈ δ(w) in a cycle in the list, there is a corresponding i
such that {x, y} ∈ Xi. Since Xi is an orbit, there is {x′, y′} ∈ Xi

where π(x′) = x and π(y′) = y. Then the list contains cycles in
Cx′y′ for Xi. This proves the claim because σw(x) = σw(π(x′)) and
σw(y) = σw(π(y′)).

By (ii) of the definition of a uniform permutation, for each edge f in-
cident with w, there are c cycles in the list C1, C2, . . . , Cp containing the
edge f of G. Notice that whenever an edge f in Cxy is in δ({w, µ(w)}),
Cxy contains e and σw(π(f)) by the construction. Therefore every edge
incident with w or µ(w) appears c times in the list C1, C2, . . . , Cp.

We now construct a good list of cycles for G as follows: We take
c′2 copies of C1, C2, . . . , Cp, c copies of C ′1, C

′
2, . . . , C

′
s, and cc′2 copies of

cycles formed by e and another edge f 6= e joining u and µ(u). We
claim that this is a good list of cycles of G. It is trivial to check (a).
For distinct edges e1, e2 incident with u, the list contains cc′2 cycles
containing both of them, verifying (c). Let a be the number of edges in
δ(u) incident with w or µ(w) and let b be the number of edges joining u
and µ(u). By (c) on G \ e, we have c′1 = c′2(a+ b− 2). Finally to prove
(b), every edge incident with w or µ(w) appears cc′2+cc′1 = cc′2(a+b−1)
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times in the list and the edge e appears acc′2+(b−1)cc′2 = cc′2(a+b−1)
times in the list. An edge f 6= e joining u and µ(u) appears cc′1 + cc′2 =
cc′2(a+ b− 1) times. �

5.1. Lemma on Odd Paths and Even Cycles. To find a w-good
uniform permutation of δ(w), we need a combinatorial lemma on a set
of disjoint odd paths and even cycles. The length of a path or a cycle
is the number of its edges.

Lemma 23. Let D be a directed graph with at least four vertices such
that each component is a directed path of odd length or a directed cycle
of even length. Suppose that every vertex of in-degree 0 or out-degree
0 in D is colored with red or blue, while the number of red vertices of
in-degree 0 is equal to the number of red vertices of out-degree 0. We
say that a graph is good if at most half of all the vertices are blue
and at most half of all the vertices are red. We say that a directed
path or a cycle is long if its length is at least three. A directed path
or a cycle is said to be short if it is not long. A R-R path denotes a
directed path starting with a red vertex and ending with a red vertex.
Similarly we say R-B paths, B-B paths, B-R paths. A set of paths is
called monochromatic if it has no blue vertex or no red vertex.

If D is good, then D can be partitioned into good subgraphs, each of
which is one of eight types listed below. (See Figure 6.)

(1) A short R-R path, a short B-B path, and possibly a short cycle.
(2) A monochromatic path and one or two short cycles.
(3) A short cycle, a B-R path, and an R-B path.
(4) At least two short cycles.
(5) A long monochromatic path and monochromatic short paths,

possibly none.
(6) A B-R path, a R-B path, and monochromatic short paths, pos-

sibly none.
(7) A long cycle and monochromatic short paths, possibly none.
(8) A long cycle and a short cycle.

We remark that in a subgraph of type (5), we require that the long
path is monochromatic and the set of short paths monochromatic, but
we allow the long path to have a color unused in short paths.

Proof. We proceed by induction on |V (D)|. If D has a subgraph H
that is a disjoint union of a short R-R path and a short B-B path, then
D \V (H), the subgraph obtained by removing vertices of H from D, is
still good. IfD = H, then we have nothing to prove. If |V (D)\V (H)| =
2, then D is the disjoint union of a short R-R path, a short B-B path,
and a short cycle, and therefore D is a directed graph of type (1). If
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 6. Description of eight types of good subgraphs

|V (D) \ V (H)| ≥ 4, then H is a good subgraph of type (1). Then we
apply the induction hypothesis to get a partition for D \ V (H).

