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Abstract. We prove that every infinite sequence of skew-symmetric
or symmetric matrices M1, M2, . . . over a fixed finite field must
have a pair Mi, Mj (i < j) such that Mi is isomorphic to a princi-
pal submatrix of the Schur complement of a nonsingular principal
submatrix in Mj , if those matrices have bounded rank-width. This
generalizes three theorems on well-quasi-ordering of graphs or ma-
troids admitting good tree-like decompositions; (1) Robertson and
Seymour’s theorem for graphs of bounded tree-width, (2) Geelen,
Gerards, and Whittle’s theorem for matroids representable over
a fixed finite field having bounded branch-width, and (3) Oum’s
theorem for graphs of bounded rank-width with respect to pivot-
minors.

1. Introduction

For a V1×V1 matrix A1 and a V2×V2 matrix A2, an isomorphism f
from A1 to A2 is a bijective function that maps V1 to V2 such that the
(i, j) entry of A1 is equal to the (f(i), f(j)) entry of A2 for all i, j ∈ V1.
Two square matrices A1, A2 are isomorphic if there is an isomorphism
from A1 to A2. Note that an isomorphism allows permuting rows and
columns simultaneously. For a V × V matrix A and a subset X of
its ground set V , we write A[X] to denote the principal submatrix of
A induced by X. Similarly, we write A[X, Y ] to denote the X × Y
submatrix of A. Suppose that a V × V matrix M has the following
form:

M =

( Y V \ Y
Y A B
V \ Y C D

)
.
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If A = M [Y ] is nonsingular, then we define the Schur complement
(M/A) of A in M to be

(M/A) = D − CA−1B.

(If Y = ∅, then A is nonsingular and (M/A) = M .) Notice that if
M is skew-symmetric or symmetric, then (M/A) is skew-symmetric or
symmetric, respectively.

We prove that skew-symmetric or symmetric matrices over a fixed
finite field are well-quasi-ordered under the relation defined in terms
of taking a principal submatrix and a Schur complement, if they have
bounded rank-width. Rank-width of a skew-symmetric or symmetric
matrix will be defined precisely in Section 2. Roughly speaking, it is a
measure to describe how easy it is to decompose the matrix into a tree-
like structure so that the connecting matrices have small rank. Rank-
width of matrices generalizes rank-width of simple graphs introduced
by Oum and Seymour [12], and branch-width of graphs and matroids
by Robertson and Seymour [15]. Here is our main theorem.

Theorem 7.1. Let F be a finite field and let k be a constant. Every
infinite sequence M1, M2, . . . of skew-symmetric or symmetric matri-
ces over F of rank-width at most k has a pair i < j such that Mi is
isomorphic to a principal submatrix of (Mj/A) for some nonsingular
principal submatrix A of Mj.

It may look like a purely linear algebraic result. However, it implies
the following well-quasi-ordering theorems on graphs and matroids ad-
mitting ‘good tree-like decompositions.’

• (Robertson and Seymour [15]) Every infinite sequence G1, G2,
. . . of graphs of bounded tree-width has a pair i < j such that
Gi is isomorphic to a minor of Gj.
• (Geelen, Gerards, and Whittle [8]) Every infinite sequence M1,
M2, . . . of matroids representable over a fixed finite field hav-
ing bounded branch-width has a pair i < j such that Mi is
isomorphic to a minor of Mj.
• (Oum [11]) Every infinite sequence G1, G2, . . . of simple graphs

of bounded rank-width has a pair i < j such that Gi is isomor-
phic to a pivot-minnor of Gj.

We ask, as an open problem, whether the requirement on rank-width
is necessary in Theorem 7.1. It is likely that our theorem for matrices
of bounded rank-width is a step towards this problem, as Roberson and
Seymour also started with graphs of bounded tree-width. If we have
a positive answer, then this would imply Robertson and Seymour’s
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graph minor theorem [16] as well as an open problem on the well-
quasi-ordering of matroids representable over a fixed finite field [10].

A big portion of this paper is devoted to introduce Lagrangian chain-
groups and prove their relations to skew-symmetric or symmetric ma-
trices. One can regard Sections 3 and 4 as an almost separate pa-
per introducing Lagrangian chain-groups, their matrix representations,
and their relations to delta-matroids. In particular, Lagrangian chain-
groups provide an alternative definition of representable delta-matroids.
The situation is comparable to Tutte chain-groups,1 introduced by
Tutte [20]. Tutte [21] showed that a matroid is representable over a field
F if and only if it is representable by a Tutte chain-group over F. We
prove an analogue of his theorem; a delta-matroid is representable over
a field F if and only if it is representable by a Lagrangian chain-group
over F. We believe that the notion of Lagrangian chain-groups will be
useful to extend the matroid theory to representable delta-matroids.

To prove well-quasi-ordering, we work on Lagrangian chain-groups
instead of skew-symmetric or symmetric matrices for the convenience.
The main proof of the well-quasi-ordering of Lagrangian chain-groups
is in Sections 5 and 6. Section 5 proves a theorem generalizing Tutte’s
linking theorem for matroids, which in turn generalizes Menger’s the-
orem. The proof idea in Section 6 is similar to the proof of Geelen,
Gerards, and Whittle’s theorem [8] for representable matroids.

The last two sections discuss how the result on Lagrangian chain-
groups imply our main theorem and its other corollaries. Section 7
formulates the result of Section 6 in terms of skew-symmetric or sym-
metric matrices with respect to the Schur complement and explain
its implications for representable delta-matroids and simple graphs of
bounded rank-width. Section 8 explains why our theorem implies the
theorem for representable matroids by Geelen, Gerards, and Whittle [8]
via Tutte chain-groups.

2. Preliminaries

2.1. Matrices. For two sets X and Y , we write X∆Y = (X \ Y ) ∪
(Y \ X). A V × V matrix A is called symmetric if A = At, skew-
symmetric if A = −At and all of its diagonal entries are zero. We
require each diagonal entry of a skew-symmetric matrix to be zero,
even if the underlying field has characteristic 2.

1We call Tutte’s chain-groups as Tutte chain-groups to distinguish from chain-
groups defined in Section 3.
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Suppose that a V × V matrix M has the following form:

M =

( Y V \ Y
Y A B
V \ Y C D

)
.

If A = M [Y ] is nonsingular, then we define a matrix M ∗ Y by

M ∗ Y =

( Y V \ Y
Y A−1 A−1B
V \ Y −CA−1 (M/A)

)
.

This operation is called a pivot. In the literature, it has been called a
principal pivoting, a principal pivot transformation, and other various
names; we refer to the survey by Tsatsomeros [18].

Notice that if M is skew-symmetric, then so is M ∗ Y . If M is
symmetric, then so is (IY )(M ∗Y ), where IY is a diagonal matrix such
that the diagonal entry indexed by an element in Y is −1 and all other
diagonal entries are 1.

The following theorem implies that (M ∗Y )[X] is nonsingular if and
only if M [X∆Y ] is nonsingular.

Theorem 2.1 (Tucker [19]). Let M [Y ] be a nonsingular principal sub-
matrix of a V × V matrix M . Then for all X ⊆ V ,

det(M ∗ Y )[X] = detM [Y∆X]/ detM [Y ].

Proof. See Bouchet’s proof in Geelen’s thesis paper [7, Theorem 2.7].
�

2.2. Rank-width. A tree is called subcubic if every vertex has at most
three incident edges. We define rank-width of a skew-symmetric or
symmetric V × V matrix A over a field F by rank-decompositions as
follows. A rank-decomposition of A is a pair (T,L) of a subcubic tree
T and a bijection L : V → {t : t is a leaf of T}. For each edge e = uv
of the tree T , the connected components of T \ e form a partition
(Xe, Ye) of the leaves of T and we call rankA[L−1(Xe),L−1(Ye)] the
width of e. The width of a rank-decomposition (T,L) is the maximum
width of all edges of T . The rank-width rwd(A) of a skew-symmetric
or symmetric V × V matrix A over F is the minimum width of all its
rank-decompositions. (If |V | ≤ 1, then we define that rwd(A) = 0.)

2.3. Delta-matroids. Delta-matroids were introduced by Bouchet [2].
A delta-matroid is a pair (V,F) of a finite set V and a nonempty col-
lection F of subsets of V such that the following symmetric exchange
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axiom holds.

(SEA) If F, F ′ ∈ F and x ∈ F∆F ′,

then there exists y ∈ F∆F ′ such that F∆{x, y} ∈ F .

A member of F is called feasible. A delta-matroid is even, if cardinali-
ties of all feasible sets have the same parity.

Let M = (V,F) be a delta-matroid. For a subset X of V , it is
easy to see that M∆X = (V,F∆X) is also a delta-matroid, where
F∆X = {F∆X : F ∈ F}; this operation is referred to as twisting.
Also,M\X = (V \X,F\X) defined by F\X = {F ⊆ V \X : F ∈ F}
is a delta-matroid if F \X is nonempty; we refer to this operation as
deletion. Two delta-matroids M1 = (V,F1), M2 = (V,F2) are called
equivalent if there exists X ⊆ V such that M1 = M2∆X. A delta-
matroid that comes from M by twisting and/or deletion is called a
minor of M.

2.4. Representable delta-matroids. For a V × V skew-symmetric
or symmetric matrix A over a field F, let

F(A) = {X ⊆ V : A[X] is nonsingular}
andM(A) = (V,F(A)). Bouchet [4] showed thatM(A) forms a delta-
matroid. We call a delta-matroid representable over a field F or F-
representable if it is equivalent to M(A) for some skew-symmetric or
symmetric matrix A over F. We also say that M is represented by A
if M is equivalent to M(A).

Twisting (by feasible sets) and deletions are both natural opera-
tions for representable delta-matroids. For X ⊆ V , M(A) \ X =
M(A[V \ X]), and for a feasible set X, M(A)∆X = M(A ∗ X) by
Theorem 2.1. Therefore minors of a F-representable delta-matroid are
F-representable [5].

2.5. Well-quasi-order. In general, we say that a binary relation ≤
on a set X is a quasi-order if it is reflexive and transitive. For a quasi-
order ≤, we say “≤ is a well-quasi-ordering” or “X is well-quasi-ordered
by ≤” if for every infinite sequence a1, a2, . . . of elements of X, there
exist i < j such that ai ≤ aj. For more detail, see Diestel [6, Chapter
12].

3. Lagrangian chain-groups

3.1. Definitions. If W is a vector space with a bilinear form 〈 , 〉 and
W ′ is a subspace of W satisfying

〈x, y〉 = 0 for all x, y ∈ W ′,
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then W ′ is called totally isotropic. A vector v ∈ W is called isotropic
if 〈v, v〉 = 0. A well-known theorem in linear algebra states that if a
bilinear form 〈 , 〉 is non-degenerate in W and W ′ is a totally isotropic
subspace of W , then dim(W ) = dim(W ′) + dim(W ′⊥) ≥ 2 dim(W ′)
because W ′ ⊆ W ′⊥.

Let V be a finite set and F be a field. Let K = F
2 be a two-

dimensional vector space over F. Let b+
((

a
b

)
,
(
c
d

))
= ad + bc and

b−(
(
a
b

)
,
(
c
d

)
) = ad − bc be bilinear forms on K. We assume that K

is equipped with a bilinear form 〈 , 〉K that is either b+ or b−. Clearly
b+ is symmetric and b− is skew-symmetric.

A chain on V to K is a mapping f : V → K. If x ∈ V , the element
f(x) of K is called the coefficient of x in f . If V is nonnull, there is a
zero chain on V whose coefficients are 0. When V is null, we say that
there is just one chain on V to K and we call it a zero chain.

The sum f + g of two chains f , g is the chain on V satisfying (f +
g)(x) = f(x)+g(x) for all x ∈ V . If f is a chain on V to K and λ ∈ F,
the product λf is a chain on V such that (λf)(x) = λf(x) for all x ∈ V .
It is easy to see that the set of all chains on V to K, denoted by KV ,
is a vector space. We give a bilinear form 〈 , 〉 to KV as following:

〈f, g〉 =
∑
x∈V

〈f(x), g(x)〉K .

If 〈f, g〉 = 0, we say that the chains f and g are orthogonal. For a
subspace L of KV , we write L⊥ for the set of all chains orthogonal to
every chain in L.

A chain-group on V toK is a subspace ofKV . A chain-group is called
isotropic if it is a totally isotropic subspace. It is called Lagrangian if
it is isotropic and has dimension |V |. We say a chain-group N is over
a field F if K is obtained from F as described above.

