RANK-WIDTH AND WELL-QUASI-ORDERING OF
SKEW-SYMMETRIC OR SYMMETRIC MATRICES

SANG-IL OUM

ABSTRACT. We prove that every infinite sequence of skew-symmetric
or symmetric matrices My, My, ... over a fixed finite field must
have a pair M;, M; (i < j) such that M; is isomorphic to a princi-
pal submatrix of the Schur complement of a nonsingular principal
submatrix in Mj, if those matrices have bounded rank-width. This
generalizes three theorems on well-quasi-ordering of graphs or ma-
troids admitting good tree-like decompositions; (1) Robertson and
Seymour’s theorem for graphs of bounded tree-width, (2) Geelen,
Gerards, and Whittle’s theorem for matroids representable over
a fixed finite field having bounded branch-width, and (3) Oum’s
theorem for graphs of bounded rank-width with respect to pivot-
minors.

1. INTRODUCTION

For a Vi x Vi matrix A; and a V5 x V5 matrix As, an isomorphism f
from A; to A, is a bijective function that maps V; to V5 such that the
(1,7) entry of A; is equal to the (f(i), f(j)) entry of As for all i, 5 € V].
Two square matrices Ay, A are isomorphic if there is an isomorphism
from A; to As. Note that an isomorphism allows permuting rows and
columns simultaneously. For a V' x V matrix A and a subset X of
its ground set V', we write A[X] to denote the principal submatrix of
A induced by X. Similarly, we write A[X,Y] to denote the X x Y
submatrix of A. Suppose that a V' x V matrix M has the following
form:

Y V\Y
M:§\Y< é g >
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If A = M[Y] is nonsingular, then we define the Schur complement
(M/A) of A in M to be

(M/A) =D — CA™'B.

(If Y = 0, then A is nonsingular and (M/A) = M.) Notice that if
M is skew-symmetric or symmetric, then (M/A) is skew-symmetric or
symmetric, respectively.

We prove that skew-symmetric or symmetric matrices over a fixed
finite field are well-quasi-ordered under the relation defined in terms
of taking a principal submatrix and a Schur complement, if they have
bounded rank-width. Rank-width of a skew-symmetric or symmetric
matrix will be defined precisely in Section |2 Roughly speaking, it is a
measure to describe how easy it is to decompose the matrix into a tree-
like structure so that the connecting matrices have small rank. Rank-
width of matrices generalizes rank-width of simple graphs introduced
by Oum and Seymour [12], and branch-width of graphs and matroids
by Robertson and Seymour [I5]. Here is our main theorem.

Theorem [7.1] Let F be a finite field and let k be a constant. Every
infinite sequence My, Mo, ... of skew-symmetric or symmetric matri-
ces over ¥ of rank-width at most k has a pair i < j such that M; is
isomorphic to a principal submatriz of (M;/A) for some nonsingular
principal submatriz A of M;.

It may look like a purely linear algebraic result. However, it implies
the following well-quasi-ordering theorems on graphs and matroids ad-
mitting ‘good tree-like decompositions.’

e (Robertson and Seymour [I5]) Every infinite sequence Gy, Ga,
... of graphs of bounded tree-width has a pair ¢ < j such that
G is isomorphic to a minor of Gj;.

o (Geelen, Gerards, and Whittle [§]) Every infinite sequence My,
M, ... of matroids representable over a fixed finite field hav-
ing bounded branch-width has a pair ¢ < j such that M; is
isomorphic to a minor of M;.

e (Oum [I1]) Every infinite sequence Gy, Go, ... of simple graphs
of bounded rank-width has a pair ¢ < j such that G; is isomor-
phic to a pivot-minnor of Gj.

We ask, as an open problem, whether the requirement on rank-width
is necessary in Theorem [7.1] Tt is likely that our theorem for matrices
of bounded rank-width is a step towards this problem, as Roberson and
Seymour also started with graphs of bounded tree-width. If we have
a positive answer, then this would imply Robertson and Seymour’s
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graph minor theorem [I6] as well as an open problem on the well-
quasi-ordering of matroids representable over a fixed finite field [10].

A big portion of this paper is devoted to introduce Lagrangian chain-
groups and prove their relations to skew-symmetric or symmetric ma-
trices. Ome can regard Sections 3] and || as an almost separate pa-
per introducing Lagrangian chain-groups, their matrix representations,
and their relations to delta-matroids. In particular, Lagrangian chain-
groups provide an alternative definition of representable delta-matroids.
The situation is comparable to Tutte chain—groups,ﬂ introduced by
Tutte [20]. Tutte [21] showed that a matroid is representable over a field
[ if and only if it is representable by a Tutte chain-group over F. We
prove an analogue of his theorem; a delta-matroid is representable over
a field ' if and only if it is representable by a Lagrangian chain-group
over F. We believe that the notion of Lagrangian chain-groups will be
useful to extend the matroid theory to representable delta-matroids.

To prove well-quasi-ordering, we work on Lagrangian chain-groups
instead of skew-symmetric or symmetric matrices for the convenience.
The main proof of the well-quasi-ordering of Lagrangian chain-groups
is in Sections 5] and [6] Section [f] proves a theorem generalizing Tutte’s
linking theorem for matroids, which in turn generalizes Menger’s the-
orem. The proof idea in Section [0] is similar to the proof of Geelen,
Gerards, and Whittle’s theorem [§] for representable matroids.

The last two sections discuss how the result on Lagrangian chain-
groups imply our main theorem and its other corollaries. Section [7]
formulates the result of Section [f] in terms of skew-symmetric or sym-
metric matrices with respect to the Schur complement and explain
its implications for representable delta-matroids and simple graphs of
bounded rank-width. Section [§| explains why our theorem implies the
theorem for representable matroids by Geelen, Gerards, and Whittle [§]
via Tutte chain-groups.

2. PRELIMINARIES

2.1. Matrices. For two sets X and Y, we write XAY = (X \Y) U
(Y\ X). AV xV matrix A is called symmetric if A = A', skew-
symmetric if A = —A" and all of its diagonal entries are zero. We
require each diagonal entry of a skew-symmetric matrix to be zero,
even if the underlying field has characteristic 2.

'We call Tutte’s chain-groups as Tutte chain-groups to distinguish from chain-
groups defined in Section
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Suppose that a V' x V matrix M has the following form:
Y VY

M:X{\Y< é g >

If A= MJY] is nonsingular, then we define a matrix M * Y by

y VY
y A AR
MAY=y\y (—CAl (M/A))'

This operation is called a pivot. In the literature, it has been called a
principal pivoting, a principal pivot transformation, and other various
names; we refer to the survey by Tsatsomeros [I§].

Notice that if M is skew-symmetric, then so is M Y. If M is
symmetric, then so is (Iy)(M *Y'), where Iy is a diagonal matrix such
that the diagonal entry indexed by an element in Y is —1 and all other
diagonal entries are 1.

The following theorem implies that (M *Y)[X] is nonsingular if and
only if M[XAY] is nonsingular.

Theorem 2.1 (Tucker [19]). Let M[Y] be a nonsingular principal sub-
matriz of a V- x V matrix M. Then for all X CV,

det(M xY)[X]| = det M[Y AX]/det M[Y].

Proof. See Bouchet’s proof in Geelen’s thesis paper [7, Theorem 2.7].
O

2.2. Rank-width. A tree is called subcubic if every vertex has at most
three incident edges. We define rank-width of a skew-symmetric or
symmetric V' x V matrix A over a field F by rank-decompositions as
follows. A rank-decomposition of A is a pair (T, L) of a subcubic tree
T and a bijection £ : V — {t : t is a leaf of T'}. For each edge e = uv
of the tree T, the connected components of 7'\ e form a partition
(X.,Y.) of the leaves of T' and we call rank A[L7!(X.), L7'(Y.)] the
width of e. The width of a rank-decomposition (T, £) is the maximum
width of all edges of T'. The rank-width rwd(A) of a skew-symmetric
or symmetric V' x V matrix A over F is the minimum width of all its
rank-decompositions. (If [V| < 1, then we define that rwd(A) = 0.)

2.3. Delta-matroids. Delta-matroids were introduced by Bouchet [2].
A delta-matroid is a pair (V, F) of a finite set V' and a nonempty col-
lection F of subsets of V' such that the following symmetric exchange
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aziom holds.

(SEA) If F,F' € F and x € FAF,
then there exists y € FAF' such that FA{z,y} € F.

A member of F is called feasible. A delta-matroid is even, if cardinali-
ties of all feasible sets have the same parity.

Let M = (V,F) be a delta-matroid. For a subset X of V, it is
easy to see that MAX = (V,FAX) is also a delta-matroid, where
FAX = {FAX : F € F}; this operation is referred to as twisting.
Also, M\ X = (V\ X, F\X) defined by F\X ={F CV\X : F € F}
is a delta-matroid if F \ X is nonempty; we refer to this operation as
deletion. Two delta-matroids M; = (V, Fy), My = (V, F;) are called
equivalent if there exists X C V such that M; = MyAX. A delta-
matroid that comes from M by twisting and/or deletion is called a
minor of M.

2.4. Representable delta-matroids. For a V' x V' skew-symmetric
or symmetric matrix A over a field F, let

F(A) ={X CV : A[X] is nonsingular}

and M(A) = (V, F(A)). Bouchet [4] showed that M(A) forms a delta-
matroid. We call a delta-matroid representable over a field I or F-
representable if it is equivalent to M(A) for some skew-symmetric or
symmetric matrix A over . We also say that M is represented by A
if M is equivalent to M(A).

Twisting (by feasible sets) and deletions are both natural opera-
tions for representable delta-matroids. For X C V, M(A)\ X =
M(A]V \ X]), and for a feasible set X, M(A)AX = M(A* X) by
Theorem Therefore minors of a IF-representable delta-matroid are
F-representable [5].

2.5. Well-quasi-order. In general, we say that a binary relation <
on a set X is a quasi-order if it is reflexive and transitive. For a quasi-
order <, we say “< is a well-quasi-ordering” or “X is well-quasi-ordered
by <” if for every infinite sequence ai, as, ... of elements of X, there
exist ¢ < j such that a; < a;. For more detail, see Diestel [0, Chapter
12].

3. LAGRANGIAN CHAIN-GROUPS

3.1. Definitions. If W is a vector space with a bilinear form (, ) and
W' is a subspace of W satisfying

(x,y) =0 for all z,y € W',
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then W' is called totally isotropic. A vector v € W is called isotropic
if (v,v) = 0. A well-known theorem in linear algebra states that if a
bilinear form (, ) is non-degenerate in W and W’ is a totally isotropic
subspace of W, then dim(W) = dim(W’) + dim(W'"*) > 2dim(W’)
because W/ C W'+,

Let V be a finite set and F be a field. Let K = F? be a two-
dimensional vector space over IF. Let b ((a), (C)) = ad + bc and

b) \d
b=((9), (5) = ad — bc be bilinear forms on K. We assume that K

is eqlilipged with a bilinear form (, ), that is either b% or b~. Clearly
b™ is symmetric and b~ is skew-symmetric.

A chain on V to K is a mapping f : V — K. If x € V', the element
f(x) of K is called the coefficient of  in f. If V' is nonnull, there is a
zero chain on V whose coefficients are 0. When V' is null, we say that
there is just one chain on V' to K and we call it a zero chain.

The sum f + g of two chains f, g is the chain on V satisfying (f +
g9)(x) = f(x)+g(z) forallz € V. If fisachainon V to K and A € F,
the product \f is a chain on V such that (Af)(z) = Af(z) forallz € V.
It is easy to see that the set of all chains on V to K, denoted by KV,
is a vector space. We give a bilinear form (, ) to K" as following:

(fog) =D (f@),9(x))

zeV

If (f,g) = 0, we say that the chains f and g are orthogonal. For a
subspace L of KV, we write L+ for the set of all chains orthogonal to
every chain in L.

A chain-group on V to K is a subspace of K. A chain-group is called
1sotropic if it is a totally isotropic subspace. It is called Lagrangian if
it is isotropic and has dimension |V|. We say a chain-group N is over
a field T if K is obtained from [ as described above.