Therefore we may assume that D has no pair of a short B-B path
and a short R-R path. By symmetry, we may assume that D has no
short R-R path. Then in each component, the number of red vertices is
at most half of the number of vertices. Thus, in order to check whether
some disjoint union of components is good, it is enough to count blue
vertices.

Suppose that D has a short cycle and a short B-B path. We are
done if D is a graph of type (2). Thus we may assume that D has at
least eight vertices. Let X be the set of vertices in the pair of a short
cycle and a short B-B path. Then the subgraph of D induced on X
is a subgraph of type (2). Because X has two blue vertices and two
uncolored vertices, D \ X is good and has at least four vertices. By
the induction hypothesis, we obtain a good partition of D \ X. This
together with the subgraph induced by X is a good partition of D.

We may now assume that either D has no short cycles, or D has no
short B-B path.
(Case 1) Suppose that D has no short cycles. The subgraph of D
consisting of all components other than short B-B paths can be par-
titioned into good subgraphs P1, P2, . . ., Pk of type (5), (6), or (7),
because the number of R-B paths is equal to the number of B-R
paths. We claim that short B-B paths can be assigned to those sub-
graphs while maintaining each Pi to be good. Suppose that Pi has
2bi blue vertices and 2ni = |V (Pi)|. Notice that bi and ni are inte-
gers. Let x be the number of short B-B paths in D. Since D is good,
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Figure 7. A graph and its auxiliary directed graph at w

2(2x +
∑k

i=1 2bi) ≤
∑k

i=1 2ni + 2x and therefore x ≤ ∑k
i=1(ni − 2bi).

Each Pi can afford to have ni−2bi short B-B paths to be good. Overall
all P1, . . . , Pk can afford

∑k
i=1(ni− 2bi) short B-B paths; thus consum-

ing all short B-B paths. This proves the claim.
(Case 2) Suppose D has short cycles but has no short B-B paths.
If D has at least two short cycles, then we can take all short cycles
as a subgraph of type (4) and the subgraph of D consisting of all
components other than short cycles can be decomposed into subgraphs,
each of which is type (5), (6), or (7).

Thus we may assume D has exactly one short cycle. Since D has at
least four vertices, D must have a subgraph P consisting of components
of D that is one of the following type: a monochromatic path, a long
cycle, or a pair of a B-R path and an R-B path. Then P with the
short cycle forms a good subgraph of type (2), (8), or (3), respectively.
The subgraph of D induced by all the remaining components can be
decomposed into subgraphs of type (5), (6), and (7). �

5.2. Finding a Good Uniform Permutation. Let G be a connected
4-vertex graph with a fixed point free involution µ : V (G)→ V (G) such
that λ(v, µ(v)) = deg(v) for each vertex v. Let w be a vertex of G with
the minimum degree and let u be a vertex of G other than w and µ(w).
Let σw : δ(w)→ δ(µ(w)) be a bijection.

Let e1, e2, . . . , em be the edges incident with w and let f1, f2, . . . , fm
be the edges incident with µ(w) so that fi = σw(ei). We construct an
auxiliary directed graph D on the disjoint union of {e1, e2, . . . , em} and
{f1, f2, . . . , fm} as follows:

(i) For all i ∈ {1, 2, . . . ,m}, D has an edge from fi to ei.
(ii) If ei and fj denote the same edge in G, then D has an edge from

ei to fj.

We have an example in Figure 7. It is easy to observe the following.

• Every vertex in {e1, e2, . . . , em} of D has in-degree 1.
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• Every vertex in {f1, f2, . . . , fm} of D has out-degree 1.
• A vertex ei of D has out-degree 1 if the edge ei of G is incident

with µ(u), and out-degree 0 if otherwise.
• A vertex fi of D has in-degree 1 if the edge fi of G is incident

with u, and in-degree 0 if otherwise.

By the degree condition, D is the disjoint union of odd directed paths
and even directed cycles.

Let r be the number of edges of G joining u and w and let b be the
number of edges of G joining µ(u) and w. For each i, we color ei red
if it is incident with u and blue if it is incident with µ(u). Similarly
for each i, we color fi blue if it is incident with u and red if it is
incident with µ(u). Clearly there are r red vertices and b blue vertices
in {e1, e2, . . . , em}.