A simple isomorphism from a chain-group N on V to K to another
chain-group N ′ on V ′ to K is defined as a bijective function µ : V → V ′

satisfying that N = {f ◦ µ : f ∈ N ′} where f ◦ µ is a chain on V to
K such that (f ◦ µ)(x) = f(µ(x)) for all x ∈ V . We require both
N and N ′ have the same type of bilinear forms on K, that is either
skew-symmetric or symmetric. A chain-group N on V to K is simply
isomorphic to another chain-group N ′ on V ′ to K if there is a simple
isomorphism from N to N ′.

Remark. Bouchet’s definition [4] of isotropic chain-groups is slightly
more general than ours, since he allows

〈(
a
b

)
,
(
c
d

)〉
K

= −ad ± bc. His

notation, however, is different; he uses FV ′
instead of KV where V ′ is

a union of V and its disjoint copy V ∼. Since K = F
2, two definitions
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are equivalent. Our notation has advantages which we will see in the
next subsection. Bouchet’s notation also has its own virtues because, in
Bouchet’s sense, isotropic chain-groups are Tutte chain-groups. Strictly
speaking, our isotropic chain-groups are not Tutte chain-groups, be-
cause we define chains differently. We are mainly interested in La-
grangian chain-groups because they are closely related to representable
delta-matroids. We note that the notion of Lagrangian chain-groups is
motivated by Tutte’s chain-groups and Bouchet’s isotropic systems [3].

3.2. Minors. Consider a subset T of V . If f is a chain on V to K, we
define its restriction f ·T to T as the chain on T such that (f ·T )(x) =
f(x) for all x ∈ T . For a chain-group N on V ,

N · T = {f · T : f ∈ N}
is a chain-group on T to K. We note that N · T is not necessarily
isotropic, even if N is isotropic. We write

N × T = {f · T : f ∈ N, f(x) = 0 for all x ∈ V \ T}.
For a chain-group N on V , we define

N  T = {f · (V \ T ) : f ∈ N,
〈
f(x),

(
1
0

)〉
K

= 0 for all x ∈ T}.
We call this the deletion. Similarly we define

N � T = {f · (V \ T ) : f ∈ N,
〈
f(x),

(
0
1

)〉
K

= 0 for all x ∈ T}.
We call this the contraction. We refer to a chain-group of the form
N �X  Y on V \ (X ∪ Y ) as a minor of N .

Proposition 3.1. A minor of a minor of a chain-group N on V to K
is a minor of N .

Proof. We can deduce this from the following easy facts.

N �X � Y = N � (X ∪ Y ),

N �X  Y = N  Y �X,

N X  Y = N  (X ∪ Y ). �

Lemma 3.2. Let x, y ∈ K. If x ∈ K is isotropic, x 6= 0, and 〈x, y〉K =
0, then y = cx for some c ∈ F.

Proof. Since 〈 , 〉K is nondegenerate, there exists a vector x′ ∈ K such
that 〈x, x′〉K 6= 0. Hence {x, x′} is a basis of K. Let y = cx + dx′

for some c, d ∈ F. Since 〈x, cx+ dx′〉K = d 〈x, x′〉K = 0, we deduce
d = 0. �

Proposition 3.3. A minor of an isotropic chain-group on V to K is
isotropic.
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Proof. By Lemma 3.2, if
〈
x,
(
1
0

)〉
K

=
〈
y,
(
1
0

)〉
K

= 0, then 〈x, y〉K = 0

and similarly if
〈
x,
(
0
1

)〉
K

=
〈
y,
(
0
1

)〉
K

= 0, then 〈x, y〉K = 0. This
easily implies the lemma. �

We will prove that every minor of a Lagrangian chain-group is La-
grangian in the next section.

3.3. Algebraic duality. For an element v of a finite set V , if N is a
chain-group on V to K and B is a basis of N , then we may assume
that the coefficient at v of every chain in B is zero except at most
two chains in B because dim(K) = 2. So, it is clear that dimensions
of N × (V \ {v}), N · (V \ {v}), N  {v}, and N � {v} are at least
dim(N)− 2. In this subsection, we discuss conditions for those chain-
groups to have dimension dim(N) − 2, dim(N) − 1, or dim(N). Note
that we do not assume that N is isotropic.

Theorem 3.4. If N is a chain-group on V to K and X ⊆ V , then

(N ·X)⊥ = N⊥ ×X.

Proof. (Tutte [25, Theorem VIII.7.]) Let f ∈ (N ·X)⊥. There exists a
chain f1 on V to K such that f1 ·X = f and f1(v) = 0 for all v ∈ V \X.
Since 〈f1, g〉 = 〈f, g ·X〉 = 0 for all g ∈ N , we have f ∈ N⊥ ×X.

Conversely, if f ∈ N⊥ × X, it is the restriction to X of a chain f1
of N⊥ specified as above. Hence 〈f, g ·X〉 = 〈f1, g〉 = 0 for all g ∈ N .
Therefore f ∈ (N ·X)⊥. �

Lemma 3.5. Let N be a chain-group on V to K. If X ∪ Y = V and
X ∩ Y = ∅, then

dim(N ·X) + dim(N × Y ) = dim(N).

Proof. Let ϕ : N → N ·X be a linear transformation defined by ϕ(f) =
f ·X. The kernel ker(ϕ) of this transformation is the set of all chains
f in N having f ·X = 0. Thus, dim(ker(ϕ)) = dim(N ×Y ). Since ϕ is
surjective, we deduce that dim(N ·X) = dim(N)− dim(N × Y ). �

For v ∈ V , let v∗, v∗ be chains on V to K such that

v∗(v) =
(
1
0

)
, v∗(v) =

(
0
1

)
,

v∗(w) = v∗(w) = 0 for all w ∈ V \ {v}.
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Proposition 3.6. Let N be a chain-group on V to K and v ∈ V . Then

dim(N  {v}) =


dimN if v∗ /∈ N, v∗ ∈ N⊥,
dimN − 2 if v∗ ∈ N, v∗ /∈ N⊥,
dimN − 1 otherwise,

dim(N � {v}) =


dimN if v∗ /∈ N, v∗ ∈ N⊥,
dimN − 2 if v∗ ∈ N, v∗ /∈ N⊥,
dimN − 1 otherwise.

Proof. By symmetry, it is enough to show for dim(N  {v}). Let N ′ =
{f ∈ N :

〈
f(v),

(
1
0

)〉
K

= 0}. By definition, N  {v} = N ′ · (V \ {v}).
Observe that N ′ = N if and only if v∗ ∈ N⊥. If N ′ 6= N , then

there is a chain g in N such that
〈
g(v),

(
1
0

)〉
K
6= 0. Then, for every

chain f ∈ N , there exists c ∈ F such that f − cg ∈ N ′. Therefore
dim(N ′) = dimN − 1 if v∗ /∈ N⊥ and dim(N ′) = dimN if v∗ ∈ N⊥.

By Lemma 3.5, dim(N ′·(V \{v})) = dimN ′−dim(N ′×{v}). Clearly,
dim(N ′ × {v}) = 0 if v∗ /∈ N and dim(N ′ × {v}) = 1 if v∗ ∈ N . This
concludes the proof. �

Corollary 3.7. If N is an isotropic chain-group on V to K and M is
a minor of N on V ′, then

|V ′| − dimM ≤ |V | − dimN.

Proof. We proceed by induction on |V \ V ′|. Since N is isotropic,
every minor of N is isotropic by Proposition 3.3. Since v∗ /∈ N \ N⊥
and v∗ /∈ N \ N⊥, dim(N) − dim(N  {v}) ∈ {0, 1} and dim(N) −
dim(N �{v}) ∈ {0, 1}. So |V \{v}|−dim(N {v}) ≤ |V |−dimN and
|V \ {v}| − dim(N � {v}) ≤ |V | − dimN . Since M is a minor of either
N  {v} or N � {v}, |V ′| − dimM ≤ |V | − dimN by the induction
hypothesis. �

Proposition 3.8. A minor of a Lagrangian chain-group is Lagrangian.

Proof. Let N be a Lagrangian chain-group on V to K and N ′ be its
minor on V ′ to K. By Proposition 3.3, N ′ is isotropic and therefore
dim(N ′) ≤ |V ′|. Thus it is enough to show that dim(N ′) ≥ |V ′|. Since
dim(N) = |V |, it follows that dim(N ′) ≥ |V ′| by Corollary 3.7. �

Theorem 3.9. If N is a chain-group on V to K and X ⊆ V , then

(N X)⊥ = N⊥ X and (N �X)⊥ = N⊥ �X.

Proof. By symmetry, it is enough to show that (N X)⊥ = N⊥ X.
By induction, we may assume |X| = 1. Let v ∈ X.
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Let f be a chain in N⊥  X. There is a chain f1 ∈ N⊥ such that
f1 · (V \X) = f and

〈
f1(v),

(
1
0

)〉
K

= 0. Let g ∈ N be a chain such that〈
g(v),

(
1
0

)〉
K

= 0. Then 〈f1(v), g(v)〉K = 0 by Lemma 3.2. Therefore

〈f, g · (V \X)〉 = 〈f1, g〉 = 0 and so f ∈ (N X)⊥. We conclude that
N⊥ X ⊆ (N X)⊥.

We now claim that dim(N⊥X) = dim(N X)⊥. We apply Propo-
sition 3.6 to deduce that

dim(N X)− dim(N) =


0 if v∗ /∈ N, v∗ ∈ N⊥,
−2 if v∗ ∈ N, v∗ /∈ N⊥,
−1 otherwise,

dim(N⊥ X)− dim(N⊥) =


0 if v∗ /∈ N⊥, v∗ ∈ N,
−2 if v∗ ∈ N⊥, v∗ /∈ N,
−1 otherwise.

By summing these equations, we obtain the following:

dim(N X)− dim(N) + dim(N⊥ X)− dim(N⊥) = −2.

Since dim(N) + dim(N⊥) = 2|V | and dim(N X) + dim(N X)⊥ =
2(|V | − 1), we deduce that dim(N⊥ X) = dim(N X)⊥.

Since N⊥ X ⊆ (N X)⊥ and dim(N⊥ X) = dim(N X)⊥, we
conclude that N⊥ X = (N X)⊥. �

3.4. Connectivity. We define the connectivity of a chain-group. Later
it will be shown that this definition is related to the connectivity func-
tion of matroids (Lemma 8.5) and rank functions of matrices (Theo-
rem 4.13).

Let N be a chain-group on V to K. If U is a subset of V , then we
write

λN(U) =
dimN − dim(N × (V \ U))− dim(N × U)

2
.

This function λN is called the connectivity function of a chain-group N .
By Lemma 3.5, we can rewrite λN as follows:

λN(U) =
dim(N · U)− dim(N × U)

2
.

From Theorem 3.4, it is easy to derive that λN⊥(U) = λN(U).
In general λN(X) need not be an integer. But if N is Lagrangian,

then λN(X) is always an integer by the following lemma.

Lemma 3.10. If N is a Lagrangian chain-group on V to K, then

λN(X) = |X| − dim(N ×X)
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for all X ⊆ V .

Proof. From the definition of λN(X),

2λN(X) = dim(N ·X)− dim(N ×X)

= 2|X| − dim(N ·X)⊥ − dim(N ×X)

= 2|X| − dim(N⊥ ×X)− dim(N ×X),

and since N = N⊥, we have

= 2(|X| − dim(N ×X)). �

By definition, it is easy to see that λN(U) = λN(V \U). Thus λN is
symmetric. We prove that λN is submodular.

Lemma 3.11. Let N be a chain-group on V to K and X, Y be two
subsets of V . Then,

dim(N × (X ∪ Y )) + dim(N × (X ∩ Y )) ≥ dim(N ×X) + dim(N × Y ).

Proof. For T ⊆ V , let NT = {f ∈ N : f(v) = 0 for all v /∈ T}. Let
NX +NY = {f +g : f ∈ NX , g ∈ NY }. We know that dim(NX +NY )+
dim(NX ∩ NY ) = dimNX + dimNY from a standard theorem in the
linear algebra. Since NX ∩ NY = NX∩Y and NX + NY ⊆ NX∪Y , we
deduce that

dimNX∪Y + dimNX∩Y ≥ dimNX + dimNY .