A simple isomorphism from a chain-group N on V' to K to another
chain-group N’ on V' to K is defined as a bijective function p: V- — V'
satisfying that N = {fopu : f € N’} where f o u is a chain on V to
K such that (f o u)(x) = f(u(x)) for all x € V. We require both
N and N’ have the same type of bilinear forms on K, that is either
skew-symmetric or symmetric. A chain-group N on V to K is simply
isomorphic to another chain-group N’ on V' to K if there is a simple
isomorphism from N to N’.

Remark. Bouchet’s definition [4] of isotropic chain-groups is slightly

more general than ours, since he allows <(Z), (2)> x = —ad £ be. His

notation, however, is different; he uses FY” instead of K" where V" is
a union of V and its disjoint copy V~. Since K = 2, two definitions



RANK-WIDTH AND WELL-QUASI-ORDERING 7

are equivalent. Our notation has advantages which we will see in the
next subsection. Bouchet’s notation also has its own virtues because, in
Bouchet’s sense, isotropic chain-groups are Tutte chain-groups. Strictly
speaking, our isotropic chain-groups are not Tutte chain-groups, be-
cause we define chains differently. We are mainly interested in La-
grangian chain-groups because they are closely related to representable
delta-matroids. We note that the notion of Lagrangian chain-groups is
motivated by Tutte’s chain-groups and Bouchet’s isotropic systems [3].

3.2. Minors. Consider a subset T" of V. If f is a chain on V to K, we
define its restriction f-T to T as the chain on T such that (f-7T')(z) =
f(z) for all x € T'. For a chain-group N on V/,

N-T={f-T:feN}

is a chain-group on 7" to K. We note that N - T is not necessarily
isotropic, even if NN is isotropic. We write

NxT={f-T:feN, f(x)y=0forallz e V\T}.
For a chain-group N on V', we define
NNT={f - (V\T): f€N,{f(z),(;)), =0forall z €T}
We call this the deletion. Similarly we define
NJT={f (V\T): feN,{f(z),())), =0forall z €T}

We call this the contraction. We refer to a chain-group of the form
N/JX\Y onV\ (XUY) as a minor of N.

Proposition 3.1. A minor of a minor of a chain-group N on'V to K
s a minor of N.

Proof. We can deduce this from the following easy facts.
N/JX)JY=N/)(XUY),
NJX\Y=N\Y /X,

N\X\Y =N\ (XUY). O

Lemma 3.2. Let z,y € K. If v € K is isotropic, x # 0, and (x,y) , =
0, then y = cx for some c € F.

Proof. Since (, ), is nondegenerate, there exists a vector 2’ € K such
that (z,2), # 0. Hence {z,2'} is a basis of K. Let y = cx + da'
for some ¢,d € F. Since (z,cx +da');, = d(z,2') = 0, we deduce
d=0. O

Proposition 3.3. A minor of an isotropic chain-group on V to K is
150tTOpIC.
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Proof. By Lemma , if (z, ((1))>K = (y, ((1))>K =0, then (z,y), =0
and similarly if <x, ()>K = <y, ((1))>K = 0, then (z,y), = 0. This
easily implies the lemma. U

We will prove that every minor of a Lagrangian chain-group is La-
grangian in the next section.

3.3. Algebraic duality. For an element v of a finite set V', if N is a
chain-group on V to K and B is a basis of IV, then we may assume
that the coefficient at v of every chain in B is zero except at most
two chains in B because dim(K) = 2. So, it is clear that dimensions
of N x (V\{v}), N-(V\{v}), N\ {v}, and N J/ {v} are at least
dim (V) — 2. In this subsection, we discuss conditions for those chain-
groups to have dimension dim(N) — 2, dim(N) — 1, or dim(N). Note
that we do not assume that NV is isotropic.

Theorem 3.4. If N is a chain-group on V to K and X C 'V, then
(N-X)F =Nt xX.

Proof. (Tutte [25, Theorem VIIL.7.]) Let f € (N - X)*. There exists a
chain f; on V to K such that f;- X = f and fi(v) =0forallv € V\ X.
Since (f1,9) = (f,g- X) =0 for all g € N, we have f € N+ x X.
Conversely, if f € N+ x X, it is the restriction to X of a chain f;
of Nt specified as above. Hence (f,g- X) = (f1,9) =0 for all g € N.
Therefore f € (N - X)*. O

Lemma 3.5. Let N be a chain-group on'V to K. If XUY =V and
XNY =0, then

dim(N - X) + dim(N x Y) = dim(N).

Proof. Let ¢ : N — N-X be a linear transformation defined by ¢(f) =
f - X. The kernel ker(p) of this transformation is the set of all chains
fin N having f- X = 0. Thus, dim(ker(¢)) = dim(N x Y’). Since ¢ is
surjective, we deduce that dim(N - X) = dim(N) —dim(N x Y). O

For v € V| let v*, v, be chains on V' to K such that

Vi) = () ualv) = (3),
v (w) =v(w) =0 forallwe V\ {v}.
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Proposition 3.6. Let N be a chain-group on'V to K andv € V. Then
(dim N if v ¢ N,v* € Nt
dim(N \ {v}) = dim N —2 ifv* € N,v* ¢ N+,

(dim N — 1 otherwise,

(dim N if v, & N,v, € N+,

dim(N /{v}) =< dim N —2 ifv, € N,v, ¢ N+,

\dimN — 1 otherwise.

Proof. By symmetry, it is enough to show for dim(N \\ {v}). Let N’ =
{feN:{(f(v), ((1))>K = 0}. By definition, N \\ {v} = N"- (V' \ {v}).
Observe that N’ = N if and only if v* € N+. If N’ # N, then
there is a chain ¢ in N such that <g(v), ((1))>K # 0. Then, for every
chain f € N, there exists ¢ € F such that f —cg € N'. Therefore
dim(N’) = dim N — 1 if v* ¢ Nt and dim(N’) = dim N if v* € N+,
By Lemma[3.5] dim(N'-(V\{v})) = dim N'—dim(N’x {v}). Clearly,
dim(N’ x {v}) =0 if v* ¢ N and dim(N’ x {v}) = 1 if v* € N. This
concludes the proof. O

Corollary 3.7. If N is an wsotropic chain-group on'V to K and M is
a minor of N on V', then

V'] — dim M < |V| — dim N.

Proof. We proceed by induction on |V \ V’|. Since N is isotropic,
every minor of N is isotropic by Proposition Since v* ¢ N\ Nt
and v, ¢ N\ N1, dim(N) — dim(N \\ {v}) € {0,1} and dim(N) —
dim(N J/{v}) € {0,1}. So |V \{v}|—dim(N \ {v}) < |V|]—dim N and
[V {v}| —dim(N J {v}) < |V|—dim N. Since M is a minor of either
N\ {v} or N J {v}, |V'| =dimM < |V| —dim N by the induction
hypothesis. U

Proposition 3.8. A minor of a Lagrangian chain-group is Lagrangian.

Proof. Let N be a Lagrangian chain-group on V to K and N’ be its
minor on V' to K. By Proposition [3.3] N’ is isotropic and therefore
dim(N’) < |V’|. Thus it is enough to show that dim(N’) > |V’|. Since
dim(N) = |V|, it follows that dim(N’) > |V’| by Corollary [3.7] O

Theorem 3.9. If N is a chain-group on V to K and X C 'V, then
(N\X)"=N"\ X and (N ) X)* =N* J X.

Proof. By symmetry, it is enough to show that (N Y\ X)+ = N+ \ X.
By induction, we may assume | X| =1. Let v € X.
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Let f be a chain in N+ \\ X. There is a chain f; € N+ such that
fi-(VAX)=fand <f1(v), ((1))>K = 0. Let g € N be a chain such that
(g(v), ((1))>K = 0. Then (fi1(v),g(v)), = 0 by Lemma Therefore
(f,g-(V\X))=(fi,9) =0and so f € (N \ X)+. We conclude that

N\ X C(N\ X)*

We now claim that dim(N=+\\ X) = dim(N \\ X)*. We apply Propo-
sition [3.6] to deduce that
0 ifv*¢ Nv*e Nt
dim(N \\ X) —dim(N) =< -2 ifv* € N,v* ¢ Nt
—1 otherwise,
0 ifv*¢ Nt v eN,
dim(N*\ X) — dim(N+) = { =2 ifv* € Nt v* ¢ N,
—1 otherwise.

By summing these equations, we obtain the following;:
dim(N \\ X) — dim(N) + dim(N* \ X) — dim(N*+) = —2.

Since dim(N) 4+ dim(N*+) = 2|V] and dim(N \\ X) + dim(N \ X)* =
2(|[V| — 1), we deduce that dim(N+ Y\ X) = dim(N | X)*+.

Since N+ \ X C (N \\ X)* and dim(N*+ \\ X) = dim(N \\ X)*, we
conclude that Nt \ X = (N \\ X)+. O

3.4. Connectivity. We define the connectivity of a chain-group. Later
it will be shown that this definition is related to the connectivity func-
tion of matroids (Lemma and rank functions of matrices (Theo-
rem [4.13).

Let N be a chain-group on V to K. If U is a subset of V, then we
write

() — i N = dim( (V2\ U)) — dim(N x U).

This function Ay is called the connectivity function of a chain-group V.
By Lemma [3.5] we can rewrite Ay as follows:
_ dim(N -U) —dim(N x U)

A (U) = 5 .

From Theorem it is easy to derive that Ay (U) = An(U).
In general A\y(X) need not be an integer. But if N is Lagrangian,
then Ay (X) is always an integer by the following lemma.

Lemma 3.10. If N is a Lagrangian chain-group on 'V to K, then
Av(X) = |X| = dim(N x X)
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forall X CV.
Proof. From the definition of Ay (X),
2An(X) =dim(N - X) — dim(N x X)

= 2|X| — dim(N - X)* — dim(N x X)

= 2|X| — dim(N* x X) — dim(N x X),
and since N = N+, we have

= 2(|X| — dim(N x X)). O

By definition, it is easy to see that Ay(U) = Ay(V \ U). Thus Ay is

symmetric. We prove that Ay is submodular.

Lemma 3.11. Let N be a chain-group on V to K and X, Y be two
subsets of V. Then,

dim(N x (X UY)) +dim(N x (XNY)) > dim(N x X) + dim(N x Y).
Proof. For T C V., let Nr = {f € N : f(v) =0forallv ¢ T}. Let
Nx+ Ny ={f+g: f € Nx,g € Ny}. We know that dim(Nx + Ny )+
dim(Nx N Ny) = dim Nx + dim Ny from a standard theorem in the

linear algebra. Since Nx N Ny = Nxny and Ny + Ny C Nxuy, we
deduce that

dim NXUY + dim Nme Z dim NX + dim Ny.
Since dim Ny = dim(N x T'), we are done. O

Theorem 3.12 (Submodular inequality). Let N be a chain-group on
V to K. Then Ay is submodular; in other words,

ANX)+ANY) > AN(XUY) + An(X NY)
forall XY CV.
Proof. We use Lemma[3.11] Let S=V\ X and T =V \ Y.
2An(X) + 25 (Y)
= 2dim(N)
— (dim(N x X) +dim(N x S) + dim(N x Y) +dim(N x 7))
> 2dim(N) — dim(N x (X UY)) —dim(N x (X NY))
—dim(N x (SNY)) —dim(N x (SUY))
=2n(XUY)+ 225X NY). O

What happens to the connectivity functions if we take minors of
a chain-group? As in the matroid theory, the connectivity does not
increase.
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Theorem 3.13. Let N, M be chain-groups on 'V, V' respectively. If
M is a minor of a chain-group N, then Ay (T) < An(T U U) for all
TCV and allU CV\V'.

Proof. By induction on |V \ V|, it is enough to prove this when |V \
V| = 1. Let v € V \ V'. By symmetry we may assume that M =
N\ {v}.