Let r′ be the number of edges of G joining µ(u) and µ(w) and let
b′ be the number of edges of G joining u and µ(w). We claim that
r′ = r and b′ = b. Of course, there are r red vertices and b blue vertices
in {f1, f2, . . . , fm}. Since degw = deg µ(w) and deg u = deg µ(u), we
have r + b′ = b + r′ and r + b = r′ + b′. We deduce that r = r′ and
b = b′.

We also assume that G has deg(u) edge-disjoint paths from u to
µ(u). Therefore |δ({u,w})| ≥ |δ(u)| and |δ({u, µ(w)})| ≥ |δ(u)|. This
implies that b+ b+ (m− r− b) ≥ b+ r and r+ r+ (m− r− b) ≥ b+ r.
Thus

2r ≤ m and 2b ≤ m.

From now on, our goal is to describe a w-good permutation π on
δ(w) from a directed graph D with a few extra edges.

Lemma 24. Let D′ be a directed graph obtained by adding one edge
from each vertex of out-degree 0 to a vertex of in-degree 0 with the same
color so that every vertex has in-degree 1 and out-degree 1 in D′. Let
π be a permutation on δ(w) = {e1, e2, . . . , em} so that π(ei) = ej if and
only if D′ has a directed walk from ei to ej of length two. Then π is
w-good.

Let us call such a directed graph D′ a completion of D. A completion
of D′ always exists, because the number of red vertices of in-degree 0
is equal to the number of red vertices of out-degree 0. Clearly there
are r! b! completions of D.

Proof. It is enough to show that if D′ has an edge e from ei to fj, then
{ei, fj} is a matching of G. If e ∈ E(D), then ei = fj and therefore
{ei, fj} = {ei} is a matching of G. If e /∈ E(D), then ei and fj should
have the same color and therefore ei and fj do not share any vertex. �
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Out of r! b! completions of D′, we wish to find a completion D′ of D
so that the w-good permutation induced by D′ is uniform.

Lemma 25. If D is a directed graph of type (1), (2), . . ., (8) described
in Lemma 23, then D has a completion D′ so that the induced w-good
permutation is uniform.

Proof. We claim that for each type of a directed graph D, there is a
completion D′ of D such that its induced w-good permutation π on
δ(w) is uniform. Recall that a w-good permutation π is uniform if π(2)

has a list of orbits X1, X2, . . ., Xt satisfying the following conditions:

(i) If {x, y} ∈ Xi, then x and y do not share a vertex other than w
or µ(w) in G.

(ii) There is a constant c > 0 such that for every edge e ∈ δ(w),

|{(Xi, F ) : 1 ≤ i ≤ t, F ∈ Xi and e ∈ F}| = c.

Case 1: Suppose that D is of type (1) or (4) with k components. Then
There is a unique completion D′ of D. It is easy to verify that the list
of all orbits of π(2) satisfies the conditions (i) and (ii) where c = k− 1.

Case 2: Suppose that D is of type (2). Then D consists of a monochro-
matic path P and one or two short cycles. A completion D′ of D is
unique, as it is obtained by adding an edge from the terminal vertex of
P to the initial vertex of P . Let π be the permutation of δ(w) induced
by D′. Let x1, x2, . . . , xm be the edges in δ(w) that are in P such that
π(xi) = xi+1 for all i = 1, 2, . . . ,m where xm+1 = x1. Let y1 ∈ δ(w) be
the vertex in the first short cycle such that π(y1) = y1. If D has two
cycles, then let y2 ∈ δ(w) be the vertex in the second short cycle such
that π(y2) = y2.

Then Oj = {{xi, yj} : 1 ≤ i ≤ m} is an orbit of π(2) satisfying (i). If
m > 1, then OP = {{xi, xi+1} : 1 ≤ i ≤ m} is an orbit of π(2) satisfying
(i) in which each xi appears twice if m > 2 and each xi appears once
if m = 2.

If D has only one cycle, then each xi appears once and y1 appears m
times in O1. So if m = 1, then O1 satisfies (i) and (ii). If m = 2, then
O1 and OP form a list of orbits of π(2) satisfying (i) and (ii). If m > 2,
then a list of two copies of O1 and (m − 1) copies of OP satisfies (i)
and (ii).