Since dimNT = dim(N × T ), we are done. �

Theorem 3.12 (Submodular inequality). Let N be a chain-group on
V to K. Then λN is submodular; in other words,

λN(X) + λN(Y ) ≥ λN(X ∪ Y ) + λN(X ∩ Y )

for all X, Y ⊆ V .

Proof. We use Lemma 3.11. Let S = V \X and T = V \ Y .

2λN(X) + 2λN(Y )

= 2 dim(N)

− (dim(N ×X) + dim(N × S) + dim(N × Y ) + dim(N × T ))

≥ 2 dim(N)− dim(N × (X ∪ Y ))− dim(N × (X ∩ Y ))

− dim(N × (S ∩ Y ))− dim(N × (S ∪ Y ))

= 2λN(X ∪ Y ) + 2λN(X ∩ Y ). �

What happens to the connectivity functions if we take minors of
a chain-group? As in the matroid theory, the connectivity does not
increase.
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Theorem 3.13. Let N , M be chain-groups on V , V ′ respectively. If
M is a minor of a chain-group N , then λM(T ) ≤ λN(T ∪ U) for all
T ⊆ V ′ and all U ⊆ V \ V ′.

Proof. By induction on |V \ V ′|, it is enough to prove this when |V \
V ′| = 1. Let v ∈ V \ V ′. By symmetry we may assume that M =
N  {v}.

We claim that λM(T ) ≤ λN(T ). From the definition, we deduce

2λM(T )− 2λN(T ) = dim(N  {v} · T )− dim(N  {v} × T )

− dim(N · T ) + dim(N × T ).

Clearly N  {v} · T ⊆ N · T and N × T ⊆ N  {v} × T . Thus
λM(T ) ≤ λN(T ).

Since λN and λM are symmetric, λM(T ) = λM(V ′\T ) ≤ λN(V ′\T ) =
λN(T ∪ {v}). �

3.5. Branch-width. A branch-decomposition of a chain-group N on
V to K is a pair (T,L) of a subcubic tree T and a bijection L : V →
{t : t is a leaf of T}. For each edge e = uv of the tree T , the connected
components of T \ e form a partition (Xe, Ye) of the leaves of T and we
call λN(L−1(Xe)) the width of e. The width of a branch-decomposition
(T,L) is the maximum width of all edges of T . The branch-width
bw(N) of a chain-group N is the minimum width of all its branch-
decompositions. (If |V | ≤ 1, then we define that bw(N) = 0.)

4. Matrix Representations of Lagrangian Chain-groups

4.1. Matrix Representations. We say that two chains f and g on
V to K are supplementary if, for all x ∈ V ,

(i) 〈f(x), f(x)〉K = 〈g(x), g(x)〉K = 0 and
(ii) 〈f(x), g(x)〉K = 1.

Given a skew-symmetric or symmetric matrix A, we may construct a
Lagrangian chain-group as follows.

Proposition 4.1. Let M = (mij : i, j ∈ V ) be a skew-symmetric or
symmetric V×V matrix over a field F. Let a, b be supplementary chains
on V to K = F

2 where 〈 , 〉K is skew-symmetric if M is symmetric and
symmetric if M is skew-symmetric.

For i ∈ V , let fi be a chain on V to K such that for all j ∈ V ,

fi(j) =

{
mija(j) + b(j) if j = i,

mija(j) if j 6= i.
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Then the subspace N of KV spanned by chains {fi : i ∈ V } is a La-
grangian chain-group on V to K.

If M is a skew-symmetric or symmetric matrix and a, b are sup-
plementary chains on V to K, then we call (M,a, b) a (general) ma-
trix representation of a Lagrangian chain-group N . Furthermore if
a(v), b(v) ∈ {±

(
1
0

)
,±
(
0
1

)
} for each v ∈ V , then (M,a, b) is called a

special matrix representation of N .

Proof. For all i ∈ V ,

〈fi, fi〉 =
∑
j∈V

〈fi(j), fi(j)〉K = mii(〈a(i), b(i)〉K + 〈b(i), a(i)〉K) = 0,

because either mii = 0 (if M is skew-symmetric) or 〈 , 〉K is skew-
symmetric.

Now let i and j be two distinct elements of V . Then,

〈fi, fj〉 = 〈fi(i), fj(i)〉K + 〈fi(j), fj(j)〉K
= mji 〈b(i), a(i)〉K +mij 〈a(j), b(j)〉K
= 0,

because either mij = −mji and 〈b(i), a(i)〉K = 〈a(j), b(j)〉K or mij =
mji and 〈b(i), a(i)〉K = −〈a(j), b(j)〉K .

It is easy to see that {fi : i ∈ V } is linearly independent and therefore
dim(N) = |V |. This proves that N is a Lagrangian chain-group. �

4.2. Eulerian chains. A chain a on V to K is called a (general) euler-
ian chain of an isotropic chain-group N if

(i) a(x) 6= 0, 〈a(x), a(x)〉K = 0 for all x ∈ V and
(ii) there is no non-zero chain f ∈ N such that 〈f(x), a(x)〉K = 0 for

all x ∈ V .

A general eulerian chain a is a special eulerian chain if for all v ∈
V , a(v) ∈ {±

(
1
0

)
,±
(
0
1

)
}. It is easy to observe that if (M,a, b) is a

general (special) matrix representation of a Lagrangian chain-group
N , then a is a general (special) eulerian chain of N . We will prove
that every general eulerian chain of a Lagrangian chain-group induces
a matrix representation. Before proving that, we first show that every
Lagrangian chain-group has a special eulerian chain.

Proposition 4.2. Every isotropic chain-group has a special eulerian
chain.

Proof. Let N be an isotropic chain-group on V to K = F
2. We proceed

by induction on |V |. We may assume that dim(N) > 0. Let v ∈ V .
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If |V | = 1, then dim(N) = 1. Then either v∗ or v∗ is a special
eulerian chain.

Now let us assume that |V | > 1. Let W = V \ {v}. Both N  {v}
and N � {v} are isotropic chain-groups on W to K. By the induction
hypothesis, both N  {v} and N � {v} have special eulerian chains a′1,
a′2, respectively, on W to K such that a′i(x) ∈ {

(
1
0

)
,
(
0
1

)
} for all x ∈ W .

Let a1, a2 be chains on V to K such that a1(v) =
(
1
0

)
, a2(v) =

(
0
1

)
,

and ai · W = a′i for i = 1, 2. We claim that either a1 or a2 is a
special eulerian chain of N . Suppose not. For each i = 1, 2, there is a
nonzero chain fi ∈ N such that 〈fi(x), ai(x)〉K = 0 for all x ∈ V . By
construction f1 ·W ∈ N  {v} and f2 ·W ∈ N � {v}. Since a′1, a

′
2 are

special eulerian chains of N  {v} and N � {v}, respectively, we have
f1 ·W = f2 ·W = 0.

Since fi 6= 0, by Lemma 3.2, f1 = c1v
∗ and f2 = c2v∗ for some

nonzero c1, c2 ∈ F. Then 〈f1, f2〉 = 〈f1(v), f2(v)〉K = c1c2 6= 0, contra-
dictory to the assumption that N is isotropic. �

Proposition 4.3. Let N be a Lagrangian chain-group on V to K and
let a be a general eulerian chain of N and let b be a chain supplementary
to a.

(1) For every v ∈ V , there exists a unique chain fv ∈ N satisfying
the following two conditions.

(i) 〈a(v), fv(v)〉K = 1,
(ii) 〈a(w), fv(w)〉K = 0 for all w ∈ V \ {v}.

Moreover, {fv : v ∈ V } is a basis of N . This basis is called the
fundamental basis of N with respect to a.

(2) If 〈 , 〉K is symmetric and either the characteristic of F is not 2
or fv(v) = b(v) for all v ∈ V , then M = (〈fi(j), b(j)〉K : i, j ∈
V ) is a skew-symmetric matrix such that (M,a, b) is a general
matrix representation of N .

(3) If 〈 , 〉K is skew-symmetric, M = (〈fi(j), b(j)〉K : i, j ∈ V )
is a symmetric matrix such that (M,a, b) is a general matrix
representation of N .

Proof. Existence in (1): For each x ∈ V , let gx be a chain on V to K
such that gx(x) = a(x) and gx(y) = 0 for all y ∈ V \ {x}. Let W be
a chain-group spanned by {gx : x ∈ V }. It is clear that dim(W ) =
|V |. Let N + W = {f + g : f ∈ N, g ∈ W}. Since a is eulerian,
N ∩W = {0} and therefore dim(N +W ) = dim(N) + dim(W ) = 2|V |,
because N is Lagrangian. We conclude that N + W = KV . Let hv
be a chain on V to K such that 〈a(v), hv(v)〉K = 1 and hv(w) = 0
for all w ∈ V \ {v}. We express hv = fv + g for some fv ∈ N and
g ∈ W . Then 〈a(v), fv(v)〉K = 〈a(v), hv(v)〉K − 〈a(v), g(v)〉K = 1



RANK-WIDTH AND WELL-QUASI-ORDERING 15

and 〈a(w), fv(w)〉K = 〈a(w), hv(w)〉K − 〈a(w), g(w)〉K = 0 for all w ∈
V \ {v}.

Uniqueness in (1): Suppose that there are two chains fv and f ′v in N
satisfying two conditions (i), (ii) in (1). Then 〈a(v), fv(v)− f ′v(v)〉K =
0. By Lemma 3.2, there exists c ∈ F such that fv(v) − f ′v(v) = ca(v).
Let f = fv − f ′v ∈ N . Then 〈a(w), f(w)〉K = 0 for all w ∈ V . Since a
is eulerian, f = 0 and therefore fv = f ′v.

Being a basis in (1): We claim that {fv : v ∈ V } is linearly in-
dependent. Suppose that

∑
w∈V cwfw = 0 for some cw ∈ F. Then

cv =
∑

w∈V cw 〈a(v), fw(v)〉K = 0 for all v ∈ V .

Constructing a matrix for (2) and (3): Let i, j ∈ V . By (ii) and
Lemma 3.2, there exists mij ∈ F such that fi(j) = mija(j) if i 6= j
and fi(i) − b(i) = miia(i). Then, 〈fi(j), b(j)〉K = mij for all i, j ∈ V .
Therefore M = (mij : i, j ∈ V ).

Since N is isotropic,

〈fi, fj〉 =
∑
v∈V

〈fi(v), fj(v)〉K = 0

and we deduce that 〈fi(i), fj(i)〉K + 〈fi(j), fj(j)〉K = 0 if i 6= j and
〈fi(i), fi(i)〉K = 0. This implies that

mji 〈b(i), a(i)〉K +mij 〈a(j), b(j)〉K = 0 for all i, j ∈ V.
If 〈 , 〉K is skew-symmetric, then 〈b(i), a(i)〉K = −1 and therefore

mji = mij.
If 〈 , 〉K is symmetric, then 〈b(i), a(i)〉K = 1 and so mji = −mij.

This also imply that mii = 0 if the characteristic of F is not 2. If the
characteristic of F is 2, then we assumed that fi(i) = b(i) and therefore
mii = 0. Note that 〈fi(i), fi(i)〉K = 0 and therefore the chain b with
b(i) = fi(i) for all i ∈ V is supplementary to a.

It is easy to observe that (M,a, b) is a general matrix representation
of N because a, b are supplementary and fi(j) = mija(j) + b(j) if
i = j ∈ V and fi(j) = mija(j) if i 6= j. �

Proposition 4.4. Let (M,a, b) be a special matrix representation of a
Lagrangian chain-group N on V to K = F

2. Suppose that a′ is a chain
such that a′(v) ∈ {±

(
1
0

)
,±
(
0
1

)
} for all v ∈ V . Then a′ is special eulerian

if and only if M [Y ] is nonsingular for Y = {x ∈ V : a′(x) 6= ±a(x)}.

Proof. Let M = (mij : i, j ∈ V ). Let fi ∈ N be a chain such that
fi(j) = mija(j) if j 6= i and fi(i) = miia(i) + b(i).

We first prove that if M [Y ] is nonsingular, then f is special eulerian.
Suppose that there is a chain f ∈ N such that 〈f(x), a′(x)〉K = 0
for all x ∈ V . We may express f as a linear combination

∑
i∈V cifi
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with some ci ∈ F. If j /∈ Y , then a′(j) = ±a(j) and 〈f(j), a(j)〉K =
cj 〈b(j), a(j)〉K = 0 and therefore cj = 0 for all j /∈ Y .