We claim that Ay (7) < An(T). From the definition, we deduce
2Am(T) = 22N (T) = dim(N \\ {v} - T) — dim(N \\ {v} x T)
— dim(N - T) + dim(N x T).

Clearly N\ {v} - T C N-T and N xT C N\ {v} x T. Thus
A (T) < AN (T).

Since Ay and Ays are symmetric, Ay (T) = Ay (V\T) < An(V\T) =
AN (T U {v}). O

3.5. Branch-width. A branch-decomposition of a chain-group N on
V to K is a pair (T, L) of a subcubic tree 7" and a bijection £ : V —
{t : t is a leaf of T'}. For each edge e = uv of the tree T, the connected
components of 7'\ e form a partition (X, Y.) of the leaves of 7" and we
call A\y(L7Y(X,)) the width of e. The width of a branch-decomposition
(T, L) is the maximum width of all edges of 7. The branch-width
bw(N) of a chain-group N is the minimum width of all its branch-
decompositions. (If [V'| < 1, then we define that bw(N) = 0.)

4. MATRIX REPRESENTATIONS OF LAGRANGIAN CHAIN-GROUPS

4.1. Matrix Representations. We say that two chains f and g on
V to K are supplementary if, for all z € V,

(i) (f(x), f(x))x = (9(x), 9(x)) x = 0 and

(i) (f(x), 9(2))g = 1.
Given a skew-symmetric or symmetric matrix A, we may construct a
Lagrangian chain-group as follows.

Proposition 4.1. Let M = (m;; : i,j € V) be a skew-symmetric or
symmetric V XV matriz over a field . Let a,b be supplementary chains
onV to K = F? where (, ), is skew-symmetric if M is symmetric and
symmetric if M is skew-symmetric.

Fori eV, let f; be a chain on'V to K such that for all j € V,

o [mgat)+0G) =i,
#4) {mijao') 5
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Then the subspace N of KV spanned by chains {f; : i € V} is a La-
grangian chain-group on 'V to K.

If M is a skew-symmetric or symmetric matrix and a, b are sup-
plementary chains on V' to K, then we call (M, a,b) a (general) ma-
trix representation of a Lagrangian chain-group N. Furthermore if
a(v),b(v) € {£(}),£(})} for each v € V, then (M,a,b) is called a

special matriz representation of N.

Proof. For all i € V,
(i fi) = Y (FG) FilD)) i = ma(al@), b(@)) e + (b(0), ali)) ) = 0,

jev
because either m; = 0 (if M is skew-symmetric) or (, ), is skew-
symmetric.
Now let ¢ and j be two distinct elements of V. Then,

(fir ) = (FiQ@), £3(0)) g + (i) F5(5)) i
= my; (b(2), a(i)) x + mi; {a(5), b(4))
=0,

because either m;; = —my; and (b(7), a()), = (a(j),b(4)); or m;; =
my and (b(0), 00 = — (a(3), b(7)) -

It is easy to see that { f; : ¢ € V'} is linearly independent and therefore
dim(N) = |V/|. This proves that N is a Lagrangian chain-group. O

4.2. Eulerian chains. A chain a on V to K is called a (general) euler-
ian chain of an isotropic chain-group N if
(i) a(z) # 0, (a(z),a(x)), =0 for all z € V and
(ii) there is no non-zero chain f € N such that (f(z),a(x)), =0 for
all z € V.

A general eulerian chain a is a special eulerian chain if for all v €
V, a(v) € {£(}),£(}))}. It is easy to observe that if (M,a,d) is a
general (special) matrix representation of a Lagrangian chain-group
N, then a is a general (special) eulerian chain of N. We will prove
that every general eulerian chain of a Lagrangian chain-group induces
a matrix representation. Before proving that, we first show that every

Lagrangian chain-group has a special eulerian chain.

Proposition 4.2. Fvery isotropic chain-group has a special eulerian
chain.

Proof. Let N be an isotropic chain-group on V to K = I'2. We proceed
by induction on |V|. We may assume that dim(N) > 0. Let v € V.
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If V] = 1, then dim(N) = 1. Then either v* or v, is a special
eulerian chain.

Now let us assume that |V| > 1. Let W = V' \ {v}. Both N \\ {v}
and N J/ {v} are isotropic chain-groups on W to K. By the induction
hypothesis, both N \\ {v} and N j/ {v} have special eulerian chains a/,
ah, respectively, on W to K such that a(z) € {(;), (%)} for all z € W.

Let a1, as be chains on V' to K such that a;(v) = ((1]), as(v) = (}),
and a; - W = a; for i = 1,2. We claim that either a; or ay is a
special eulerian chain of N. Suppose not. For each i = 1,2, there is a
nonzero chain f; € N such that (f;(z),a;(x)), =0 for all z € V. By
construction f; - W € N \\ {v} and fo - W € N J/ {v}. Since a}, a}, are
special eulerian chains of N \\ {v} and N J {v}, respectively, we have
fi W=f-W=0.

Since f; # 0, by Lemma fi = av* and fo = cou, for some
nonzero ¢y, c2 € F. Then (f1, fo) = (fi(v), f2(v)) x = c1¢2 # 0, contra-
dictory to the assumption that N is isotropic. O

Proposition 4.3. Let N be a Lagrangian chain-group on V' to K and
let a be a general eulerian chain of N and let b be a chain supplementary
to a.

(1) For every v € V, there exists a unique chain f, € N satisfying
the following two conditions.
() (), fulo)) =1,
(i) (a(w), fo(w)) =0 for allw € V \ {v}.
Moreover, {f, :v € V'} is a basis of N. This basis is called the
fundamental basis of N with respect to a.
(2) If (, )} is symmetric and either the characteristic of ' is not 2
or fu(v) = b(v) for allv € V, then M = ((fi(j),b(J))x : 1,7 €
V') is a skew-symmetric matriz such that (M, a,b) is a general
matrix representation of N.
(3) If (, ) is skew-symmetric, M = ((fi(7),0(j)); : ©,5 € V)
is a symmetric matriz such that (M,a,b) is a general matric
representation of N.

Proof. Existence in (1): For each x € V| let ¢, be a chain on V' to K
such that g,(z) = a(z) and ¢,(y) = 0 for all y € V' \ {z}. Let W be
a chain-group spanned by {g, : * € V}. It is clear that dim(W) =
V|. Lete N+ W ={f+g: f € N,g € W}. Since a is eulerian,
NNW = {0} and therefore dim(N + W) = dim(N) + dim(W) = 2|V|,
because N is Lagrangian. We conclude that N +W = KV. Let h,
be a chain on V' to K such that (a(v),h,(v)), = 1 and h,(w) = 0
for all w € V'\ {v}. We express h, = f, + ¢ for some f, € N and

g € W. Then (a(v), fu(v))x = (a(v), hy(v))x — (a(v),9(v)) = 1
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and (a(w), fo(w)) = (a(w), ho(w)) = (a(w), g(w)) = 0 for all w €
VA {v}.

Uniqueness in (1): Suppose that there are two chains f, and f] in N
satisfying two conditions (i), (ii) in (1). Then (a(v), f,(v) — fi(v))x =
0. By Lemma [3.2] there exists ¢ € IF such that f,(v) — fi(v) = ca(v).
Let f = f, — f, € N. Then (a(w), f(w)), = 0 for all w € V. Since a
is eulerian, f = 0 and therefore f, = f/.

Being a basis in (1): We claim that {f, : v € V} is linearly in-
dependent. Suppose that ) _\ c,f, = 0 for some ¢, € . Then
Co = D ey Cw (a(V), fu(v)) =0 forallv e V.

Constructing a matrix for (2) and (3): Let i,7 € V. By (ii) and
Lemma there exists m;; € I such that f;(j) = mya(y) if i # j
and f;(i) — b(¢) = my;a(i). Then, (fi(j),b(j)) = my; for all 4,5 € V.
Therefore M = (m;; :i,j € V).

Since N is isotropic,

i f3) =D (i), f;(0)) ¢ =0

veV

and we deduce that (f;(i), f;(i))x + (fi(4), f;(4)) = 0if © # j and
(fi(4), fi(1)) . = 0. This implies that

mi (b(7), a(1)) x + mij (a(5),b(4)) =0 for all 4,5 € V.

If (, )y is skew-symmetric, then (b(4),a(i)),, = —1 and therefore
mji = m,-j.
If (, ) is symmetric, then (b(i),a(i)), = 1 and so mj = —my;.

This also imply that m;; = 0 if the characteristic of ' is not 2. If the
characteristic of IF is 2, then we assumed that f;(¢) = b(7) and therefore
m;; = 0. Note that (fi(¢), fi(i)) = 0 and therefore the chain b with
b(i) = f;(i) for all i € V' is supplementary to a.

It is easy to observe that (M, a,b) is a general matrix representation
of N because a, b are supplementary and f;(j) = mya(j) + b(j) if
i=j eV and fi(j) = mya(j) if i # j. 0

Proposition 4.4. Let (M, a,b) be a special matriz representation of a
Lagrangian chain-group N on'V to K = [F2. Suppose that a' is a chain
such that a'(v) € {(}), £(})} for allv € V. Then a' is special eulerian
if and only if M[Y] is nonsingular for Y ={x € V : d'(x) # +a(z)}.
Proof. Let M = (my; : 1,5 € V). Let f; € N be a chain such that
We first prove that if M[Y] is nonsingular, then f is special eulerian.

Suppose that there is a chain f € N such that (f(x),d'(z)), = 0
for all € V. We may express f as a linear combination ) ., ¢;f;
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with some ¢; € F. If j ¢ Y, then a'(j) = £a(j) and (f(4),a(y))x =
¢j (b(j),a(j))r = 0 and therefore ¢; =0 for all j ¢ Y.
If €Y, then d'(j) = £b(j) and so

(FG),0()) i = Y eimig (a(4),b()) i = Y cimj = 0.
=% =%

Since M[Y] is invertible, the only solution {¢; : i € Y'} satisfying the
above linear equation is zero. So ¢; = 0 for all © € V' and therefore
f =0, meaning that a’ is special eulerian.

Conversely suppose that M[Y] is singular. Then there is a linear
combination of rows in M[Y] whose sum is zero. Thus there is a non-
zero linear combination .y ¢; f; such that

<Z ¢ fi(x), b(:c)> =0foralxzeV.
€Y K
Clearly (3 ey cifi(x),a(x)), = 0 for all z ¢ Y. Since at least one

¢; is non-zero, » ..y ¢;f; is non-zero. Therefore a’ can not be special
eulerian. O

For a subset Y of V, let Iy be a V x V indicator diagonal matrix
such that each diagonal entry corresponding to Y is —1 and all other
diagonal entries are 1.

Proposition 4.5. Suppose that (M, a,b) is a special matriz represen-
tation of a Lagrangian chain-group N onV to K = F%. LetY C V.
Assume that M[Y] is nonsingular.
(1) If (, ) is symmetric, then (M *Y,d’, ') is another special ma-
trix representation of N where M xY 1is skew-symmetric and

vy Ja@) gy i) gy,
b(v) otherwise, a(v) otherwise.
(2) If (, )i is skew-symmetric, then (Iy (M = Y),d’,b') is another
special matrix representation of N where Iy (M xY") is symmet-
ric and

d@:{awzm¢x wm:{wo fudy.

b(v) otherwise, —a(v) otherwise.

Proof. Let M = (my; :i,j € V). For each i € V', let f; € N be a chain
such that fi(j) = mya(j) if j # i and f;(i) = mya(y) +b(j) if j = i.
Since (M, a,b) is a special matrix representation of N, {f; : i € V} is
a fundamental basis of N.
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Proposition implies that @’ is eulerian. According to Proposi-
tion 4.3, we should be able to construct a special matrix representation
with respect to the eulerian chain a’. To do so, we first construct the
fundamental basis {g, : v € V} of N with respect to a'.