If D has two short cycles, then in O1 and O2, each xi appears twice
and each yj appears m times. Notice that {{y1, y2}} is an orbit of π(2).
If m = 1, then a list of O1, O2, and {{y1, y2}} satisfies (i) and (ii). If
m = 2, then a list of O1 and O2 satisfies (i) and (ii). If m > 3, then
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a list of two copies of O1, two copies of O2, and (m − 2) copies of OP

satisfies (i) and (ii).

Case 3: If D is of type (3), then D has a unique completion D′. Let π
be the permutation of δ(w) induced by D′. Let y ∈ δ(w) be a vertex
of D in the short cycle such that π(y) = y. Let x1, x2, . . . , xm ∈ δ(w)
be the vertices on the long cycle in D′ such that π(xi) = xi+1 for all
i = 1, 2, . . . ,m where xm+1 = x1. Since D has two paths, m > 1.
Then OP = {{xi, xi+1} : i = 1, 2, . . . ,m} and OC = {{y, xi} : i =
1, 2, . . . ,m} are orbits of π(2). In OP , each xi appears twice if m > 2
and once if m = 2. In OC each xi appears once and y appears m
times. Now it is routine to create a list of orbits satisfying (i) and (ii)
by taking copies of OC and copies of OP .

Case 4: Suppose that D is of type (5) having both red and blue vertices
or D is of type (7) or (8). Let D′ be a completion of D obtained by
making each path of D to be a cycle of D′. Let x1, x2, . . . , xm ∈ δ(w)
be vertices in the long cycle of D′ so that π(xi) = xi+1 for all i =
1, 2, . . . ,m where xm+1 = x1. Let y1, y2, . . . , yk ∈ δ(w) be vertices in
short cycles of D′ such that π(yi) = yi. Since D is good, k ≤ m.
Let Oj = {{xi, yj} : i = 1, 2, . . . ,m} for j = 1, 2, . . . , k and OP =
{{xi, xi+1} : i = 1, 2, . . . ,m} where xm+1 = x1. In the list of O1, O2,
. . ., Ok, each xi appears k times and each yj appears m times. In OP ,
each xi appears twice if m > 2 and once if m = 2. To satisfy (i) and
(ii), we can take a list of two copies of each Oj for j = 1, 2, . . . , k and
copies of OP .

Case 5: Suppose that D is a directed graph of type (5) not having
both red and blue, or D is a directed graph of type (6). Then D has
a completion D′ consisting of a single cycle. Let π be the permutation
of δ(w) induced by D′. Let x1, x2, . . . , xm ∈ δ(w) be vertices in D such
that π(xi) = xi+1 for all i = 1, 2, . . . ,m. We OP = {{xi, xi+bm/2c} :
i = 1, 2, . . . ,m} where xj+m = xj for all j = 1, · · · , bm/2c. Then in
OP , each xi appears twice if m is odd and once if m is even. Moreover,
since all the vertices of the same color appear consecutively in D′ and
the number of vertices of the same color is at most half of m, OP

never contains a pair {xi, xj} of vertices of the same color, red or blue.
Therefore OP satisfies (i) and (ii). This completes the proof. �

Lemma 26. There exists a completion D′ of D so that the w-good
permutation induced by D′ is uniform.

Proof. By Lemma 23, D can be partitioned into good subgraphs D1,
D2, . . ., Dt of type (1), (2), . . ., (8). Lemma 25 shows that each Di

admits a completion that induces a w-good uniform permutation πi
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with a list Li of orbits of π
(2)
i satisfying (i) and (ii). Let us assume that

each vertex of Di appears ci > 0 times in Li. Let c = lcm(c1, c2, . . . , ct).
Then let L be the list of orbits obtained by taking c/ci copies of Li for
each i = 1, 2, . . . , t. Then L satisfies (i) and (ii). This proves the
lemma. �

Now we are ready to prove Conjecture 14 for 4-vertex graphs:

Theorem 27. Let G be a connected 4-vertex graph with a fixed point
free involution µ : V (G) → V (G) and a bijection σv : δ(v) → δ(µ(v))
for each vertex v such that λ(v, µ(v)) = deg(v) and σµ(v) = σ−1v . Then
G has a nonempty list of cycles satisfying the following.