If j ∈ Y , then a′(j) = ±b(j) and so

〈f(j), b(j)〉K =
∑
i∈Y

cimij 〈a(j), b(j)〉K =
∑
i∈Y

cimij = 0.

Since M [Y ] is invertible, the only solution {ci : i ∈ Y } satisfying the
above linear equation is zero. So ci = 0 for all i ∈ V and therefore
f = 0, meaning that a′ is special eulerian.

Conversely suppose that M [Y ] is singular. Then there is a linear
combination of rows in M [Y ] whose sum is zero. Thus there is a non-
zero linear combination

∑
i∈Y cifi such that〈∑

i∈Y

cifi(x), b(x)

〉
K

= 0 for all x ∈ Y.

Clearly
〈∑

i∈Y cifi(x), a(x)
〉
K

= 0 for all x /∈ Y . Since at least one
ci is non-zero,

∑
i∈Y cifi is non-zero. Therefore a′ can not be special

eulerian. �

For a subset Y of V , let IY be a V × V indicator diagonal matrix
such that each diagonal entry corresponding to Y is −1 and all other
diagonal entries are 1.

Proposition 4.5. Suppose that (M,a, b) is a special matrix represen-
tation of a Lagrangian chain-group N on V to K = F

2. Let Y ⊆ V .
Assume that M [Y ] is nonsingular.

(1) If 〈 , 〉K is symmetric, then (M ∗Y, a′, b′) is another special ma-
trix representation of N where M ∗ Y is skew-symmetric and

a′(v) =

{
a(v) if v /∈ Y,
b(v) otherwise,

b′(v) =

{
b(v) if v /∈ Y,
a(v) otherwise.

(2) If 〈 , 〉K is skew-symmetric, then (IY (M ∗ Y ), a′, b′) is another
special matrix representation of N where IY (M ∗Y ) is symmet-
ric and

a′(v) =

{
a(v) if v /∈ Y,
b(v) otherwise,

b′(v) =

{
b(v) if v /∈ Y,
−a(v) otherwise.

Proof. Let M = (mij : i, j ∈ V ). For each i ∈ V , let fi ∈ N be a chain
such that fi(j) = mija(j) if j 6= i and fi(i) = mija(j) + b(j) if j = i.
Since (M,a, b) is a special matrix representation of N , {fi : i ∈ V } is
a fundamental basis of N .
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Proposition 4.4 implies that a′ is eulerian. According to Proposi-
tion 4.3, we should be able to construct a special matrix representation
with respect to the eulerian chain a′. To do so, we first construct the
fundamental basis {gv : v ∈ V } of N with respect to a′.

Suppose that for each x ∈ V , gx =
∑

i∈V cxifi for some cxi ∈ F. By
definition, 〈a′(x), gx(x)〉K = 1 and 〈a′(j), gx(j)〉K = 0 for all j 6= x.
Then

〈a′(j), gx(j)〉K =

{∑
i∈V cximij 〈b(j), a(j)〉K , if j ∈ Y,

cxj. if j /∈ Y.

Suppose that x ∈ Y . If j ∈ Y , then∑
i∈Y

cximij 〈b(j), a(j)〉K =

{
1 if x = j,

0 if x 6= j.

Let (m′ij : i, j ∈ Y ) = (M [Y ])−1. Then cxi is given by the row of

x in (M [Y ])−1; in other words, if x, i ∈ Y , then cxi = m′xi if 〈 , 〉K is
symmetric and cxi = −m′xi otherwise. If x ∈ Y and i /∈ Y , then cxi = 0.

If x /∈ Y , then clearly cxx = 1 and cxi = 0 for all i ∈ V \ (Y ∪ {x}).
If j ∈ Y , then

∑
i∈Y cximij 〈b(j), a(j)〉K + cxxmxj 〈b(j), a(j)〉K = 0

and therefore
∑

i∈Y cximij = −mxj. For each k in Y , we have cxk =∑
i∈Y cxi

∑
j∈Y mijm

′
jk =

∑
j∈Y m

′
jk

∑
i∈Y cximij = −

∑
j∈Y m

′
jkmxj and

therefore for x /∈ Y and i ∈ Y , cxi = −
∑

j∈Y mxjm
′
ji

We determined the fundamental basis {gx : x ∈ V } with respect to
a′. We now wish to compute the matrix according to Proposition 4.3.
Let us compute 〈gx(y), b′(y)〉K .

If x, y ∈ Y , then〈∑
i∈Y

cxifi(y), b′(y)

〉
K

= cxy 〈b(y), b′(y)〉K = cxy =

{
m′xy if 〈 , 〉K is symmetric,

−m′xy if 〈 , 〉K is skew-symmetric.

If x ∈ Y and y /∈ Y , then〈∑
i∈Y

cxifi(y), b′(y)

〉
K

=
∑
i∈Y

cximiy 〈a(y), b(y)〉K

=

{∑
i∈Y m

′
ximiy. if 〈 , 〉K is symmetric,

−
∑

i∈Y m
′
ximiy. if 〈 , 〉K is skew-symmetric.



18 SANG-IL OUM

If x /∈ Y and y ∈ Y , then〈∑
i∈Y

cxifi(y) + fx(y), b′(y)

〉
K

= cxy = −
∑
j∈Y

mxjm
′
jy.

If x /∈ Y and y /∈ Y , then〈∑
i∈Y

cxifi(y) + fx(y), b′(y)

〉
K

= −
∑
i,j∈Y

mxjm
′
jimiy +mxy

If 〈 , 〉K is symmetric and the characteristic of F is 2, then we need
to ensure that M has no non-zero diagonal entries by verifying the
additional assumption in (2) of Proposition 4.3 asking that b′(x) =
gx(x) for all x ∈ V . It is enough to show that

〈gx(x), b′(x)〉K = 0 for all x ∈ V,

because, if so, then 〈a′(x), b′(x)〉K = 1 = 〈a′(x), gx(x)〉K implies that
gx(x) = b′(x). Since M [Y ] is skew-symmetric, so is its inverse and
therefore m′xx = 0 for all x ∈ Y . Furthermore, for each i, j ∈ Y and x ∈
V \Y , we have mxjm

′
jimix = −mxim

′
ijmjx because M and (M [Y ])−1 are

skew-symmetric and therefore
∑

i,j∈Y mxjm
′
jimix = 0. Thus gx(x) =

b′(x) for all x ∈ V if 〈 , 〉K is symmetric and the characteristic of F is
2.

We conclude that the matrix (〈gi(j), b′(j)〉K : i, j ∈ V ) is indeed
M ∗Y if 〈 , 〉K is symmetric or (IY )(M ∗Y ) if 〈 , 〉K is skew-symmetric.
This concludes the proof. �

A matrix M is called a fundamental matrix of a Lagrangian chain-
group N if (M,a, b) is a special matrix representation of N for some
chains a and b. We aim to characterize when two matrices M and M ′

are fundamental matrices of the same Lagrangian chain-group.

Theorem 4.6. Let M and M ′ be V ×V skew-symmetric or symmetric
matrices over F. The following are equivalent.

(i) There is a Lagrangian chain-group N such that both (M,a, b) and
(M ′, a′, b′) are special matrix representations of N for some chains
a, a′, b, b′.

(ii) There is Y ⊆ V such that M [Y ] is nonsingular and

M ′ =

{
D(M ∗ Y )D if 〈 , 〉K is symmetric,

DIY (M ∗ Y )D if 〈 , 〉K is skew-symmetric

for some diagonal matrix D whose diagonal entries are ±1.
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Proof. To prove (i) from (ii), we use Proposition 4.5. Let a(v) =
(
1
0

)
and b(v) =

(
0
1

)
for all v ∈ V . Let N be the Lagrangian chain-group

with the special matrix representation (M,a, b). Let M0 = M ∗ Y if
〈 , 〉K is symmetric and M0 = IY (M ∗Y ) if 〈 , 〉K is skew-symmetric. By
Proposition 4.5, there are chains a0, b0 so that (M0, a0, b0) is a special
matrix representation of N . Let Z be a subset of V such that IZ = D.
For each v ∈ V , let

a′(v) =

{
−a0(v) if v ∈ Z,
a0(v) if v /∈ Z,

b′(v) =

{
−b0(v) if v ∈ Z,
b0(v) if v /∈ Z.

Then a′, b′ are supplementary and (M ′, a′, b′) is a special matrix repre-
sentation of N because M ′ = DM0D.

Now let us assume (i) and prove (ii). Let Y = {x ∈ V : a′(x) 6=
±a(x)}. Since a′ is a special eulerian chain of N , M [Y ] is nonsingular
by Proposition 4.4. By replacing M with M ∗ Y if 〈 , 〉K is symmet-
ric, or IY (M ∗ Y ) if 〈 , 〉K is skew-symmetric, we may assume that
Y = ∅. Thus a′(x) = ±a(x) and b′(x) = ±b(x) for all x ∈ V . Let
Z = {x ∈ V : a′(x) = −a(x)} and D = IZ . Since 〈a′(x), b′(x)〉K = 1,
b′(x) = −b(x) if and only if x ∈ Z. Then (DMD, a′, b′) is a special ma-
trix representation of N , because the fundamental basis generated by
(DMD, a′, b′) spans the same subspace N spanned by the fundamental
basis generated by (M,a, b). We now have two special matrix represen-
tations (M ′, a′, b′) and (DMD, a′, b′). By Proposition 4.3, M ′ = DMD
because of the uniqueness of the fundamental basis with respect to a′.
This concludes the proof. �

Negating a row or a column of a matrix is to multiply −1 to each
of its entries. Obviously a matrix obtained by negating some rows and
columns of a V ×V matrix M is of the form IXMIY for some X, Y ⊆ V .
We now prove that the order of applying pivots and negations can be
reversed.

Lemma 4.7. Let M be a V × V matrix and let Y be a subset of V
such that M [Y ] is nonsingular. Let M ′ be a matrix obtained from M
by negativing some rows and columns. Then M ′ ∗ Y can be obtained
from M ∗ Y by negating some rows and columns. (See Figure 4.2.)

Proof. More generally we write M and M ′ as follows:

M =

(Y V \ Y
Y A B
V \ Y C D

)
, M ′ =

( Y V \ Y
Y JAK JBL
V \ Y UCK UDL

)
,
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M
pivot−−−→ M ∗ Y

negating some
rows and columns

y y negating some
rows and columns

M ′ pivot−−−→ M ′ ∗ Y

Figure 1. Commuting pivots and negations

for some nonsingular diagonal matrices J , K, L, U . Then

M ∗ Y =

(
A−1 A−1B
−CA−1 D − CA−1B

)
,

M ′ ∗ Y =

(
K−1A−1J−1 K−1A−1J−1JBL

−UCKK−1A−1J−1 UDL− UCKK−1A−1J−1JBL

)
=

(
K−1(A−1)J−1 K−1(A−1B)L
U(−CA−1)J−1 U(D − CA−1B)L

)
.

This lemma follows because we can set J , K, L, U to be diagonal
matrices with ±1 on the diagonal entries and then M ′ ∗ Y can be
obtained from M ∗ Y by negating some rows and columns. �

4.3. Minors. Suppose that (M,a, b) is a special matrix representation
of a Lagrangian chain-group N . We will find special matrix represen-
tations of minors of N .

Lemma 4.8. Let (M,a, b) be a special matrix representation of a La-
grangian chain-group N on V to K = F

2. Let v ∈ V and T = V \ {v}.
Suppose that a(v) = ±

(
1
0

)
.

(1) The triple (M [T ], a · T, b · T ) is a special matrix representation
of N  {v}.

(2) There is Y ⊆ V such that M [Y ] is nonsingular and (M ′[T ], a′ ·
T, b′ · T ) is a special matrix representation of N � {v}, where

M ′ =

{
M ∗ Y if 〈 , 〉K is symmetric,

(IY )(M ∗ Y ) if 〈 , 〉K is skew-symmetric,

and a′ and b′ are given by Proposition 4.5.

Proof. Let M = (mij : i, j ∈ V ) and for each i ∈ V , let fi ∈ N be a
chain as it is defined in Proposition 4.1.

(1): We know that fi · T ∈ N  {v} for all i 6= v. Since a is eulerian,
v∗ /∈ N and therefore {fi · T : i ∈ T} is linearly independent. Then
{fi · T : i ∈ T} is a basis of N  {v}, because dim(N  {v}) = |T | =
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|V | − 1. Now it is easy to verify that (M [T ], a · T, b · T ) is a special
matrix representation of N  {v}.