Suppose that for each x € V', g, = ZiEV ¢z fi for some ¢,; € F. By
definition, (a'(x), g,(z)) = 1 and (d'(j), 9.(j)); = 0 for all j # =.
Then

Yoicv Caimig (0(4),a(j)) g, ifjeEY,

(d'(4),9:(5)) x = {c ) if j ¢V,

Suppose that x € Y. If j € Y, then

‘ , 1 ifx=y,

> caimig (b(5), al§)) = { . .

p 0 ifz#7.
Let (mj; : i,j € Y) = (M[Y])~". Then ¢, is given by the row of
z in (M[Y])™}; in other words, if ,¢ € Y, then ¢;; = m/; if (, ), is
symmetric and ¢,; = —m/, otherwise. If z € Y and i ¢ Y, then ¢,; = 0.
If x ¢ Y, then clearly ¢,, =1 and ¢,; =0 for alli € V' \ (Y U {z}).

Ifj & Y, then ZieY cm-mij <b(j),6l(]>>K -+ szmwj <b<]),a(])>K =0

and therefore ),y c;im;j = —my;. For each k in Y, we have ¢, =
r / .. — — / .
Y icy Cai Zjey migm’y, = Zjey m’, Y icy Cailliy = Zjey m’my; and
N _ /
therefore for x ¢ Y and i € Y, ¢y = — 3y maym/;

We determined the fundamental basis {g, : * € V'} with respect to
a’. We now wish to compute the matrix according to Proposition [4.3]

Let us compute {(g,(y), bl(Q))K'
If x,y €Y, then

<Z%M%W»

€Y

m) if (, ) is symmetric,

= Cay (0(y), V' (Y)) ¢ = Cay = { o

—my, if (, ) is skew-symmetric.

IfzxeY and y ¢ Y, then

<Z coi fi(y), b'(y)> = Z CaiMiy (a(y), 0(y)) k

€Y €Y

, : : :
D iy MMy if (, ) is symmetric,
, . . :
— D ey MMy, if (), is skew-symmetric.
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Ifx¢Y and y € Y, then

<Zcmlfz<y) + fr(y)7b,(y)> = Coy = — mejm;y'

i€y jey

Ifx¢Y and y ¢ Y, then

<Z Caifi(y) + fa(y), b’(y)> == ) Mg, + mg,

i€y ijey
If (, ), is symmetric and the characteristic of I is 2, then we need
to ensure that M has no non-zero diagonal entries by verifying the

additional assumption in (2) of Proposition asking that V/(z) =
g.(x) for all z € V. It is enough to show that

(go(x), V' (2)) ;e =0 forall z € V,

because, if so, then (a/(x),b'(x)), = 1 = (d/(2), g»(x)) , implies that
gz(x) = /(). Since MI[Y] is skew-symmetric, so is its inverse and
therefore m/, = 0 for all x € Y. Furthermore, for each4,j € Y and z €
VY, we have mg;m’,m;, = —mgimi;m;, because M and (M[Y])~ ! are
skew-symmetric and therefore »_, .oy mgmjm;; = 0. Thus g,(z) =
V(x) for all z € V if (, ), is symmetric and the characteristic of I is
2.

We conclude that the matrix ({g;(7),0'(j))x : 4,7 € V) is indeed
MY if (, ) is symmetric or (Iy)(M *Y) if (, ) is skew-symmetric.
This concludes the proof. 0

A matrix M is called a fundamental matriz of a Lagrangian chain-
group N if (M, a,b) is a special matrix representation of N for some
chains a and b. We aim to characterize when two matrices M and M’
are fundamental matrices of the same Lagrangian chain-group.

Theorem 4.6. Let M and M’ be V XV skew-symmetric or symmetric
matrices over . The following are equivalent.

(i) There is a Lagrangian chain-group N such that both (M, a,b) and
(M',d', V') are special matriz representations of N for some chains
a,a, b, V.

(ii) There is Y C 'V such that M[Y] is nonsingular and

M= D(M «Y)D if (, )y is symmetric,
| DIy(M*Y)D if {, ) is skew-symmetric

for some diagonal matrix D whose diagonal entries are 1.
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Proof. To prove (i) from (ii), we use Proposition . Let a(v) = (})
and b(v) = ((1)) for all v € V. Let N be the Lagrangian chain-group
with the special matrix representation (M, a,b). Let My = M * Y if
(, ) is symmetric and My = Iy (M*Y) if (, ). is skew-symmetric. By
Proposition there are chains ag, by so that (M, ag, by) is a special
matrix representation of N. Let Z be a subset of V' such that I, = D.

For each v € V| let

poy ) —aolv) ifvez, o ] =b(v) ifveZ,
@(v) = {ao(v) ifvé¢ Z, olv) = {bo(v) ifvé¢ Z

Then o', b’ are supplementary and (M’ a’,b') is a special matrix repre-
sentation of N because M’ = DMyD.

Now let us assume (i) and prove (ii). Let Y = {x € V : d/(z) #
+a(z)}. Since @ is a special eulerian chain of N, M[Y] is nonsingular
by Proposition [4.4] By replacing M with M * Y if (, ), is symmet-
ric, or Iy(M = Y) if (, ), is skew-symmetric, we may assume that
Y = 0. Thus /() = ta(z) and V/(x) = +b(x) for all z € V. Let
Z={xeV:d(zx)=—a(z)} and D = I;. Since (¢/(z),0' () = 1,
b'(z) = —b(z) if and only if z € Z. Then (DM D, a’, V') is a special ma-
trix representation of N, because the fundamental basis generated by
(DM D, d',b') spans the same subspace N spanned by the fundamental
basis generated by (M, a,b). We now have two special matrix represen-
tations (M’',d’,V') and (DM D, d’, V). By Proposition 4.3, M’ = DM D
because of the uniqueness of the fundamental basis with respect to a’.
This concludes the proof. [l

Negating a row or a column of a matrix is to multiply —1 to each
of its entries. Obviously a matrix obtained by negating some rows and
columns of a V' x V matrix M is of the form Ix M Iy for some X,Y C V.
We now prove that the order of applying pivots and negations can be
reversed.

Lemma 4.7. Let M be a V XV matriz and let Y be a subset of V
such that M[Y] is nonsingular. Let M' be a matriz obtained from M
by negativing some rows and columns. Then M’ xY can be obtained
from M %Y by negating some rows and columns. (See Figure )

Proof. More generally we write M and M’ as follows:
Y V\Y Y VY

M—Y A B M,_Y JAK JBL
- VAY\C D ’ - VAY\UCK UDL )’
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M P Arsy

negating some negating some
rows and columns rows and columns
;  Dbivot /
M M %Y

FiGure 1. Commuting pivots and negations

for some nonsingular diagonal matrices J, K, L, U. Then

A ATB
Mk = (—C’Al D- CAlB) !
ey _ [ KA KA\ JBL
= \-UCKK'A4"\J"' UDL-UCKK'A\JJBL

KA Y)J ' K YA'B)L
- (U(-CA—l)J—l U(D — CA—lg)L) '

This lemma follows because we can set J, K, L, U to be diagonal
matrices with +1 on the diagonal entries and then M’ x Y can be
obtained from M *x Y by negating some rows and columns. U

4.3. Minors. Suppose that (M, a,b) is a special matrix representation
of a Lagrangian chain-group N. We will find special matrix represen-
tations of minors of V.

Lemma 4.8. Let (M,a,b) be a special matriz representation of a La-
grangian chain-group N on'V to K =F2 Letv eV and T =V \ {v}.

Suppose that a(v) = £(}).

(1) The triple (M[T],a-T,b-T) is a special matriz representation
of N\ {v}.

(2) There is Y C 'V such that M[Y] is nonsingular and (M'[T}], a’ -
T,0 - T) is a special matriz representation of N J| {v}, where

= MY if () is symmetric,
S IV (MxY) if () is skew-symmetric,

and a' and V' are given by Proposition [{.5,

Proof. Let M = (my; :i,j € V) and for each i € V, let f; € N be a
chain as it is defined in Proposition [4.1]

(1): We know that f;- T € N\ {v} for all i # v. Since a is eulerian,
v* ¢ N and therefore {f; - T : i € T} is linearly independent. Then
{fi-T :i€T}is abasis of N\ {v}, because dim(N \\ {v}) = |T| =
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|V| — 1. Now it is easy to verify that (M[T],a-T,b-T) is a special
matrix representation of N \\ {v}.

(2): If my, = my; = 0 for all ¢ € V, then we may simply replace
a(v) with £() and b(v) with £(}) without changing the Lagrangian
chain-group N. In this case, we simply apply (1) to deduce that Y = ()
works.

Otherwise, there exists Y C V such that v € Y and M[Y] is non-
singular because M is skew-symmetric or symmetric. We apply M Y
to get (M’,a’,b') as an alternative special matrix representation of N
by Proposition Then a'(v) = j:((l)) and then we apply (1) to
(M a' ). O
Theorem 4.9. Fori = 1,2, let M; be a fundamental matriz of a La-
grangian chain-group N; on V; to K = F2. If N is simply isomorphic
to a minor of No, then M is isomorphic to a principal submatriz of
a matrixz obtained from M, by taking a pivot and negating some rows
and columns.

Proof. Since K is shared by Ny and Ny, M; and M, are skew-symmetric
if (, )y is symmetric and symmetric if (, ), is skew-symmetric.

We may assume that N; is a minor of Ny and V; C V5. Then
by Lemmas and [4.8 N; has a fundamental matrix M’ that is a
principal submatrix of a matrix obtained from M by taking a pivot
and negativing some rows if necessary. Then both M’ and M, are
fundamental matrices of N;. By Theorem there is a method to get
My from M’ by applying a pivot and negating some rows and columns
if necessary. 0

4.4. Representable Delta-matroids. Theorem implies the fol-
lowing proposition.

Proposition 4.10. Let A, B be skew-symmetric or symmetric matri-
ces over a field IF. If A is a principal submatriz of a matriz obtained
from B by taking a pivot and negating some rows and columns, then

the delta-matroid M(A) is a minor of M(B).

Bouchet [4] showed that there is a natural way to construct a delta-
matroid from an isotropic chain-group.

Theorem 4.11 (Bouchet [4]). Let N be an isotropic chain-groups N
onV to K. Let a and b be supplementary chains on'V to K. Let

F ={X CV :there is no non-zero chain f € N
such that (f(z),a(x)), =0 forallz e V\ X
and (f(x),b(z));, =0 for all z € X.}
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Then, M = (V, F) is a delta-matroid.

The triple (N, a,b) given as above is called the chain-group represen-
tation of the delta-matroid M. In addition, if a(v), b(v) € {£(;),£(})},
then (N, a,b) is called the special chain-group representation of M.

We remind you that a delta-matroid M is representable over a field
F if M = M(A)AY for some skew-symmetric or symmetric V' x V
matrix A over F and a subset Y of V' where M(A) = (V,F) where
F ={Y : A[Y] is nonsingular}.

Suppose that N is a Lagrangian chain-group represented by a special
matrix representation (M, a,b). Then (N, a,b) induces a delta-matroid
M by the above theorem. Proposition [4.4] characterizes all the special
eulerian chains in terms of the singularity of M[Y] and special eulerian
chains coincide with the feasible sets of M given by Theorem [4.11]
In other words, Y is feasible in M if and only if a chain o’ is special
eulerian in N when a(v) = d'(v) if v € Y and a/(v) = b(v) if v ¢ Y.

Then twisting operations MAY on delta-matroids can be simulated
by swapping supplementary chains a(x) and b(x) for x € Y in the
chain-group representation as it is in Proposition Thus we can
alternatively define representable delta-matroids as follows.

Theorem 4.12. A delta-matroid on V is representable over a field F
if and only if it admits a special chain-group representation (N, a,b)
for a Lagrangian chain-group N on V to K = F? and special supple-
mentary chains a, b on 'V to K where (, ), is either skew-symmetric
or symmetric.

4.5. Connectivity. When the rank-width of matrices is defined, the
function rank M[X,V \ X] is used to describe how complex the con-
nection between X and V \ X is. In this subsection, we express

rank M[X,V \ X] in terms of a Lagrangian chain-group represented
by M.