(a) For each pair of edges e and f incident with a vertex v, the number
of cycles in the list containing both e and f is equal to the number
of cycles in the list containing both σv(e) and σv(f).

(b) Each edge of G appears in the same number of cycles in the list.
(c) The list contains a cycle of length at least three.

Proof. Let w be a vertex of minimum degree. By Lemma 26, G has
a w-good uniform permutation π on δ(w). By Lemma 22, G has a
nonempty list of cycles satisfying (a), (b), and (c). �

We remark that Conjecture 14 is true for subdivisions of connected
4-vertex graphs because of (b). By Proposition 15 and Theorem 27,
we verify Tiling Conjecture for rank-two free groups:

Corollary 28. A minimal and diskbusting list of cyclically reduced
words in F2 is polygonal.

Now Theorem 1 is an immediate consequence of the following.

Corollary 29. For a list U of words in F2, the following are equivalent.

(1) The list U is diskbusting.
(2) D(U) contains a hyperbolic surface group.
(3) D(U) is one-ended.

Proof. (1)⇔(3) is well-known and stated in [12], for example. (1)⇒(2)
follows from Corollary 28 and Theorem 7. By putting n = 2 in the
Proposition 9, we have (2)⇒(1). �

6. Final Remarks

Minimality assumption in Tiling Conjecture. A graph G is 2-
connected if |V (G)| > 2, G is connected, and G \ x is connected for
every vertex x. It is well-known that a list U of cyclically reduced
words in Fn is diskbusting if and only if W (φ(U)) is 2-connected for
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Figure 8. Example 30.

some φ ∈ Aut(Fn) [29, 28]. However, the minimality assumption in
Tiling Conjecture cannot be weakened to the 2-connectedness of the
Whitehead graph; this is equivalent to saying that λ(v, µ(v)) = deg(v)
in Conjecture 14 cannot be relaxed to 2-connectedness. Daniel Král’
[20] kindly provided us Example 30 showing why this relaxation is not
possible.

Example 30. Let G be a 4-vertex graph shown in Figure 8. For a vertex
v and edges e ∈ δ(v) and f ∈ δ(µ(v)), we let σv(e) = f if and only if
the number written on e near v coincides with the number written on
f near µ(v). Actually, G is the Whitehead graph of a(ab−1)3b−2 with
the associated connecting maps σv. While G is 2-connected, one can
verify that G does not have a list of cycles satisfying the conclusion of
Conjecture 14. Note that λ(a, µ(a)) = 3 < 4 = deg(a).

Control over positive degrees. The following lemma states that
Conjecture 14 can be strengthened to require each edge to appear the
same number of times.

Lemma 31. Suppose Conjecture 14 is true. If G is connected and
has at least four vertices, then the list of cycles in the conclusion of
Conjecture 14 can be chosen so that each edge appears the same number
of times.

Proof. Let G be a given graph. We claim that G is 2-connected. Sup-
pose not and let x be a vertex such that G \ x is disconnected. Let
C be a component of G \ x containing µ(x) and D be a component of
G \ x other than C. Since G is connected, x has an edge incident with
a vertex in D and therefore G can not have deg(x) edge-disjoint paths
from x to µ(x), a contradiction. This proves the claim.

Let e1, e2, . . . , em be the list of edges of G. Let G′ be a graph obtained
from G by replacing each edge with a path of length m. Let vij be
the j-th internal vertex of the path of G′ representing ei where j =
1, 2, . . . ,m− 1. We extend µ of G to obtain µ′ of G′ so that µ′(vi,j) =
vj,i−1 and µ′(vj,i−1) = vi,j for all 1 ≤ j < i ≤ m.
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Since G is 2-connected, for each pair of edges e and f of G, there is
at least one cycle containing both e and f . Thus in G′, there are two
edge-disjoint paths from vi,j to vj,i−1 for all 1 ≤ j < i ≤ m. So we
can apply Conjecture 14 to G′ and deduce that each edge of G is used
the same number of times because the number of cycles passing vi,j is
equal to the number of cycles passing vj,i−1 for all 1 ≤ j < i ≤ m. �

Suppose U is a polygonal list of cyclically reduced words u1, . . . , ur
in Fn. There exists a closed U -polygonal surface S obtained by a
side-pairing on polygonal disks P1, . . . , Pm equipped with an immersion
S(1) → Cayley(Fn)/Fn as in Definition 6. We shall orient each ∂Pi
so that each ∂Pi → S(1) → Cayley(Fn)/Fn reads a positive power
of a word in U . Partition P = {P1, . . . , Pm} into P1, . . . ,Pr so that
each Pi ∈ Pj reads a power of uj. If the polygonal disks in Pj read
uc1j , u

c2
j , . . . , u

ck
j , we say c1 +c2 + · · ·+ck is the positive degree of uj with

respect to the partition P = P1 ∪ · · · ∪ Pr.
Proposition 32. Let U be a minimal and diskbusting list of cyclically
reduced words u1, . . . , ur in Fn for some n > 1. We assume that either
Tiling Conjecture is true, or n = 2. Then there exists a U-polygonal
surface S such that the positive degree of every word in U is the same
with respect to a suitable partition of the polygonal disks in S.

Proof. Suppose that W (U) has a list of cycles satisfying the conclusion
of Conjecture 14 and each edge appears the same number of times, say
s, in the list. We consider a U -polygonal surface S as in the proof
of Lemma 13. We define Pj to be the set of polygonal disks on S so
that in the construction of S, the corners of the polygonal disks in Pj
correspond to the edges in W (U) that are coming from uj. Then every
word in U has the positive degree s with respect to this natural choice
of a partition of the polygonal disks. Hence, the proof follows from
Part (b) of Theorem 27 and Lemma 31. �

Non-virtually geometric words. Let Hn denote a 3-dimensional
handlebody of genus n. A word w in Fn can be realized as an embedded
curve γ ⊆ Hn. A word w is said to be virtually geometric if there
exists a finite cover p : H ′ → Hn such that p−1(γ) is homotopic to
a 1-submanifold on the boundary of H ′ [12]. Using Dehn’s lemma,
Gordon and Wilton [12] proved that if w ∈ Fn is diskbusting and
virtually geometric, then D({w}) contains a surface group; this also
follows from the fact that a minimal diskbusting geometric word is
polygonal [17]. On the other hand, Manning provided examples of
minimal diskbusting, non-virtually geometric words as follows.
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Theorem 33 (Manning [22]). If the Whitehead graph of a word w in
Fn is non-planar, k-regular and k-edge-connected for some k ≥ 3, then
w is not virtually geometric.

Here, a graph G is said to be k-edge-connected if |δ(X)| ≥ k for all
∅ 6= X ( V (G). So, if W (U) is k-regular and k-edge-connected for
a list U of words in Fn, then U is minimal and diskbusting. Hence
even for the words provided by Manning, Theorem 2 finds hyperbolic
surface groups in the corresponding doubles:

Corollary 34. If the Whitehead graph of a list U of words in Fn is
k-regular and k-edge-connected for some k ≥ 3, then U is polygonal.
In particular, D(U) contains a hyperbolic surface group.

Existence of separable surface subgroups. A subgroup H of a
group G is said to be separable if H coincides with the intersection
of all the finite-index subgroups of G containing H. If every finitely
generated subgroup of G is separable, we say G is subgroup separable.
The Virtual Haken Conjecture for a closed hyperbolic 3-manifold M
asserts that there exists a π1-injective, homeomorphically embedded,
closed hyperbolic surface in some finite cover of M [26]; this is a main
motivation for Question 1. If π1(M) contains a separable hyperbolic
surface subgroup, then it is known that a closed hyperbolic surface
π1-injectively embeds into a finite cover of M [26]. So, it is natural to
augment Question 1 as follows.

Question 3. Does every one-ended word-hyperbolic group contain a
separable hyperbolic surface group?

Since X(U) has a non-positively curved square complex structure
and also decomposes a graph of free groups with cyclic edge groups,
D(U) is subgroup separable by [31].
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