(2): If miv = mvi = 0 for all i ∈ V , then we may simply replace
a(v) with ±

(
0
1

)
and b(v) with ±

(
1
0

)
without changing the Lagrangian

chain-group N . In this case, we simply apply (1) to deduce that Y = ∅
works.

Otherwise, there exists Y ⊆ V such that v ∈ Y and M [Y ] is non-
singular because M is skew-symmetric or symmetric. We apply M ∗ Y
to get (M ′, a′, b′) as an alternative special matrix representation of N
by Proposition 4.5. Then a′(v) = ±

(
0
1

)
and then we apply (1) to

(M ′, a′, b′). �

Theorem 4.9. For i = 1, 2, let Mi be a fundamental matrix of a La-
grangian chain-group Ni on Vi to K = F

2. If N1 is simply isomorphic
to a minor of N2, then M1 is isomorphic to a principal submatrix of
a matrix obtained from M2 by taking a pivot and negating some rows
and columns.

Proof. Since K is shared by N1 and N2, M1 and M2 are skew-symmetric
if 〈 , 〉K is symmetric and symmetric if 〈 , 〉K is skew-symmetric.

We may assume that N1 is a minor of N2 and V1 ⊆ V2. Then
by Lemmas 4.7 and 4.8, N1 has a fundamental matrix M ′ that is a
principal submatrix of a matrix obtained from M by taking a pivot
and negativing some rows if necessary. Then both M ′ and M1 are
fundamental matrices of N1. By Theorem 4.6, there is a method to get
M1 from M ′ by applying a pivot and negating some rows and columns
if necessary. �

4.4. Representable Delta-matroids. Theorem 2.1 implies the fol-
lowing proposition.

Proposition 4.10. Let A, B be skew-symmetric or symmetric matri-
ces over a field F. If A is a principal submatrix of a matrix obtained
from B by taking a pivot and negating some rows and columns, then
the delta-matroid M(A) is a minor of M(B).

Bouchet [4] showed that there is a natural way to construct a delta-
matroid from an isotropic chain-group.

Theorem 4.11 (Bouchet [4]). Let N be an isotropic chain-groups N
on V to K. Let a and b be supplementary chains on V to K. Let

F = {X ⊆ V :there is no non-zero chain f ∈ N
such that 〈f(x), a(x)〉K = 0 for all x ∈ V \X

and 〈f(x), b(x)〉K = 0 for all x ∈ X.}
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Then, M = (V,F) is a delta-matroid.

The triple (N, a, b) given as above is called the chain-group represen-
tation of the delta-matroidM. In addition, if a(v), b(v) ∈ {±

(
1
0

)
,±
(
0
1

)
},

then (N, a, b) is called the special chain-group representation of M.
We remind you that a delta-matroidM is representable over a field

F if M = M(A)∆Y for some skew-symmetric or symmetric V × V
matrix A over F and a subset Y of V where M(A) = (V,F) where
F = {Y : A[Y ] is nonsingular}.

Suppose that N is a Lagrangian chain-group represented by a special
matrix representation (M,a, b). Then (N, a, b) induces a delta-matroid
M by the above theorem. Proposition 4.4 characterizes all the special
eulerian chains in terms of the singularity of M [Y ] and special eulerian
chains coincide with the feasible sets of M given by Theorem 4.11.
In other words, Y is feasible in M if and only if a chain a′ is special
eulerian in N when a(v) = a′(v) if v ∈ Y and a′(v) = b(v) if v /∈ Y .

Then twisting operationsM∆Y on delta-matroids can be simulated
by swapping supplementary chains a(x) and b(x) for x ∈ Y in the
chain-group representation as it is in Proposition 4.5. Thus we can
alternatively define representable delta-matroids as follows.

Theorem 4.12. A delta-matroid on V is representable over a field F
if and only if it admits a special chain-group representation (N, a, b)
for a Lagrangian chain-group N on V to K = F

2 and special supple-
mentary chains a, b on V to K where 〈 , 〉K is either skew-symmetric
or symmetric.

4.5. Connectivity. When the rank-width of matrices is defined, the
function rankM [X, V \ X] is used to describe how complex the con-
nection between X and V \ X is. In this subsection, we express
rankM [X, V \ X] in terms of a Lagrangian chain-group represented
by M .

Theorem 4.13. Let M be a skew-symmetric or symmetric V ×V ma-
trix over a field F. Let N be a Lagrangian chain-group on V to K = F

2

such that (M,a, b) is a matrix representation of N with supplementary
chains a and b on V to K. Then,

rankM [X, V \X] = λN(X) = |X| − dim(N ×X).

Proof. Let M = (mij : i, j ∈ V ). As we described in Proposition 4.1,
we let fi(j) = mija(j) if j ∈ V \ {i} and fi(i) = mii + b(i). We know
that {fi : i ∈ V } is a fundamental basis of N . Let A = M [X, V \X].
We have rankA = rankAt = |X| − nullity(At), where the nullity of At

is dim({x ∈ FX : Atx = 0}), that is eqaul to dim({x ∈ FX : xtA = 0}).
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Let ϕ : FV → N be a linear transformation with ϕ(p) =
∑

v∈V p(v)fv.
Then, ϕ is an isomorphism and therefore we have the following:

dim(N ×X) = dim({y ∈ N : y(j) = 0 for all j ∈ V \X})
= dim(ϕ−1({y ∈ N : y(j) = 0 for all j ∈ V \X}))

= dim({x ∈ FV :
∑
i∈V

x(i)fi(j) = 0 for all j ∈ V \X})

= dim({x ∈ FX :
∑
i∈X

x(i)mij = 0 for all j ∈ V \X})

= dim({x ∈ FX : xtA = 0})
= nullity(At).

We deduce that rankA = |X| − dim(N ×X). �

The above theorem gives the following corollaries.

Corollary 4.14. Let F be a field and let N be a Lagrangian chain-
group on V to K = F

2. If M1 and M2 are two fundamental matrices
of N , then rankM1[X, V \X] = rankM2[X, V \X] for all X ⊆ V .

Corollary 4.15. Let M be a skew-symmetric or symmetric V × V
matrix over a field F. Let N be a Lagrangian chain-group on V to
K = F

2 such that (N, a, b) is a matrix representation of N . Then the
rank-width of M is equal to the branch-width of N .

5. Generalization of Tutte’s linking theorem

We prove an analogue of Tutte’s linking theorem [23] for Lagrangian
chain-groups. Tutte’s linking theorem is a generalization of Menger’s
theorem of graphs to matroids. Robertson and Seymour [14] uses
Menger’s theorem extensively for proving well-quasi-ordering of graphs
of bounded tree-width. When generalizing this result to matroids, Gee-
len, Gerards, and Whittle [8] used Tutte’s linking theorem for matroids.
To further generalize this to Lagrangian chain-groups, we will need a
generalization of Tutte’s linking theorem for Lagrangian chain-groups.

A crucial step for proving this is to ensure that the connectivity
function behaves nicely on one of two minors N {v} and N �{v} of a
Lagrangian chain-group N . The following inequality was observed by
Bixby [1] for matroids.

Proposition 5.1. Let v ∈ V . Let N be a chain-group on V to K = F
2

and let X, Y ⊆ V \ {v}. Then,

λN{v}(X) + λN�{v}(Y ) ≥ λN(X ∩ Y ) + λN(X ∪ Y ∪ {v})− 1.
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We first prove the following lemma for the above proposition.

Lemma 5.2. Let v ∈ V . Let N be a chain-group on V to K = F
2 and

let X, Y ⊆ V \ {v}. Then,

dim(N × (X ∩ Y )) + dim(N × (X ∪ Y ∪ {v}))
≥ dim((N  {v})×X) + dim((N � {v})× Y ).

Moreover, the equality does not hold if v∗ ∈ N or v∗ ∈ N .

Proof. We may assume that V = X ∪ Y ∪ {v}. Let

N1 =
{
f ∈ N :

〈
f(v),

(
1
0

)〉
K

= 0, f(x) = 0 for all x ∈ V \X \ {v}
}
,

N2 =
{
f ∈ N :

〈
f(v),

(
0
1

)〉
K

= 0, f(x) = 0 for all x ∈ V \ Y \ {v}
}
.

We use the fact that dim(N1+N2)+dim(N1∩N2) = dim(N1)+dim(N2).
It is easy to see that if f ∈ N1 ∩ N2, then f(v) = 0 and therefore
(N1∩N2)·(X∩Y ) = N×(X∩Y ) and dim(N1∩N2) = dim(N×(X∩Y )).
Moreover, N1 + N2 ⊆ N and therefore dim(N) ≥ dim(N1 + N2). It is
clear that dim(N{v}×X) ≤ dimN1 and dim(N�{v}×X) ≤ dimN2.
Therefore we conclude that dim(N × (X ∩ Y )) + dimN ≥ dim(N 
{v} ×X) + dim(N � {v} × Y ).

If v∗ ∈ N , then dim(N  {v} × X) < dimN1 and therefore the
equality does not hold. Similarly if v∗ ∈ N , then the equality does not
hold as well. �

Proof of Proposition 5.1. Since N and N⊥ have the same connectivity
function λ and N⊥  {v} = (N  {v})⊥, N⊥ � {v} = (N � {v})⊥,
(Lemma 3.9), we may assume that dimN − dim(N  {v}) ∈ {0, 1}
(Proposition 3.6) by replacing N by N⊥ if necessary. Let X ′ = V \X \
{v} and Y ′ = V \ Y \ {v}. We recall that

2λN(X ∩ Y )

= dimN − dim(N × (X ∩ Y ))− dim(N × (X ′ ∪ Y ′ ∪ {v})),
2λN(X ∪ Y ∪ {v})

= dimN − dim(N × (X ∪ Y ∪ {v}))− dim(N × (X ′ ∩ Y ′)),
2λN{v}(X)

= dim(N  {v})− dim(N  {v} ×X)− dim(N  {v} ×X ′),
2λN�{v}(Y )

= dim(N � {v})− dim(N � {v} × Y )− dim(N � {v} × Y ′).
It is easy to deduce this lemma from Lemma 5.2 if

(1) 2 dimN − dim(N  {v})− dim(N � {v}) ≤ 2.
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Therefore we may assume that (1) is false. Since we have assumed that
dimN − dim(N  {v}) ∈ {0, 1}, we conclude that dimN − dim(N �
{v}) ≥ 2. By Proposition 3.6, we have v∗ ∈ N . Then the equality
in the inequality of Lemma 5.2 does not hold. So, we conclude that
dim(N × (X ∩ Y )) + dim(N × (X ∪ Y ∪ {v})) ≥ dim(N  {v} ×X) +
dim(N � {v} × Y ) + 1 and the same inequality for X ′ and Y ′. Then,
λN{v}(X) +λN�{v}(Y ) ≥ λN(X ∩Y ) +λN(X ∪Y ∪{v})−3/2 + 1. �

We are now ready to prove an analogue of Tutte’s linking theorem
for Lagrangian chain-groups.

Theorem 5.3. Let V be a finite set and X, Y be disjoint subsets of
V . Let N be a Lagrangian chain-group on V to K. The following two
conditions are equivalent:

(i) λN(Z) ≥ k for all sets Z such that X ⊆ Z ⊆ V \ Y ,
(ii) there is a minor M of N on X ∪ Y such that λM(X) ≥ k.

In other words,

min{λN(Z) : X ⊆ Z ⊆ V \ Y }
= max{λNU�W (X) : U ∪W = V \ (X ∪ Y ), U ∩W = ∅}.

Proof. By Theorem 3.13, (ii) implies (i). Now let us assume (i) and
show (ii). We proceed by induction on |V \ (X ∪ Y )|. If V = X ∪ Y ,
then it is trivial. So we may assume that |V \ (X ∪ Y )| ≥ 1. Since
λN(X) are integers for all X ⊆ V by Lemma 3.10, we may assume that
k is an integer.

Let v ∈ V \ (X ∪ Y ). Suppose that (ii) is false. Then there is no
minor M of N  {v} or N � {v} on X ∪ Y having λM(X) ≥ k. By the
induction hypothesis, we conclude that there are sets X1 and X2 such
that X ⊆ X1 ⊆ V \ Y \ {v}, X ⊆ X2 ⊆ V \ Y \ {v}, λN{v}(X1) < k,
and λN�{v}(X2) < k. By Lemma 3.10, λN{v}(X1) and λN�{v}(X2) are
integers. Therefore λN{v}(X1) ≤ k − 1 and λN�{v}(X2) ≤ k − 1. By
Proposition 5.1,

λN{v}(X1) + λN�{v}(X2) ≥ λN(X1 ∩X2) + λN(X1 ∪X2 ∪ {v})− 1.