Theorem 4.13. Let M be a skew-symmetric or symmetric V XV ma-
triz over a field F. Let N be a Lagrangian chain-group onV to K = F?
such that (M, a,b) is a matriz representation of N with supplementary
chains a and b on V' to K. Then,

rank M[X,V \ X] = Ay(X) = | X| — dim(N x X).

Proof. Let M = (m;; :i,j € V). As we described in Proposition ,
we let fi(j) = mya(y) if 7 € V\ {i} and f;(¢) = my + b(7). We know
that {f; : ¢ € V} is a fundamental basis of N. Let A = M[X,V \ X].
We have rank A = rank A* = | X| — nullity (A?), where the nullity of A’
is dim({z € F¥ : A'z = 0}), that is eqaul to dim({z € FX : 2'A = 0}).
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Let ¢ : F¥ — N be alinear transformation with ¢(p) = ", .y, p(v) fo.
Then, ¢ is an isomorphism and therefore we have the following:

dim(N x X)=dim({y € N :y(j) =0forall j € V'\ X})
=dim(p *{y € N:y(j)=0forall j € V\ X}))

=dim({z € FV : ) (i) fi(j) = 0 for all j € V' \ X})
ieV
=dim({z € F*: > "a(i)m;; =0 for all j € V'\ X})
ieX
= dim({z € F* : 2'A = 0})
= nullity(A").
We deduce that rank A = | X| — dim(N x X). O

The above theorem gives the following corollaries.

Corollary 4.14. Let F be a field and let N be a Lagrangian chain-
group on'V to K = F2. If M, and My are two fundamental matrices
of N, then rank M;[ X,V \ X] = rank My[ X,V \ X] for all X C V.

Corollary 4.15. Let M be a skew-symmetric or symmetric V- x V
matriz over a field F. Let N be a Lagrangian chain-group on V to
K = TF? such that (N, a,b) is a matriz representation of N. Then the
rank-width of M is equal to the branch-width of N.

5. GENERALIZATION OF TUTTE’S LINKING THEOREM

We prove an analogue of Tutte’s linking theorem [23] for Lagrangian
chain-groups. Tutte’s linking theorem is a generalization of Menger’s
theorem of graphs to matroids. Robertson and Seymour [14] uses
Menger’s theorem extensively for proving well-quasi-ordering of graphs
of bounded tree-width. When generalizing this result to matroids, Gee-
len, Gerards, and Whittle [§] used Tutte’s linking theorem for matroids.
To further generalize this to Lagrangian chain-groups, we will need a
generalization of Tutte’s linking theorem for Lagrangian chain-groups.

A crucial step for proving this is to ensure that the connectivity
function behaves nicely on one of two minors N \\ {v} and N //{v} of a
Lagrangian chain-group N. The following inequality was observed by
Bixby [I] for matroids.

Proposition 5.1. Letv € V. Let N be a chain-group on'V to K = 2
and let X, Y CV \ {v}. Then,

)\N\\{v}(X> + /\N//{v}(Y) > )\N(X N Y) + )\N(X UY U {U}) — 1.
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We first prove the following lemma for the above proposition.

Lemma 5.2. Letv € V. Let N be a chain-group on'V to K = F? and
let X, Y CV\A{v}. Then,
dim(N x (X NY))+dim(N x (X UY U{v}))
> dim((N \ {v}) x X) + dim((N J {v}) x Y).
Moreover, the equality does not hold if v € N or v, € N.
Proof. We may assume that V = X UY U {v}. Let
Ni={feN:(f(v),(})) =0 f(z)=0forallz € V\ X\ {v}},
Ny={feN:(f(v),()) =0 f(z)=0forallz € V\Y\{v}}.

We use the fact that dim(N;+Na)+dim(N1NNy) = dim(Ny)+dim(Ny).
It is easy to see that if f € Ny N Ny, then f(v) = 0 and therefore
(N;NN)-(XNY) = N x(XNY) and dim(N,NN,) = dim(N x (XNY)).
Moreover, N1 + No € N and therefore dim(N) > dim(N; + Ny). It is
clear that dim(N\ {v} x X) < dim N; and dim(N /{v} x X) < dim Ns.
Therefore we conclude that dim(N x (X NY)) +dim N > dim(N \
{v} x X)+dim(N J{v} xY).

If v* € N, then dim(N \\ {v} x X) < dim N; and therefore the
equality does not hold. Similarly if v, € N, then the equality does not
hold as well. U

Proof of Proposition[5.1. Since N and N+ have the same connectivity
function A and Nt \\ {v} = (N \ {v})*, Nt/ {v} = (N /) {v})},
(Lemma [3.9), we may assume that dim N — dim(N \\ {v}) € {0,1}
(Proposition by replacing N by Nt if necessary. Let X’ =V \ X'\
{v}and Y =V \ Y\ {v}. We recall that
(X NY)
=dim N —dim(N x (X NY)) —dim(N x (X' UY'U{v})),
22X UY U{v})
=dim N —dim(N x (X UY U{v})) —dim(N x (X' NY")),
2An\ (o} (X)
= dim(N \\ {v}) — dim(N \\ {v} x X) — dim(N \ {v} x X'),
2An 1y (V)
= dim(N J/ {v}) —dim(N J {v} x V) —dim(N J/ {v} x Y’).
It is easy to deduce this lemma from Lemma [5.2] if
(1) 2dim N — dim(N \\ {v}) — dim(N / {v}) < 2.
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Therefore we may assume that is false. Since we have assumed that
dim N — dim(N \\ {v}) € {0,1}, we conclude that dim N — dim(N //
{v}) > 2. By Proposition , we have v, € N. Then the equality
in the inequality of Lemma does not hold. So, we conclude that
dim(N x (X NY))+dim(N x (X UY U{v})) > dim(N \\ {v} x X) +
dim(N J/ {v} x Y) + 1 and the same inequality for X’ and Y’. Then,
/\N\\{v}(X> +)\N//{v}(Y) >ANXNY)+ A Av(XUuYU{v})—3/24+1. O

We are now ready to prove an analogue of Tutte’s linking theorem
for Lagrangian chain-groups.

Theorem 5.3. Let V' be a finite set and X, Y be disjoint subsets of
V. Let N be a Lagrangian chain-group on V to K. The following two
conditions are equivalent:

(i) An(Z) > k for all sets Z such that X C Z CV\Y,
(ii) there is a minor M of N on X UY such that Ay (X) > k.

In other words,

min{\y(Z): X CZCV\Y}

Proof. By Theorem [3.13] (ii) implies (i). Now let us assume (i) and
show (ii). We proceed by induction on |V \ (X UY)|. If V = X UY,
then it is trivial. So we may assume that [V \ (X UY)| > 1. Since
An(X) are integers for all X C V' by Lemma , we may assume that
k is an integer.

Let v € V' \ (X UY). Suppose that (ii) is false. Then there is no
minor M of N \\ {v} or N J/ {v} on X UY having Ay (X) > k. By the
induction hypothesis, we conclude that there are sets X; and X5 such
that X C X; CV\Y \{v}, X C Xy CV\Y\ {v}, An\(u} (X1) <k,
and )\N//{v}(X2) < k. By Lemma , >\N\\{v}(X1) and )\N//{v}(XQ) are
integers. Therefore Ayy(}(X1) <k —1 and Ay jpy(X2) <k —1. By
Proposition [5.1},

/\N\\{v}(Xl) + )\N//{u}(X2> > )\N(Xl N XQ) + /\N(X1 UXsU {U}) — 1.

This is a contradiction because Ay(X; N X3) > k and Ay (X; U Xy U
{v}) > k. O

Corollary 5.4. Let N be a Lagrangian chain-group on'V to K and let
X CY CV. IfAn(Z) > An(X) for all Z satisfying X C Z CY, then
there exist disjoint subsets C' and D of Y\ X such that CUD =Y \ X
and N x X =N xY JC\ D.
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Proof. For all C and D if CUD =Y \ X and CN D = {), then
NxXCNxY JC\ D. So it is enough to show that there exists a
partition (C, D) of Y\ X such that

dim(N x X) > dim(N x Y J '\ D).

By Theorem [5.3] there is a minor M = N JC\ D of N on X U(V\Y)
such that Ay (X) > Ay (X). It follows that | X|—dim(N JC\Dx X) >
| X| — dim(N x X). Now we use the fact that N J C \ D x X =
N xY JC\ D. O

6. WELL-QUASI-ORDERING OF LAGRANGIAN CHAIN-GROUPS

In this section, we prove that Lagrangian chain-groups of bounded
branch-width are well-quasi-ordered under taking a minor. Here we
state its simplified form.

Theorem 6.1 (Simplified). Let F be a finite field and let k be a con-
stant. Fwvery infinite sequence N1, No, ... of Lagrangian chain-groups
over F' having branch-width at most k has a pair v < j such that N; is
simply isomorphic to a minor of N;.

This simplified version is enough to obtain results in Sections[7]and [§]
One may first read corollaries in later sections and return to this sec-
tion.

6.1. Boundaried chain-groups. For an isotropic chain-group N on
V to K = 2, we write N*/N for a vector space over [F containing
vectors of the form a + N where a € N* such that

(i) a+ N =b+ N if and only if a — b € N,

(i) (@a+N)+(b+N)=(a+0b)+ N,

(iii) c(a+ N)=ca+ N for c € IF.
An ordered basis of a vector space is a sequence of vectors in the vector
space such that the vectors in the sequence form a basis of the vector
space. An ordered basis of N*/N is called a boundary of N. An
isotropic chain-group N on V to K with a boundary B is called a
boundaried chain-group on V to K, denoted by (V, N, B).

By the theorem in the linear algebra, we know that

|B| = dim(N™+) — dim(N) = 2(|V| — dim N).

We define contractions and deletions of boundaries B of an isotropic
chain-group N on V to K. Let B = {b; + N,by + N,...,b,, + N} be
a boundary of N. For a subset X of V, if |V \ X| —dim(N \\ X) =
|V| — dim N, then we define B \\ X as a sequence

{0 - (VAX)+ N\ X, 05 - (VAX)+N\X,...,b, - (V\X)+ N\ X}
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where b; + N = b, + N and (b;(v), (;)), = 0 for all v € X. Similarly
if |V \ X|—dim(N J X) = |V| —dim N, then we define B J/ X as a
sequence

{b) - (VAX)+NJ X, by (VAX)+NJX,...00, - (V\X)+NJX}

where b; + N = b; + N and (b}(v), ([1])>K =0 for all v € X. We prove
that B \\ X and B J/ X are well-defined.

Lemma 6.2. Let N be an isotropic chain-group on V to K. Let X be
a subset of V. If dim N — dim(N \\ X) = |X| and f € N*, then there
exists a chain g € N* such that f —g € N and {g(z), (é)>K =0 for
allr € X.

Proof. We proceed by induction on |X|. If X = (), then it is trivial.
Let us assume that X is nonempty. Notice that N C N L because N is
isotropic. We may assume that there is v € X such that <f(v), ([1)) >K =+
0, because otherwise we can take g = f.

Then v* ¢ N. Since |V \ X| —dim(N \\ X) = |V| — dim N, we have
V]| —1—dim(N \\ {v}) = |V| — dim N (Corollary and therefore
v* ¢ Nt by Proposition [3.6]

Thus there exists a chain 4 € N such that (h,v*) = (h(v), ((1))>K # 0.
By multiplying a nonzero constant to h, we may assume that

() = h(v), (5) ) = 0.

Let f/ = f—h € Nt Then (f'(v), ((1))>K = 0 and therefore f"- (V'\
{v}) € NI\ {v} = (N\{v})*. By using the induction hypothesis based
on the fact that dim(N \\ {v}) —dim(N \\ X) = | X|—1, we deduce that
there exists a chain ¢’ € (N\\{v})* such that f'-(V\{v})—g € N\ {v}
and {(¢'(z), (1)>K =0 for all z € X \ {v}. Let g be a chain in N* such

0
that g - (V' \ {v}) = ¢ and {g(v), ((1))>K = 0.