This is a contradiction because λN(X1 ∩ X2) ≥ k and λN(X1 ∪ X2 ∪
{v}) ≥ k. �

Corollary 5.4. Let N be a Lagrangian chain-group on V to K and let
X ⊆ Y ⊆ V . If λN(Z) ≥ λN(X) for all Z satisfying X ⊆ Z ⊆ Y , then
there exist disjoint subsets C and D of Y \X such that C ∪D = Y \X
and N ×X = N × Y � C D.
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Proof. For all C and D if C ∪ D = Y \ X and C ∩ D = ∅, then
N ×X ⊆ N × Y � C D. So it is enough to show that there exists a
partition (C,D) of Y \X such that

dim(N ×X) ≥ dim(N × Y � C D).

By Theorem 5.3, there is a minor M = N �C D of N on X ∪ (V \Y )
such that λM(X) ≥ λN(X). It follows that |X|−dim(N�CD×X) ≥
|X| − dim(N × X). Now we use the fact that N � C  D × X =
N × Y � C D. �

6. Well-quasi-ordering of Lagrangian chain-groups

In this section, we prove that Lagrangian chain-groups of bounded
branch-width are well-quasi-ordered under taking a minor. Here we
state its simplified form.

Theorem 6.1 (Simplified). Let F be a finite field and let k be a con-
stant. Every infinite sequence N1, N2, . . . of Lagrangian chain-groups
over F having branch-width at most k has a pair i < j such that Ni is
simply isomorphic to a minor of Nj.

This simplified version is enough to obtain results in Sections 7 and 8.
One may first read corollaries in later sections and return to this sec-
tion.

6.1. Boundaried chain-groups. For an isotropic chain-group N on
V to K = F

2, we write N⊥/N for a vector space over F containing
vectors of the form a+N where a ∈ N⊥ such that

(i) a+N = b+N if and only if a− b ∈ N ,
(ii) (a+N) + (b+N) = (a+ b) +N ,

(iii) c(a+N) = ca+N for c ∈ F.

An ordered basis of a vector space is a sequence of vectors in the vector
space such that the vectors in the sequence form a basis of the vector
space. An ordered basis of N⊥/N is called a boundary of N . An
isotropic chain-group N on V to K with a boundary B is called a
boundaried chain-group on V to K, denoted by (V,N,B).

By the theorem in the linear algebra, we know that

|B| = dim(N⊥)− dim(N) = 2(|V | − dimN).

We define contractions and deletions of boundaries B of an isotropic
chain-group N on V to K. Let B = {b1 + N, b2 + N, . . . , bm + N} be
a boundary of N . For a subset X of V , if |V \ X| − dim(N  X) =
|V | − dimN , then we define B X as a sequence

{b′1 · (V \X) +N X, b′2 · (V \X) +N X, . . . , b′m · (V \X) +N X}
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where bi + N = b′i + N and
〈
b′i(v),

(
1
0

)〉
K

= 0 for all v ∈ X. Similarly
if |V \ X| − dim(N � X) = |V | − dimN , then we define B � X as a
sequence

{b′1 · (V \X) +N �X, b′2 · (V \X) +N �X, . . . , b′m · (V \X) +N �X}

where bi + N = b′i + N and
〈
b′i(v),

(
0
1

)〉
K

= 0 for all v ∈ X. We prove
that B X and B �X are well-defined.

Lemma 6.2. Let N be an isotropic chain-group on V to K. Let X be
a subset of V . If dimN − dim(N X) = |X| and f ∈ N⊥, then there
exists a chain g ∈ N⊥ such that f − g ∈ N and

〈
g(x),

(
1
0

)〉
K

= 0 for
all x ∈ X.

Proof. We proceed by induction on |X|. If X = ∅, then it is trivial.
Let us assume that X is nonempty. Notice that N ⊆ N⊥ because N is
isotropic. We may assume that there is v ∈ X such that

〈
f(v),

(
1
0

)〉
K
6=

0, because otherwise we can take g = f .
Then v∗ /∈ N . Since |V \X| − dim(N X) = |V | − dimN , we have
|V | − 1 − dim(N  {v}) = |V | − dimN (Corollary 3.7) and therefore
v∗ /∈ N⊥ by Proposition 3.6.

Thus there exists a chain h ∈ N such that 〈h, v∗〉 =
〈
h(v),

(
1
0

)〉
K
6= 0.

By multiplying a nonzero constant to h, we may assume that〈
f(v)− h(v),

(
1
0

)〉
K

= 0.

Let f ′ = f − h ∈ N⊥. Then
〈
f ′(v),

(
1
0

)〉
K

= 0 and therefore f ′ · (V \
{v}) ∈ N⊥{v} = (N{v})⊥. By using the induction hypothesis based
on the fact that dim(N {v})−dim(N X) = |X|−1, we deduce that
there exists a chain g′ ∈ (N{v})⊥ such that f ′ ·(V \{v})−g′ ∈ N{v}
and

〈
g′(x),

(
1
0

)〉
K

= 0 for all x ∈ X \ {v}. Let g be a chain in N⊥ such

that g · (V \ {v}) = g′ and
〈
g(v),

(
1
0

)〉
K

= 0.

We know that
〈
f ′(v)− g(v),

(
1
0

)〉
K

= 0. Since (f ′ − g) · (V \ {v}) ∈
N  {v} and v∗ /∈ N , we deduce that f ′ − g ∈ N . Thus f − g =
f ′ − g + h ∈ N . Moreover for all x ∈ X,

〈
g(x),

(
1
0

)〉
K

= 0. �

Lemma 6.3. Let N be an isotropic chain-group on V to K. Let X be
a subset of V . Let f be a chain in N⊥ such that

〈
f(x),

(
1
0

)〉
K

= 0 if
x ∈ X and f(x) = 0 if x ∈ V \X. If dimN −dim(N X) = |X|, then
f ∈ N .

Proof. We proceed by induction on |X|. We may assume that X is
nonempty. Let v ∈ X. By Corollary 3.7, dim(N  {v}) = dimN − 1
and dim(N  {v}) − dim(N  X) = |X| − 1. Proposition 3.6 implies
that either v∗ ∈ N or v∗ /∈ N⊥.
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By Theorem 3.9, f · (V \ {v}) ∈ (N  {v})⊥. By the induction
hypothesis, f · (V \ {v}) ∈ N  {v}. There is a chain f ′ ∈ N such
that f ′(x) = f(x) for all x ∈ V \ {v} and

〈
f ′(v),

(
1
0

)〉
K

= 0. Then
f − f ′ = cv∗ for some c ∈ F by Lemma 3.2. Because N is isotropic,
f − f ′ ∈ N⊥.

If v∗ ∈ N , then f = f ′ + cv∗ ∈ N . If v∗ /∈ N⊥, then c = 0 and
therefore f ∈ N . �

Proposition 6.4. Let N be an isotropic chain-group on V to K with
a boundary B. Let X be a subset of V . If |V \ X| − dim(N  X) =
|V |−dimN , then BX is well-defined and it is a boundary of N X.
Similarly if |V \ X| − dim(N � X) = |V | − dimN , then B � X is
well-defined and it is a boundary of N �X.

Proof. By symmetry it is enough to show for B  X. Let B = {b1 +
N, b2 +N, . . . , bm +N}.

By Lemma 6.2, there exists a chain b′i ∈ N⊥ such that bi+N = b′i+N
and

〈
b′i(x),

(
1
0

)〉
K

= 0 for all x ∈ X.

Suppose that there are chains ci and di in N⊥ such that bi + N =
ci + N = di + N and

〈
ci(x),

(
1
0

)〉
K

=
〈
di(x),

(
1
0

)〉
K

= 0 for all x ∈ X.

Since ci−di ∈ N and
〈
ci(x)− di(x),

(
1
0

)〉
K

= 0 for all x ∈ X, we deduce
that (ci − di) · (V \X) ∈ N X and therefore

ci · (V \X) +N X = di · (V \X) +N X.

Hence B X is well-defined.
Now we claim that B X is a boundary of N X. Since dim((N 

X)⊥/(N  X)) = 2|V \ X| − 2 dim(N  X) = 2|V | − 2 dimN =
dimN⊥/N = |B| = |BX|, it is enough to show that BX is linearly
independent in (NX)⊥/NX. We may assume that

〈
bi(x),

(
1
0

)〉
K

= 0

for all x ∈ X. Let fi = bi · (V \ X) ∈ N⊥  X. We claim that
{fi + N  X : i = 1, 2, . . . ,m} is linearly independent. Suppose that∑m

i=1 ai(fi + N  X) = 0 for some constants ai ∈ F. This means∑m
i=1 aifi ∈ N  X. Let f be a chain in N such that f · (V \ X) =∑m
i=1 aifi and

〈
f(x),

(
1
0

)〉
K

= 0 for all x ∈ X. Let b =
∑m

i=1 aibi.

Clearly b ∈ N⊥.
We consider the chain b − f . Since N is isotropic, f ∈ N⊥ and so

b−f ∈ N⊥. Moreover (b−f) ·(V \X) = 0 and
〈
b(x)− f(x),

(
1
0

)〉
K

= 0
for all x ∈ X. By Lemma 6.3, we deduce that b− f ∈ N and therefore
b = (b− f) + f ∈ N . Since B is a basis of N⊥/N , ai = 0 for all i. We
conclude that B X is linearly independent. �
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A boundaried chain-group (V ′, N ′, B′) is a minor of another bound-
aried chain-group (V,N,B) if

|V ′| − dimN ′ = |V | − dimN

and there exist disjoint subsets X and Y of V such that V ′ = V \ (X ∪
Y ), N ′ = N X � Y , and B′ = B X � Y .

Proposition 6.5. A minor of a minor of a boundaried chain-group is
a minor of the boundaried chain-group.

Proof. Let (V0, N0, B0), (V1, N1, B1), (V2, N2, B2) be boundaried chain-
groups. Suppose that for i ∈ {0, 1}, (Vi+1, Ni+1, Bi+1) is a minor of
(Vi, Ni, Bi) as follows:

Ni+1 = Ni Xi � Yi, Bi+1 = Bi Xi � Yi.

It is easy to deduce that |V0| − dimN0 = |V2| − dimN2 and N2 =
N0  (X0 ∪X1) � (Y0 ∪ Y1).

We claim that B2 = B0  (X0∪X1)� (Y0∪Y1). By Corollary 3.7, we
deduce that |V0 \ (X0 ∪X1)| − dimN0  (X0 ∪X1) = |V0| − dimN0 =
|V2| − dimN2 and so it is possible to delete X0 ∪ X1 from V0 and
then contract Y0 ∪ Y1. From the definition, it is easy to show that
B  (X0 ∪X1) � (Y0 ∪ Y1) = B2. �

6.2. Sums of boundaried chain-groups. Two boundaried chain-
groups over the same field are disjoint if their ground sets are disjoint.
In this subsection, we define sums of disjoint boundaried chain-groups
and their connection types.

A boundaried chain-group (V,N,B) over a field F is a sum of disjoint
boundaried chain-groups (V1, N1, B1) and (V2, N2, B2) over F if

N1 = N × V1, N2 = N × V2, and V = V1 ∪ V2.

For a chain f on V1 to K and a chain g on V2 to K, we denote f⊕g for a
chain on V1∪V2 to K such that (f⊕g) ·V1 = f and (f⊕g) ·V2 = g. The
connection type of the sum is a sequence (C0, C1, . . . , C|B|) of sets of

sequences in F|B1|×F|B2| such that, for B = {b1 +N, b2 +N, . . . , b|B|+
N}, B1 = {b11 + N1, b

1
2 + N1, . . . , b

1
|B1| + N1}, and B2 = {b21 + N2, b

2
2 +

N2, . . . , b
2
|B2| +N2},

C0 =

(x, y) ∈ F|B1| × F|B2| :

 |B1|∑
i=1

xib
1
i

⊕
 |B2|∑

j=1

yjb
2
j

 ∈ N
 ,
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and for s ∈ {1, 2, . . . , |B|},

Cs =

(x, y) ∈ F|B1| × F|B2| :

 |B1|∑
i=1

xib
1
i

⊕
 |B2|∑

j=1

yjb
2
j

− bs ∈ N
 .

Proposition 6.6. The connection type is well-defined.

Proof. It is enough to show that the choices of bi, b
1
i , and b2i do not

affect Cs for s ∈ {0, 1, 2, . . . , |B|}. Suppose that bi + N = di + N ,
b1i + N1 = d1i + N1, and b2i + N2 = d2i + N2. Then for every (x, y) ∈
F
|B1| × F|B2|,

|B1|∑
i=1

xi(b
1
i − d1i )⊕

|B2|∑
j=1

yj(b
2
j − d2j) ∈ N

because (b1i − d1i ) ⊕ 0 ∈ N and 0 ⊕ (b2j − d2j) ∈ N . Moreover if s 6= 0,
then bs − ds ∈ N . Hence Cs is well-defined. �

Proposition 6.7. The connection type uniquely determines the sum
of two disjoint boundaried chain-groups.

Proof. Suppose that both (V,N,B) and (V,N ′, B′) are sums of disjoint
boundaried chain-groups (V1, N1, B1), (V2, N2, B2) over a field F with
the same connection type (C0, C1, . . . , C|B|).

We first claim that N = N ′. By symmetry, it is enough to show
that N ⊆ N ′. Let a ∈ N . Since a ∈ N⊥ and (N × V1)⊥ = N⊥ · V1
by Theorem 3.4, we deduce that a · V1 ∈ (N × V1)

⊥ and similarly
a · V2 ∈ (N × V2)⊥. Therefore there exists (x, y) ∈ F|B1| × F|B2| such
that

f =

|B1|∑
i=1

xib
1
i − a · V1 ∈ N1 and g =

|B2|∑
j=1

yjb
2
j − a · V2 ∈ N2.

Since f ⊕ 0 ∈ N and 0⊕ g ∈ N , we have f ⊕ g ∈ N . We deduce that∑|B1|
i=1 xib

1
i ⊕

∑|B2|
j=1 yjb

2
j = a + (f ⊕ g) ∈ N . Therefore (x, y) ∈ C0. So,

a+ (f ⊕ g) ∈ N ′ as well. Since f ⊕ 0, 0⊕ g ∈ N ′, we have a ∈ N ′. We
conclude that N ⊆ N ′.

Now we show that B = B′. Let bs+N be the s-th element of B where
bs ∈ N⊥. Let b′s + N be the s-th element of B′ with b′s ∈ N⊥. Since
bs ·V1 ∈ (N×V1)⊥ and bs ·V2 ∈ (N×V2)⊥, there is (x, y) ∈ F|B1|×F|B2|

such that

f =

|B1|∑
i=1

xib
1
i − bs · V1 ∈ N1 and g =

|B2|∑
j=1

yjb
2
j − bs · V2 ∈ N2.



RANK-WIDTH AND WELL-QUASI-ORDERING 31

Since f ⊕ 0, 0 ⊕ g ∈ N , we have f ⊕ g ∈ N . Therefore
∑|B1|

i=1 xib
1
i ⊕∑|B2|

j=1 yjb
2
j − bs ∈ N . This implies that (x, y) ∈ Cs and therefore∑|B1|

i=1 xib
1
i ⊕

∑|B2|
j=1 yjb

2
j − b′s ∈ N ′ = N . Thus, bs +N = b′s +N . �

In the next proposition, we prove that minors of a sum of disjoint
boundaried chain-groups are sums of minors of the boundaried chain-
groups with the same connection type.

Proposition 6.8. Suppose that a boundaried chain-group (V,N,B) is a
sum of disjoint boundaried chain-groups (V1, N1, B1), (V2, N2, B2) over
a field F. Let (C0, C1, . . . , C|B|) be the connection type of the sum. If

|V1 \ (X ∪ Y )| − dim(N1 X � Y ) = |V1| − dimN1

and

|V2 \ (Z ∪W )| − dim(N2  Z �W ) = |V2| − dimN2,

then (V \(X∪Y ∪Z∪W ), N(X∪Z)�(Y ∪W ), B(X∪Z)�(Y ∪W ))
is a well-defined minor of (V,N,B). Moreover it is a sum of (V1 \ (X ∪
Y ), N1X �Y,B1X �Y ) and (V2 \ (Z∪W ), N2Z�W,B2Z�W )
with the connection type (C0, C1, . . . , C|B|).

Proof. We proceed by induction on |X∪Y ∪Z∪W |. IfX∪Y ∪Z∪W = ∅,
then it is trivial.

Suppose that |X ∪ Y ∪ Z ∪W | = 1. By symmetry, we may assume
that Y = Z = W = ∅. Let v ∈ X. Since |V1 \ {v}| − dim(N1  {v}) =
|V1| − dimN1, either v∗ ∈ N1 or v∗ /∈ N⊥1 by Proposition 3.6. Since
N1 = N × V1, we deduce that either v∗ ∈ N or v∗ /∈ N⊥. Thus,
|V \{v}|−dim(N{v}) = |V |−dimN and so (V \{v}, N{v}, B{v})
is a minor of (V,N,B).

To show that (V \ {v}, N  {v}, B  {v}) is a sum of (V1 \ {v}, N1 
{v}, B  {v}) and (V2, N2, B2), it is enough to show that

N × V1  {v} = N  {v} × (V1 \ {v}),(2)

N × V2 = N  {v} × V2.(3)

It is easy to see (2) and N × V2 ⊆ N  {v} × V2. We claim that
N  {v} × V2 ⊆ N × V2. Suppose that f is a chain in N  {v} × V2.
There exists a chain f ′ in N such that f ′ · V2 = f ,

〈
f ′(v),

(
1
0

)〉
K

= 0,
and f ′(x) = 0 for all x ∈ V \ (V2 ∪ {v}) = V1 \ {v}.

If f ′(v) 6= 0, then f ′ · V1 = cv∗ for a nonzero c ∈ F by Lemma 3.2.
Since N⊥1 = N⊥ · V1 (Theorem 3.4), we deduce v∗ = c−1f ′ · V1 ∈ N⊥1 .
Therefore v∗ ∈ N1 and so v∗ ∈ N . We may assume that f ′(v) = 0
by adding a multiple of v∗ to f ′. This implies that f ∈ N × V2. We
conclude (3).
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Let (C ′0, C
′
1, . . . , C

′
|B|) be the connection type of the sum of (V1 \

{v}, N1  {v}, B1  {v}) and (V2, N2, B2). Let B = {b1 + N, b2 +
N, . . . , b|B| + N}, B1 = {b11 + N1, b

1
2 + N1, . . . , b

1
|B1| + N1}, and B2 =

{b21+N2, b
2
2+N2, . . . , b

2
|B2|+N2}. We may assume that

〈
bi(v),

(
1
0

)〉
K

= 0

and
〈
b1i (v),

(
1
0

)〉
K

= 0 by Lemma 6.2.
We claim that Cs = C ′s for all s ∈ {0, 1, . . . , |B|}. Let g be a chain

in N⊥ such that g = 0 if s = 0 or g = bs otherwise. If (x, y) ∈ Cs, then

(4)

 |B1|∑
i=1

xib
1
i ⊕

|B2|∑
j=1

yjb
2
j

− g ∈ N.
Since

〈
b1i (v),

(
1
0

)〉
K

= 0 and
〈
g(v),

(
1
0

)〉
K

= 0, we conclude that

(5)

 |B1|∑
i=1

xib
1
i · (V1 \ {v})⊕

|B2|∑
j=1

yjb
2
j

− g · (V \ {v}) ∈ N  {v},

and therefore (x, y) ∈ C ′s.
Conversely suppose that (x, y) ∈ C ′s. Then (5) is true. By Lemma 6.3,

we deduce (4). Therefore (x, y) ∈ Cs.
To complete the inductive proof, we now assume that |X ∪ Y ∪ Z ∪

W | > 1. If X is nonempty, let v ∈ X. Let X ′ = X \ {v}. Then, by
Corollary 3.7 we have |V1 \ {v}| − dimN1  {v} = |V1| − dimN1. So
(V1\{v}, N{v}, B{v}) is the sum of (V1\{v}, N1{v}, B1{v}) and
(V2, N2, B2) with the connection type (C0, C1, . . . , C|B|). We deduce our
claim by applying the induction hypothesis to (V1 \ {v}, N1  {v}, B1 
{v}) and (V2, N2, B2). Similarly if one of Y or Z or W is nonempty, we
deduce our claim. �

6.3. Linked branch-decompositions. Suppose (T,L) is a branch-
decomposition of a Lagrangian chain-group N on V to K = F

2. For
two edges f and g of T , let F be the set of elements in V corresponding
to the leaves in the component of T \ f not containing g and let G be
the set of elements in V corresponding to the leaves in the component
of T \ g not containing f . Let P be the unique path from e to f in T .
We say that f and g are linked if the minimum width of the edges on P
is equal to minF⊆X⊆V \G λN(X). We say that a branch-decomposition
(T,L) is linked if every pair of edges in T is linked.

The following lemma is shown by Geelen, Gerards, and Whittle [8, 9].
We state it in terms of Lagrangian chain-groups, because the connectiv-
ity function of chain-groups are symmetric submodular (Theorem 3.12).
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Lemma 6.9 (Geelen et al. [8, 9, Theorem (2.1)]). A chain-group of
branch-width n has a linked branch-decomposition of width n.

Having a linked branch-decomposition will be very useful for prov-
ing well-quasi-ordering because it allows Tutte’s linking theorem to be
used. It was the first step to prove well-quasi-ordering of matroids of
bounded branch-width by Geelen et al. [8]. An analogous theorem by
Thomas [17] was used to prove well-quasi-ordering of graphs of bounded
tree-width in [14].

6.4. Lemma on cubic trees. We use “lemma on trees,” proved by
Robertson and Seymour [14]. It has been used by Robertson and Sey-
mour to prove that a set of graphs of bounded tree-width is well-quasi-
ordered by the graph minor relation. It has been also used by Geelen et
al. [8] to prove that a set of matroids representable over a fixed finite
field and having bounded branch-width is well-quasi-ordered by the
matroid minor relation. We need a special case of “lemma on trees,”
in which a given forest is cubic, which was also useful for branch-
decompositions of matroids in [8].

The following definitions are in [8]. A rooted tree is a finite directed
tree where all but one of the vertices have indegree 1. A rooted forest is
a collection of countably many vertex disjoint rooted trees. Its vertices
with indegree 0 are called roots and those with outdegree 0 are called
leaves. Edges leaving a root are root edges and those entering a leaf
are leaf edges.

An n-edge labeling of a graph F is a map from the set of edges of F
to the set {0, 1, . . . , n}. Let λ be an n-edge labeling of a rooted forest
F and let e and f be edges in F . We say that e is λ-linked to f if F
contains a directed path P starting with e and ending with f such that
λ(g) ≥ λ(e) = λ(f) for every edge g on P .

A binary forest is a rooted orientation of a cubic forest with a dis-
tinction between left and right outgoing edges. More precisely, we call
a triple (F, l, r) a binary forest if F is a rooted forest where roots have
outdegree 1 and l and r are functions defined on non-leaf edges of F ,
such that the head of each non-leaf edge e of F has exactly two outgoing
edges, namely l(e) and r(e).

Lemma 6.10 (Geelen et al. [8, (3.2)]). Let (F, l, r) be an infinite binary
forest with an n-edge labeling λ. Moreover, let ≤ be a quasi-order on
the set of edges of F with no infinite strictly descending sequences, such
that e ≤ f whenever f is λ-linked to e. If the set of leaf edges of F is
well-quasi-ordered by ≤ but the set of root edges of F is not, then F
contains an infinite sequence (e0, e1, . . .) of non-leaf edges such that
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(i) {e0, e1, . . .} is an antichain with respect to ≤,
(ii) l(e0) ≤ l(e1) ≤ l(e2) ≤ · · · ,

(iii) r(e0) ≤ r(e1) ≤ r(e2) ≤ · · · .
6.5. Main theorem. We are now ready to prove our main theorem.
To make it more useful, we label each element of the ground set by
a well-quasi-ordered set Q with an ordering � and enforce the minor
relation to follow the ordering �. More precisely, for a chain-group
N on V to K, a Q-labeling is a mapping from V to Q. A Q-labeled
chain-group is a chain-group equipped with a Q-labeling. A Q-labeled
chain-group N ′ on V ′ to K with a Q-labeling µ′ is a Q-minor of a
Q-labeled chain-group N with a Q-labeling µ if N ′ is a minor of N and
µ′(v) � µ(v) for all v ∈ V ′.
Theorem 6.1 (Labeled version). Let Q be a well-quasi-ordered set
with an ordering �. Let k be a constant. Let F be a finite field. Let
N1, N2, . . . be an infinite sequence of Q-labeled Lagrangian chain-groups
over F having branch-width at most k. Then there exist i < j such that
Ni is simply isomorphic to a Q-minor of Nj.