We know that (f'(v) — g(v), (3)), = 0- Since (f' —g)- (V \{v}) €
N\ {v} and v* ¢ N, we deduce that f' —¢g € N. Thus f — g =
f'—g+ h € N. Moreover for all z € X <g(x),(é)>K:O. O

Lemma 6.3. Let N be an isotropic chain-group on 'V to K. Let X be
a subset of V. Let f be a chain in N+ such that <f(x), ((1])>K =0 if
re€X and f(x) =0ifz € V\X. Ifdim N —dim(N \ X) = |X|, then
feN.

Proof. We proceed by induction on |X|. We may assume that X is
nonempty. Let v € X. By Corollary 3.7, dim(N \\ {v}) = dim N — 1
and dim(N \\ {v}) — dim(N \\ X) = |X]| — 1. Proposition implies
that either v* € N or v* ¢ N=.
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By Theorem 3.9 f - (V \ {v}) € (N \ {v})*. By the induction
hypothesis, f - (V \ {v}) € N\ {v}. There is a chain f’ € N such
that f'(z) = f(z) for all z € V \ {v} and (f'(v), ([1))>K = 0. Then
f—f = cv* for some ¢ € F by Lemma |3.2l Because N is isotropic,

f—feNt
If v € N, then f = f'+cw* € N. If v* ¢ Nt then ¢ = 0 and
therefore f € N. O

Proposition 6.4. Let N be an isotropic chain-group on V to K with
a boundary B. Let X be a subset of V. If |V \ X| —dim(N \\ X) =
V| —dim N, then B\ X is well-defined and it is a boundary of N \\ X.
Similarly if |V \ X| —dim(N J X) = |V| — dim N, then B J X is
well-defined and it is a boundary of N || X.

Proof. By symmetry it is enough to show for B \\ X. Let B = {b; +
N,by+ N,...,b,, + N}.

By Lemmal6.2) there exists a chain b, € N* such that b;+ N = b,+N
and (b(z), (;)), =0 for all z € X.

Suppose that there are chains ¢; and d; in N+ such that b, + N =
¢+ N =d;+ N and {¢;(z), (é)>K = (d;(2), ((1))>K =0 for all z € X.
Since ¢;—d; € N and {¢;(z) — d;(x), ((1)) ) = Oforallz € X, we deduce
that (¢; —d;) - (V\ X) € N \\ X and therefore

G- (VAX)+ N\ X =d - (V\X)+ N\ X.

Hence B\ X is well-defined.

Now we claim that B \\ X is a boundary of NV \\ X. Since dim((NV \
X)H/(N\ X)) = 2[V\ X| —2dim(N \\ X) = 2|V| — 2dimN =
dim N+ /N = |B| = |B\| X|, it is enough to show that B\ X is linearly
independent in (N'\ X)*/N\ X. We may assume that (b;(z), ((1))>K =0
for all ¥ € X. Let f; = b; - (V\ X) € Nt \ X. We claim that
{fi+ N\ X :i=1,2,...,m} is linearly independent. Suppose that
Yoriai(fi + N\ X) = 0 for some constants a; € F. This means
Soriaifi € N\ X. Let f be a chain in N such that f-(V\ X) =
Soiaif; and (f(2),(;)), = 0 for all z € X. Let b = Y7 a:b;.
Clearly b € N+,

We consider the chain b — f. Since N is isotropic, f € N+ and so
b—f € N*. Moreover (b— f)-(V\X) = 0 and (b(z) — f(z), (é)>K =0
for all z € X. By Lemma 6.3, we deduce that b — f € N and therefore
b= (b— f)+ f € N. Since B is a basis of Nt /N, a; = 0 for all i. We
conclude that B \\ X is linearly independent. U
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A boundaried chain-group (V’, N’, B") is a minor of another bound-
aried chain-group (V, N, B) if

V| = dim N’ = |V| — dim N

and there exist disjoint subsets X and Y of V such that V' =V \ (X U
Y),N=N\X /Y, and B' =B\ X /Y.

Proposition 6.5. A minor of a minor of a boundaried chain-group is
a minor of the boundaried chain-group.

Proof. Let (Vy, No, By), (V1, N1, By), (Va, No, By) be boundaried chain-
groups. Suppose that for ¢ € {0,1}, (Vis1, Niy1, Biv1) is a minor of
(Vi, Ni, B;) as follows:

Nipi=N\X; )Y, Bipi=B\X; /)Y

It is easy to deduce that |Vy| — dim Ny = |V5| — dim Ny and Ny =
No \ (XoU Xy) / (YoUY7).

We claim that By = By \ (XoUX;) / (YoUY;). By Corollary [3.7] we
deduce that |% \ (XO U Xl)‘ — dim NO \\ (XO U Xl) = |%| — dim NO =
|Va| — dim Ny and so it is possible to delete Xy U X; from Vj and
then contract Yy U Y;. From the definition, it is easy to show that
B\ (XoUX)) / (YoUY;) = Bo. O

6.2. Sums of boundaried chain-groups. Two boundaried chain-
groups over the same field are disjoint if their ground sets are disjoint.
In this subsection, we define sums of disjoint boundaried chain-groups
and their connection types.

A boundaried chain-group (V, N, B) over a field F is a sum of disjoint
boundaried chain-groups (Vi, Ny, By) and (Va, Ny, Bs) over F if

Ni=NxV, Ng=N xVy, and V =V, UVj.

For a chain f on V; to K and a chain g on V5 to K, we denote f@®g for a
chain on V;UV; to K such that (f@®g)-V3 = fand (f@g)-Vo =g. The
connection type of the sum is a sequence (Cy,Ch,...,Cp|) of sets of
sequences in FIP1l x F1B2l such that, for B = {b; + N, by + N, ... g+
N}, By = {by + Ni,by + Ni,...,blg | + N1}, and By = {b7 + No, b3 +
Ny, ... ,I)‘QB2| + No},

|B1] | B2
Co =< (z,y) € FBl x FIP2l zib | @ Zyjb? eEN,,
=1

i=1
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and for s € {1,2,...,|B|},

| B1] | Bz|

Cy =< (z,y) e FIBil x FIB2l leb} S Zyjb? —b, €N
i=1 j=1

Proposition 6.6. The connection type is well-defined.

Proof. Tt is enough to show that the choices of b;, b}, and b? do not
affect Cs for s € {0,1,2,...,|B|}. Suppose that b; + N = d; + N,
b} + Ny = d} + Ny, and b? + Ny = d? + No. Then for every (z,y) €
FIBil x FlBal

| B1] | Ba|

> wbf —d)© ) y(b3—d3) N
i=1 j=1

because (b; —d}) ®0 € N and 0@ (b7 — d3) € N. Moreover if s # 0,
then b, — dy, € N. Hence C, is well-defined. O

Proposition 6.7. The connection type uniquely determines the sum
of two disjoint boundaried chain-groups.

Proof. Suppose that both (V, N, B) and (V, N’, B") are sums of disjoint
boundaried chain-groups (Vi, Ny, By), (Va, No, By) over a field F with
the same connection type (Cy, C1, ..., C\p)).

We first claim that N = N’. By symmetry, it is enough to show
that N C N’. Let a € N. Since a € Nt and (N x V})* = Nt.V;
by Theorem we deduce that a - Vi € (N x V;)* and similarly
a-Vy € (N x V,)t. Therefore there exists (x,y) € FIBil x FIB2l such
that

| B1] | Bz|
f:inb}—a-VleNl and g:Zyjb?—ngeNg.
i—1 j=1

Since f@®&0€ N and 06 g € N, we have f & g € N. We deduce that
ZLg' z;b} & Z'Jii' y;b3 = a+ (f @ g) € N. Therefore (z,y) € Co. So,
a+ (f@®g) € N as well. Since f®0,0® g € N, we have a € N'. We
conclude that N C N'.

Now we show that B = B’. Let b,+ N be the s-th element of B where
by € Nt. Let b, + N be the s-th element of B’ with b, € N+. Since
be-Vi € (N x Vi)t and by- Vs € (N x Vi)t there is (z,y) € FIBi x FIB:
such that

|B1] |Ba|

f=) abl b -VieN, and g= yb) —b,- Vo € No.
i=1 j=1
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Since f EB 0,0B g € N, we have f @& g € N. Therefore Zlill‘ z;b! @
leB?ll y;bs — by € N This implies that (z,y) € Cs and therefore
S, b1 SPlyb? —b, € N'= N. Thus, by+ N =0, +N. O

In the next proposition, we prove that minors of a sum of disjoint
boundaried chain-groups are sums of minors of the boundaried chain-
groups with the same connection type.

Proposition 6.8. Suppose that a boundaried chain-group (V, N, B) is a
sum of disjoint boundaried chain-groups (Vi, N1, By), (Va, Na, Bs) over
a field F. Let (Cy, Ch,...,Cip|) be the connection type of the sum. If

Vi\ (X UY)|—dim(N; \ X JY) = [Vi] — dim N,
and
Vo \ (ZUW)| = dim(Na \ Z J W) = |[Va| — dim N,

then (V\ (XUYUZUW), N\ (XUZ)/(YUW), B\(XUZ)/J(YUW))
is a well-defined minor of (V, N, B). Moreover it is a sum of (V1 \ (X U
Y), N\ X )Y, B\ X JY) and (Va\ (ZUW),Na\ Z J W, Bo\ Z | W)
with the connection type (Co, Ch, ..., Cp|).

Proof. We proceed by induction on | XUYUZUW|. If XUYUZUW = {),
then it is trivial.

Suppose that [ X UY U Z U W| = 1. By symmetry, we may assume
that Y = Z =W ={. Let v € X. Since |V} \ {v}| — dim(N; \ {v}) =
V1| — dim Ny, either v* € Ny or v* ¢ Ni by Proposition Since
N; = N x Vi, we deduce that either v* € N or v* ¢ N+. Thus,
[VA{v}|=dim(N\{v}) = [V[=dim N and so (V\{v}, N\{v}, B\{v})
is a minor of (V, N, B).

To show that (V' \ {v}, N\ {v}, B\ {v}) is a sum of (V] \ {v}, Ny \\
{v}, B\ {v}) and (V4, Ny, By), it is enough to show that

(2) N xVi\{v} = N\ {v} x (Vi \{v}),
(3) N xVy =N\ {v} x V5.

It is easy to see and N x Vo C N\ {v} x V5. We claim that
N\ {v} x V5 € N x V,. Suppose that f is a chain in N \| {v} x V4.
There exists a chain f’ in N such that f' -V, = f, <f’(v), (é)>K =0,
and f'(z) =0forall z € V\ (Vo U{v}) = Vi \ {v}.

If f'(v) # 0, then f’- Vi = cv* for a nonzero ¢ € F by Lemma .
Since Ni* = N+ .V (Theorem [3.4), we deduce v* = ¢~ 1f" -V} € Ni.
Therefore v* € Ny and so v* € N. We may assume that f'(v) = 0
by adding a multiple of v* to f’. This implies that f € N x V5. We
conclude ((3)).
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Let (C§,C1, .. .,C(B|) be the connection type of the sum of (V; \
{U},Nl \\ {U},Bl \\ {U}) and (‘/Q,N27B2>. Let B = {bl + N, bg +
N,...,b|B| +N} B1 = {b1+N1,b1 +N1,...,b|1B|+N1} and B2 =
{b?—i—N%bQ—i-Ng, -+ U, +No}. We may assume that (b;(v ), (o)) =0
and (b}(v), (} )) =0 by Lemma

We clalm that Cs = C” for all s € {0,1,...,|B|}. Let g be a chain
in N+ such that g = 0 if s = 0 or g = b, otherwise. If (x,y) € C,, then

|B1] | Ba|

(4) bel@z% —gEN

Since (b} (v), (é)>K =0 and (g(v), (é)>K = 0, we conclude that

|Bi] | Ba|

(5) bel (Vi\ {v}) @Zyg (VA {v}) € N\ {v},

and therefore (z,y) € C'.

Conversely suppose that (z,y) € C. Then () is true. By Lemmal6.3]
we deduce (). Therefore (z,y) € Cs.

To complete the inductive proof, we now assume that | X UY U Z U
W| > 1. If X is nonempty, let v € X. Let X’ = X \ {v}. Then, by
Corollary [3.7] we have |V; \ {v}| — dim Ny \\ {v} = |V1] — dim N;. So
(Vi\{v}, N\ {v}, B\ {v}) is the sum of (V1 \{v}, N\ {v}, B1\{v}) and
(Va, N3, By) with the connection type (Cy, C1, ..., Cjp|). We deduce our
claim by applying the induction hypothesis to (V4 \ {v}, N1\ {v}, B1 \
{v}) and (V3, Ny, Bs). Similarly if one of Y or Z or W is nonempty, we
deduce our claim. O

6.3. Linked branch-decompositions. Suppose (T, L) is a branch-
decomposition of a Lagrangian chain-group N on V to K = F?. For
two edges f and g of T, let F' be the set of elements in V' corresponding
to the leaves in the component of 7'\ f not containing g and let G be
the set of elements in V' corresponding to the leaves in the component
of T'\ g not containing f. Let P be the unique path from e to f in 7.
We say that f and g are linked if the minimum width of the edges on P
is equal to mingcxcy\g An(X). We say that a branch-decomposition
(T, L) is linked if every pair of edges in T is linked.

The following lemma is shown by Geelen, Gerards, and Whittle [8],9].
We state it in terms of Lagrangian chain-groups, because the connectiv-
ity function of chain-groups are symmetric submodular (Theorem.
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Lemma 6.9 (Geelen et al. [8, 9, Theorem (2.1)]). A chain-group of
branch-width n has a linked branch-decomposition of width n.

Having a linked branch-decomposition will be very useful for prov-
ing well-quasi-ordering because it allows Tutte’s linking theorem to be
used. It was the first step to prove well-quasi-ordering of matroids of
bounded branch-width by Geelen et al. [§]. An analogous theorem by
Thomas [17] was used to prove well-quasi-ordering of graphs of bounded
tree-width in [14].

6.4. Lemma on cubic trees. We use “lemma on trees,” proved by
Robertson and Seymour [I4]. It has been used by Robertson and Sey-
mour to prove that a set of graphs of bounded tree-width is well-quasi-
ordered by the graph minor relation. It has been also used by Geelen et
al. [§ to prove that a set of matroids representable over a fixed finite
field and having bounded branch-width is well-quasi-ordered by the
matroid minor relation. We need a special case of “lemma on trees,”
in which a given forest is cubic, which was also useful for branch-
decompositions of matroids in [§].

The following definitions are in [§]. A rooted tree is a finite directed
tree where all but one of the vertices have indegree 1. A rooted forest is
a collection of countably many vertex disjoint rooted trees. Its vertices
with indegree 0 are called roots and those with outdegree 0 are called
leaves. Edges leaving a root are root edges and those entering a leaf
are leaf edges.

An n-edge labeling of a graph F'is a map from the set of edges of F’
to the set {0,1,...,n}. Let A be an n-edge labeling of a rooted forest
F and let e and f be edges in F'. We say that e is A-linked to f if F
contains a directed path P starting with e and ending with f such that
A(g) > Ae) = A(f) for every edge g on P.

A binary forest is a rooted orientation of a cubic forest with a dis-
tinction between left and right outgoing edges. More precisely, we call
a triple (F,l,r) a binary forest if F'is a rooted forest where roots have
outdegree 1 and [ and r are functions defined on non-leaf edges of F,
such that the head of each non-leaf edge e of F' has exactly two outgoing
edges, namely [(e) and r(e).

Lemma 6.10 (Geelen et al. [8, (3.2)]). Let (F,l,r) be an infinite binary
forest with an n-edge labeling A\. Moreover, let < be a quasi-order on
the set of edges of F' with no infinite strictly descending sequences, such
that e < f whenever f is X\-linked to e. If the set of leaf edges of F' is
well-quasi-ordered by < but the set of root edges of F' is not, then F
contains an infinite sequence (eq,e1,...) of non-leaf edges such that
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(i) {eo,e1,...} is an antichain with respect to <,
(i) 1(eg) < ley) <ley) <---,
(iil) r(eg) <7r(er) <r(eg) < ---.

6.5. Main theorem. We are now ready to prove our main theorem.
To make it more useful, we label each element of the ground set by
a well-quasi-ordered set () with an ordering < and enforce the minor
relation to follow the ordering <. More precisely, for a chain-group
N on V to K, a Q-labeling is a mapping from V to Q). A Q-labeled
chain-group is a chain-group equipped with a (-labeling. A ()-labeled
chain-group N’ on V'’ to K with a Q-labeling ' is a Q-minor of a
Q@-labeled chain-group N with a Q-labeling p if N’ is a minor of N and
' (v) 2 p(v) for all v e V7.

Theorem (Labeled version). Let @ be a well-quasi-ordered set
with an ordering <. Let k be a constant. Let F be a finite field. Let
N1, Na, ... be an infinite sequence of Q-labeled Lagrangian chain-groups
over IF' having branch-width at most k. Then there exist i < j such that
N; is simply isomorphic to a Q-minor of N;.

Proof. We may assume that all bilinear forms (, ), for all N;’s are
the same bilinear form, that is either skew-symmetric or symmetric by
taking a subsequence. Let V; be the ground set of N;. Let u; : V; = @Q
be the @-labeling of N;. We may assume that |V;| > 1 for all i. By
Lemma [6.9] there is a linked branch-decomposition (T}, £;) of N; of
width at most k for each ¢. Let T be a forest such that the i-th
component is 7;. To make T a binary forest, for each T;, we create
a vertex r; of degree 1, called a root, create a vertex of degree 3 by
subdividing an edge of T; and making it adjacent to r;, and direct
every edge of T; so that each leaf has a directed path from the root r;.

We now define a k-edge labeling A of T', necessary for Lemma [6.10}
For each edge e of T}, let X, be the set of leaves of T; having a directed
path from e. Let A, = £;1(X.). We let A(e) = Ay, (A,).

We want to associate each edge e of T; with a )-labeled boundaried
chain-group P. = (A., N; X A., B.) with a Q-labeling p. = ;4. and
some boundary B, satisfying the following property:

(6) if f is A-linked to e, then P, is a ()-minor of P.

We note that p;|4, is a function on A, such that p;|a, (z) = pi(z) for
all z € A..

We claim that we can assign B, to satisfy @ We prove it by
induction on the length of the directed path from the root edge of T;
to an edge e of T;. If no other edge is A-linked to e, then let B, be
an arbitrary boundary of N; x A.. If f, other than e, is A-linked to e,
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then choose f such that the distance between e and f is minimal. We
claim that we can obtain B, from B; by Corollary (Tutte’s linking
theorem) as follows; since 7; is a linked branch-decomposition, for all Z,
if Ac C Z C Ay, then Ay,(Z) > An,(Ac). By Corollary [5.4] there exist
disjoint subsets C' and D of A;\ A, such that N x A, = N x Ay JC\ D.
Since |Ae| — dlmNZ X Ae = |Af| — dlIIl]VZ X Af, Be = Bf // O\\ D is
well defined. This proves the claim.

For e, f € E(T), we write e < f when a ()-labeled boundaried chain-
group P, is simply isomorphic to a @-minor of P;. Clearly < has no
infinitely strictly descending sequences, because there are finitely many
boundaried chain-groups on bounded number of elements up to simple
isomorphisms and furthermore () is well-quasi-ordered. By construc-
tion, if f is A-linked to e, then e < f.

The leaf edges of T are well-quasi-ordered because there are only
finite many distinct boundaried chain-groups on one element up to
simple isomorphisms and Q is well-quasi-ordered.

Suppose that the root edges are not well-quasi-ordered by the rela-
tion <. By Lemma [6.10, 7" contains an infinite sequence eg, ey, ... of
non-leaf edges such that

(i) {eo,e1,...} is an antichain with respect to <,
(i) I(eo) < I(er)
(iif) 7(eo) < (e

<
)S""

Since A(e;) < k for all 7, we may assume that A(e;) is a constant for all
1, by taking a subsequence.

The boundaried chain-group P, is the sum of Py, and P,,). The
number of possible distinct connection types for this sum is finite, be-
cause [F' is finite and k is fixed, Therefore, we may assume that the
connection types for all sums for all e; are same for all i, by taking a
subsequence.

Since l(eg) < I(ey), there exists a simple isomorphism s; from Ay,
to a subset of Aj,). Similarly, there exists a simple isomorphism s,
from A, () to a subset of A,(,) in r(ey) < r(e;). Let s be a function on
Acy = Aeg) UA; (o) such that s(v) = s;(v) if v € Ay and s(v) = s,.(v)
otherwise. By Proposition P,, is simply isomorphic to a ()-minor
of P., with the simple isomorphism s. Since I(eg) < I(e1) and r(eg) <
r(e1), we deduce that P, is simply isomorphic to a Q-minor of P,, and
therefore eq < e;. This contradicts to (i). Hence we conclude that the
root edges are well-quasi-ordered by <. So there exist ¢ < 7 such that
N; is simply isomorphic to a ()-minor of N;. O
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7. WELL-QUASI-ORDERING OF SKEW-SYMMETRIC OR SYMMETRIC
MATRICES

In this section, we will prove the following main theorem for skew-
symmetric or symmetric matrices from Theorem

Theorem 7.1. Let | be a finite field and let k be a constant. Fvery
infinite sequence My, Ms, ... of skew-symmetric or symmetric matri-
ces over ¥ of rank-width at most k has a pair v < j such that M; is
isomorphic to a principal submatriz of (M;/A) for some nonsingular
principal submatriz A of M;.

To move from the principal pivot operation given by Theorem [4.9] to
a Schur complement, we need a finer control how we obtain a matrix
representation under taking a minor of a Lagrangian chain-group.

Lemma 7.2. Let My, My be skew-symmetric or symmetric matrices
over a field F. Fori=1,2, let N; be a Lagrangian chain-group with a
special matriz representation (M;, a;,b;) where a;(v) = ((1)), bi(v) = ((IJ)
forallv. If Ny = Ny ) X\ Y, then M is a principal submatriz of the
Schur complement (My/A) of some nonsingular principal submatriz A

m MQ.

Proof. For ¢ = 1,2, let V; be the ground set of N;. We may assume
that X is a minimal set having some Y such that Ny = Ny J/ X \\ Y.
We may assume X # (), because otherwise we apply Lemma [4.8] Note
that the Schur complement of a () x () submatrix in M, is M, itself.
Suppose that M,[X] is singular. Let ax be a chain on V5 to K = F?
such that ax(v) = (;) if v ¢ X and ax(v) = (}) if v € X. By
Proposition 4.4 @’ is not an eulerian chain of N,. Therefore there
exists a nonzero chain f € N, such that (f(v),ax(v)), = 0 for all
v € V. Then f-V; =0 because f-V; € Ny and a, is an eulerian chain
of Ny = Ny J X\ Y. There exists w € X such that f(w) # 0 because as
is an eulerian chain of N,. For every chain g € No, if (g(v), (é)>K =0
forv € Y and (g(v), ([1))>K = 0 for v € X, then g(w) = ¢, f(w) for some
¢y € F by Lemma [3.2] and therefore g- Vi = (g — ¢, f) - Vi € No f/ (X'
{wh \ (YU{w}). This implies that No / X\ Y C Ny /(X \{w})\ (YU
{w}). Since dim(Ny / X\ Y) = dim(Ny /(X \{w})\ (YU{w})) = |V4],
we have Ny J X\ Y = Ny J (X \{w})\ (Y U{w}), contradictory to the
assumption that X is minimal. This proves that M>[X] is nonsingular.
By Proposition 4.5 (M’,a’,V') is another special matrix representa-
tion of Ny where M’ = M % X if (, ) is symmetric or M' = Ix(M % X)
if (, ), is skew-symmetric and o/, ' are given in Proposition We
observe that a’-V; = a; and ¥'-V; = b;. We apply Lemmal[4.§to deduce
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that (M'[V4], a1, by) is a matrix representation of Nj. This implies that
M'[Vi] = M;. Let A = M,[X]. Notice that M’'[V}] = (My/A)[V1]. This
proves the lemma. O

Proof of Theorem[7.1]. By taking an infinite subsequence, we may as-
sume that all of the matrices in the sequence are skew-symmetric or
symmetric. Let K = F? and assume (, ), is a bilinear form that is
symmetric if the matrices are skew-symmetric and skew-symmetric if
the matrices are symmetric. Let N; be the Lagrangian chain-group
represented by a matrix representation (M;, a;,b;) where a;(x) = (é),
bi(x) = (}) for all 2. Then by Theorem , there are i < j such that
N; is simply isomorphic to a minor of /V;. By Lemma , we deduce
the conclusion. 0

Now let us consider the notion of delta-matroids, a generalization
of matroids. Delta-matroids lack the notion of the connectivity and
hence it is not clear how to define the branch-width naturally for
delta-matroids. We define the branch-width of a [F-representable delta-
matroid as the minimum rank-width of all skew-symmetric or symmet-
ric matrices over [F representing the delta-matroid. Then we can deduce
the following theorem from Theorem and Proposition [4.10}

Theorem 7.3. Let F be a finite field and k be a constant. Every infi-
nite sequence My, Moy, ... of F-representable delta-matroids of branch-
width at most k has a pair i < j such that M; is isomorphic to a minor

Of./\/lj.

Proof. Let My, M,, ... be an infinite sequence of skew-symmetric or
symmetric matrices over [ such that the rank-width of M; is equal
to the branch-width of M; and M; = M(M;)AX;. We may assume
that X; = 0 for all 7. By Theorem , there are ¢ < j such that
M; is isomorphic to a principal submatrix of the Schur complement of
a nonsingular principal submatrix in M;. This implies that M; is a
minor of M; as a delta-matroid. O

In particular, when F = GF(2), then binary skew-symmetric matri-
ces correspond to adjacency matrices of simple graphs. Then taking
a pivot on such matrices is equivalent to taking a sequence of graph
pivots on the corresponding graphs. We say that a simple graph H is
a pivot-minor of a simple graph G if H is obtained from G by applying
pivots and deleting vertices. As a matter of a fact, a pivot-minor of a
simple graph corresponds to a minor of an even binary delta-matroid.
The rank-width of a simple graph is defined to be the rank-width of
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its adjacency matrix over F. Then Theorem or implies the
following corollary, originally proved by Oum [11].

Corollary 7.4 (Oum [I1]). Let k be a constant. Every infinite sequence
G, G, ... of simple graphs of rank-width at most k has a pair i < j
such that G; is i1somorphic to a pivot-minor of G;.

8. COROLLARIES TO MATROIDS AND GRAPHS

In this section, we will show how Theorem implies the theorem
by Geelen et al. [8] on well-quasi-ordering of F-representable matroids
of bounded branch-width for a finite field ' as well as the theorem
by Robertson and Seymour [14] on well-quasi-ordering of graphs of
bounded tree-width.

We will briefly review the notion of matroids in the first subsection.
In the second subsection, we will discuss how Tutte chain-groups are
related to representable matroids and Lagrangian chain-groups. In the
last subsection, we deduce the theorem of Geelen et al. [8] on matroids
which in turn implies the theorem of Robertson and Seymour [14] on
graphs.

8.1. Matroids. Let us review matroid theory briefly. For more on
matroid theory, we refer readers to the book by Oxley [13].

A matroid M = (E,r) is a pair formed by a finite set E of elements
and a rank function r : 28 — 7Z satisfying the following axioms:

i) 0<r(X)<|X|foral X CE.

i) If X CY C FE, then r(X) < r(Y).

iii) Forall X, Y CE, r(X)+rY)>r(XNY)+r(XUY).

A subset X of F is called independent if r(X) = |X|. A base is a
maximally independent set. We write E(M) = E. For simplicity,
we write r(M) for r(E(M)). For Y C E(M), M \'Y is the matroid
(E(M) \ Y,r") where '(X) = r(X). For Y C E(M), M/Y is the
matroid (E(M) \ Y,r") where r'(X) =r(XUY) —r(Y). If Y = {e},
we denote M \ e = M \ {e} and M/e = M/{e}. It is routine to prove
that M \ 'Y and M/Y are matroids. Matroids of the form M \ X/Y
are called a minor of the matroid M.

Given a field ' and a set of vectors in ™, we can construct a
matroid by letting 7(X) be the dimension of the vector space spanned
by vectors in X. If a matroid permits this construction, then we say
that the matroid is F'-representable or representable over IF.

The connectivity function of a matroid M = (E,r) is Ay (X) =
r(X)+r(E\X)—r(E)+ 1. A branch-decomposition of a matroid
M = (E,r) is a pair (T, L) of a subcubic tree T" and a bijection L :



RANK-WIDTH AND WELL-QUASI-ORDERING 39

E — {t : tisaleaf of T'}. For each edge e = uv of the tree T', the
connected components of 7'\ e induce a partition (X, Y;) of the leaves
of T and we call A\ (£L71(X,)) the width of e. The width of a branch-
decomposition (7, L) is the maximum width of all edges of T. The
branch-width bw(M) of a matroid M = (E,r) is the minimum width
of all its branch-decompositions. (If |E|] < 1, then we define that
bw(M) =1.)

8.2. Tutte chain-groups. We review Tutte chain-groups [24]. For a
finite set V and a field I, a chain on V to F is a mapping f: V — F.
The sum f + g of two chains f, g is the chain on V satisfying

(f+9)(x)=f(z)+g(x) forallzeV.

If fis achainon V to F and A € I, the product \f is a chain on V
such that

(Af)(x) =Af(x) forallz e V.

It is easy to see that the set of all chains on V to IF, denoted by IV,
is a vector space. A Tutte chain-group on V to [ is a subspace of FV.
The support of a chain fon V to Fis {x € V : f(x) # 0}.

Theorem 8.1 (Tutte [22]). Let N be a Tutte chain-group on a finite
set V' to a field F. The minimal nonempty supports of N form the
circuits of a F-representable matroid M{N} on V', whose rank is equal

to |V| —dim N. Moreover every F-representable matroid M admits a
Tutte chain-group N such that M = M{N}.

Let S be a subset of V. For a chain f on V to I, we denote f -5
for a chain on S to [ such that (f-S)(v) = f(v) for all v € S. For
a Tutte chain-group N on V to F, welet N-S = {f-S: f € N},
NxS={f-S:feNflv)=0fralv¢ S} and N* = {g :
gisachainon VtoF,>  _, f(v)g(v) =0 forall f e N}.

A minor of a Tutte chain-group N on V to F is a Tutte chain-group
of the form (N x.S)-T where T' C S C V. By definition, it is easy to see
that M{N}\X = M{Nx(V\X)}and M{N}/X = M{N-(V\X)}. So
the notion of representable matroid minors is equivalent to the notion
of Tutte chain-group minors.

Tutte [25, Theorem VIIL.7.] showed the following theorem. The
proof is basically equivalent to the proof of Theorem

Lemma 8.2 (Tutte [25, Theorem VIIL.7.)). If N is a Tutte chain-group
onV toF and X CV, then (N - X))t =Nt x X.

We now relate Tutte chain-groups to Lagrangian chain-groups. For
a chain f on V to IF, let f*, f, be chains on V to K = IF? such that
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f*v) = (f(ov)) € K, fi(lv) = (f(ov)) € K for every v € V. For a Tutte

chain-group N on V' to I, we let N be a Tutte chain-group on V' to
K such that N = {f*+g.: f € N,g € N*}. Assume that (, ), is
symmetric.

Lemma 8.3. If N is a Tutte chain-group on V to I, then N is a
Lagrangian chain-group on V to K = F2.
Proof. By definition, for all f € N and g € N+, (f*, f*) = (9., 9+) =0
and (f*,g.) = > ,ev f(v)g(v) = 0. Thus, N is isotropic. Moreover,
dim N + dim N* = dimFY = |V| and therefore dim N = |V|. (Note
that N is isomorphic to N @ N+ as a vector space.) So N is a La-
grangian chain-group. 0
Lemma 8.4. Let Ny, Ny be Tutte chain-groups on Vi, Vs (respectively)
to . Then Ny is a minor of Ny as a Tutte chain-group if and only if
]vl s a minor of Ng as a Lagrangian chain-group.
Proof. Let N be a Tutte chain-group on V to I and let S be /a\s_lﬂ)set
of V. It is enough to show that NS = N J(V\S)and N xS =
N\ (V\9). - N .
Let us first show that N-S = N / (V' \ §). Since dimN -S =
dim N J/ (V\S) = |S| by Lemma it is enough to show that N - § C
N J(V\S). Suppose that f € N-S and g € (N-S)*. By szmma,
(N-S)t = Nt x S. So there are f,g € N such that f-S = f,
g-S =g,and glv) = 0 for all v € V' \ S. Now it is clear that

f 9= ("+g)-SeNJ(V\S).

Now it remains to show that N x S = N\ (V' \ ). Let f € N x S,
g € (NxS)t = NL.S. A similar argument shows that f*+g, € N\\S
and therefore N x S C N \ (V'\'S). This proves our claim because
these two Lagrangian chain-groups have the same dimension. U

Now let us show that for a Tutte chain-group N on V to F, the
branch-width of a matroid M{N} is exactly one more than the branch-
width of the Lagrangian chain-group N. Tt is enough to show the
following lemma.

Lemma 8.5. Let N be a Tutte chain-group on V to F. Let X be a
subset of V.. Then,

)\M{N}<X) = )‘N<X) + 1.

Proof. Recall that the connectivity function of a matroid is Ayqny(X) =
r(X)+r(V\X)—r(V)+1 and the connectivity function of a Lagrangian
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chain-group is Ag(X) = |X| — dim(V x X). Let Y =V \ X. Let r
be the rank function of the matroid M{N}. Then r(X) is equal to the
rank of the matroid M{N}\Y = M{N x X}. So by Theorem [8.1]
r(X) =|X]| — dim(N x X). Therefore

My (X) = dim N — dim(N x X) — dim(N x V) + 1.

From our construction, A5(X) = | X]| —dim(N x X) = | X| — (dim(N x
X) +dim(N* x X)) = |X| —dimN x X —dim(N - X))+ = |X]| -
dimN x X — (|X| = dimN - X) = dimN - X — dim N x X. It is
enough to show that dim N =dim N XY +dim N - X. Let L : N —
N - X be a surjective linear transformation such that L(f) = f - X.
Then dimker L = dim({f € N : f- X = 0}) = dim(N x Y). Thus,
dimN - X =dim N —dim N x Y. O

8.3. Application to matroids. We are now ready to deduce the fol-
lowing theorem by Geelen, Gerards, and Whittle [§] from Theorem .

Theorem 8.6 (Geelen, Gerards, and Whittle [§]). Let k be a constant
and let F be a finite field. If My, M, ... is an infinite sequence of F-
representable matroids having branch-width at most k, then there exist
it and j with i < j such that M; is isomorphic to a minor of M;.

To deduce this theorem, we use Tutte chain-groups.

Proof. Let N; be the Tutte chain-group on E(M;) to I such that
M{N;} = M;. By Lemma .5 the branch-width of the Lagrangian
chain-group N; is at most k£ — 1. By Theorem ,N there are 1 < j
such that N; is simply isomorphic to a minor of N;. This implies
that M, = M{N;} is isomorphic to a minor of M; = M{N;} by
Lemma [8.4] O

Geelen et al. [8] showed that Theorem [8.6| implies the following the-
orem. (We omit the definition of tree-width.) Thus our theorem also
implies the following theorem of Robertson and Seymour.

Theorem 8.7 (Robertson and Seymour [I4]). Let k be a constant.
FEvery infinite sequence G, Gs, ... of graphs having tree-width at most
k has a pair i < j such that G; is isomorphic to a minor of G;.
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