Proof. We may assume that all bilinear forms 〈 , 〉K for all Ni’s are
the same bilinear form, that is either skew-symmetric or symmetric by
taking a subsequence. Let Vi be the ground set of Ni. Let µi : Vi → Q
be the Q-labeling of Ni. We may assume that |Vi| > 1 for all i. By
Lemma 6.9, there is a linked branch-decomposition (Ti,Li) of Ni of
width at most k for each i. Let T be a forest such that the i-th
component is Ti. To make T a binary forest, for each Ti, we create
a vertex ri of degree 1, called a root, create a vertex of degree 3 by
subdividing an edge of Ti and making it adjacent to ri, and direct
every edge of Ti so that each leaf has a directed path from the root ri.

We now define a k-edge labeling λ of T , necessary for Lemma 6.10.
For each edge e of Ti, let Xe be the set of leaves of Ti having a directed
path from e. Let Ae = L−1i (Xe). We let λ(e) = λNi

(Ae).
We want to associate each edge e of Ti with a Q-labeled boundaried

chain-group Pe = (Ae, Ni × Ae, Be) with a Q-labeling µe = µi|Ae and
some boundary Be satisfying the following property:

(6) if f is λ-linked to e, then Pe is a Q-minor of Pf .

We note that µi|Ae is a function on Ae such that µi|Ae(x) = µi(x) for
all x ∈ Ae.

We claim that we can assign Be to satisfy (6). We prove it by
induction on the length of the directed path from the root edge of Ti
to an edge e of Ti. If no other edge is λ-linked to e, then let Be be
an arbitrary boundary of Ni × Ae. If f , other than e, is λ-linked to e,
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then choose f such that the distance between e and f is minimal. We
claim that we can obtain Be from Bf by Corollary 5.4 (Tutte’s linking
theorem) as follows; since Ti is a linked branch-decomposition, for all Z,
if Ae ⊆ Z ⊆ Af , then λNi

(Z) ≥ λNi
(Ae). By Corollary 5.4, there exist

disjoint subsets C and D of Af \Ae such that N×Ae = N×Af �CD.
Since |Ae| − dimNi × Ae = |Af | − dimNi × Af , Be = Bf � C  D is
well defined. This proves the claim.

For e, f ∈ E(T ), we write e ≤ f when a Q-labeled boundaried chain-
group Pe is simply isomorphic to a Q-minor of Pf . Clearly ≤ has no
infinitely strictly descending sequences, because there are finitely many
boundaried chain-groups on bounded number of elements up to simple
isomorphisms and furthermore Q is well-quasi-ordered. By construc-
tion, if f is λ-linked to e, then e ≤ f .

The leaf edges of T are well-quasi-ordered because there are only
finite many distinct boundaried chain-groups on one element up to
simple isomorphisms and Q is well-quasi-ordered.

Suppose that the root edges are not well-quasi-ordered by the rela-
tion ≤. By Lemma 6.10, T contains an infinite sequence e0, e1, . . . of
non-leaf edges such that

(i) {e0, e1, . . .} is an antichain with respect to ≤,
(ii) l(e0) ≤ l(e1) ≤ · · · ,

(iii) r(e0) ≤ r(e1) ≤ · · · .

Since λ(ei) ≤ k for all i, we may assume that λ(ei) is a constant for all
i, by taking a subsequence.

The boundaried chain-group Pei is the sum of Pl(ei) and Pr(ei). The
number of possible distinct connection types for this sum is finite, be-
cause F is finite and k is fixed, Therefore, we may assume that the
connection types for all sums for all ei are same for all i, by taking a
subsequence.

Since l(e0) ≤ l(e1), there exists a simple isomorphism sl from Al(e0)

to a subset of Al(e1). Similarly, there exists a simple isomorphism sr
from Ar(e0) to a subset of Ar(e1) in r(e0) ≤ r(e1). Let s be a function on
Ae0 = Al(e0)∪Ar(e0) such that s(v) = sl(v) if v ∈ Al(e0) and s(v) = sr(v)
otherwise. By Proposition 6.8, Pe0 is simply isomorphic to a Q-minor
of Pe1 with the simple isomorphism s. Since l(e0) ≤ l(e1) and r(e0) ≤
r(e1), we deduce that Pe0 is simply isomorphic to a Q-minor of Pe1 and
therefore e0 ≤ e1. This contradicts to (i). Hence we conclude that the
root edges are well-quasi-ordered by ≤. So there exist i < j such that
Ni is simply isomorphic to a Q-minor of Nj. �



36 SANG-IL OUM

7. Well-quasi-ordering of skew-symmetric or symmetric
matrices

In this section, we will prove the following main theorem for skew-
symmetric or symmetric matrices from Theorem 6.1.

Theorem 7.1. Let F be a finite field and let k be a constant. Every
infinite sequence M1, M2, . . . of skew-symmetric or symmetric matri-
ces over F of rank-width at most k has a pair i < j such that Mi is
isomorphic to a principal submatrix of (Mj/A) for some nonsingular
principal submatrix A of Mj.

To move from the principal pivot operation given by Theorem 4.9 to
a Schur complement, we need a finer control how we obtain a matrix
representation under taking a minor of a Lagrangian chain-group.

Lemma 7.2. Let M1, M2 be skew-symmetric or symmetric matrices
over a field F. For i = 1, 2, let Ni be a Lagrangian chain-group with a
special matrix representation (Mi, ai, bi) where ai(v) =

(
1
0

)
, bi(v) =

(
0
1

)
for all v. If N1 = N2 �X  Y , then M1 is a principal submatrix of the
Schur complement (M2/A) of some nonsingular principal submatrix A
in M2.

Proof. For i = 1, 2, let Vi be the ground set of Ni. We may assume
that X is a minimal set having some Y such that N1 = N2 � X  Y .
We may assume X 6= ∅, because otherwise we apply Lemma 4.8. Note
that the Schur complement of a ∅ × ∅ submatrix in M2 is M2 itself.

Suppose that M2[X] is singular. Let aX be a chain on V2 to K = F
2

such that aX(v) =
(
1
0

)
if v /∈ X and aX(v) =

(
0
1

)
if v ∈ X. By

Proposition 4.4, a′ is not an eulerian chain of N2. Therefore there
exists a nonzero chain f ∈ N2 such that 〈f(v), aX(v)〉K = 0 for all
v ∈ V2. Then f ·V1 = 0 because f ·V1 ∈ N1 and a1 is an eulerian chain
of N1 = N2�XY . There exists w ∈ X such that f(w) 6= 0 because a2
is an eulerian chain of N2. For every chain g ∈ N2, if

〈
g(v),

(
1
0

)〉
K

= 0

for v ∈ Y and
〈
g(v),

(
0
1

)〉
K

= 0 for v ∈ X, then g(w) = cgf(w) for some
cg ∈ F by Lemma 3.2 and therefore g · V1 = (g − cgf) · V1 ∈ N2 � (X \
{w})(Y ∪{w}). This implies that N2�XY ⊆ N2�(X \{w})(Y ∪
{w}). Since dim(N2�XY ) = dim(N2�(X \{w})(Y ∪{w})) = |V1|,
we have N2�X Y = N2� (X \{w}) (Y ∪{w}), contradictory to the
assumption that X is minimal. This proves that M2[X] is nonsingular.

By Proposition 4.5, (M ′, a′, b′) is another special matrix representa-
tion of N1 where M ′ = M ∗X if 〈 , 〉K is symmetric or M ′ = IX(M ∗X)
if 〈 , 〉K is skew-symmetric and a′, b′ are given in Proposition 4.5. We
observe that a′ ·V1 = a1 and b′ ·V1 = b1. We apply Lemma 4.8 to deduce
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that (M ′[V1], a1, b1) is a matrix representation of N1. This implies that
M ′[V1] = M1. Let A = M2[X]. Notice that M ′[V1] = (M2/A)[V1]. This
proves the lemma. �

Proof of Theorem 7.1. By taking an infinite subsequence, we may as-
sume that all of the matrices in the sequence are skew-symmetric or
symmetric. Let K = F

2 and assume 〈 , 〉K is a bilinear form that is
symmetric if the matrices are skew-symmetric and skew-symmetric if
the matrices are symmetric. Let Ni be the Lagrangian chain-group
represented by a matrix representation (Mi, ai, bi) where ai(x) =

(
1
0

)
,

bi(x) =
(
0
1

)
for all x. Then by Theorem 6.1, there are i < j such that

Ni is simply isomorphic to a minor of Nj. By Lemma 7.2, we deduce
the conclusion. �

Now let us consider the notion of delta-matroids, a generalization
of matroids. Delta-matroids lack the notion of the connectivity and
hence it is not clear how to define the branch-width naturally for
delta-matroids. We define the branch-width of a F-representable delta-
matroid as the minimum rank-width of all skew-symmetric or symmet-
ric matrices over F representing the delta-matroid. Then we can deduce
the following theorem from Theorem 4.12 and Proposition 4.10.

Theorem 7.3. Let F be a finite field and k be a constant. Every infi-
nite sequenceM1,M2, . . . of F-representable delta-matroids of branch-
width at most k has a pair i < j such thatMi is isomorphic to a minor
of Mj.

Proof. Let M1, M2, . . . be an infinite sequence of skew-symmetric or
symmetric matrices over F such that the rank-width of Mi is equal
to the branch-width of Mi and Mi = M(Mi)∆Xi. We may assume
that Xi = ∅ for all i. By Theorem 7.1, there are i < j such that
Mi is isomorphic to a principal submatrix of the Schur complement of
a nonsingular principal submatrix in Mj. This implies that Mi is a
minor of Mj as a delta-matroid. �

In particular, when F = GF (2), then binary skew-symmetric matri-
ces correspond to adjacency matrices of simple graphs. Then taking
a pivot on such matrices is equivalent to taking a sequence of graph
pivots on the corresponding graphs. We say that a simple graph H is
a pivot-minor of a simple graph G if H is obtained from G by applying
pivots and deleting vertices. As a matter of a fact, a pivot-minor of a
simple graph corresponds to a minor of an even binary delta-matroid.
The rank-width of a simple graph is defined to be the rank-width of
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its adjacency matrix over F. Then Theorem 7.1 or 7.3 implies the
following corollary, originally proved by Oum [11].

Corollary 7.4 (Oum [11]). Let k be a constant. Every infinite sequence
G1, G2, . . . of simple graphs of rank-width at most k has a pair i < j
such that Gi is isomorphic to a pivot-minor of Gj.

8. Corollaries to matroids and graphs

In this section, we will show how Theorem 6.1 implies the theorem
by Geelen et al. [8] on well-quasi-ordering of F-representable matroids
of bounded branch-width for a finite field F as well as the theorem
by Robertson and Seymour [14] on well-quasi-ordering of graphs of
bounded tree-width.

We will briefly review the notion of matroids in the first subsection.
In the second subsection, we will discuss how Tutte chain-groups are
related to representable matroids and Lagrangian chain-groups. In the
last subsection, we deduce the theorem of Geelen et al. [8] on matroids
which in turn implies the theorem of Robertson and Seymour [14] on
graphs.

8.1. Matroids. Let us review matroid theory briefly. For more on
matroid theory, we refer readers to the book by Oxley [13].

A matroid M = (E, r) is a pair formed by a finite set E of elements
and a rank function r : 2E → Z satisfying the following axioms:

i) 0 ≤ r(X) ≤ |X| for all X ⊆ E.
ii) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

iii) For all X, Y ⊆ E, r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ).

A subset X of E is called independent if r(X) = |X|. A base is a
maximally independent set. We write E(M) = E. For simplicity,
we write r(M) for r(E(M)). For Y ⊆ E(M), M \ Y is the matroid
(E(M) \ Y, r′) where r′(X) = r(X). For Y ⊆ E(M), M/Y is the
matroid (E(M) \ Y, r′) where r′(X) = r(X ∪ Y ) − r(Y ). If Y = {e},
we denote M \ e = M \ {e} and M/e = M/{e}. It is routine to prove
that M \ Y and M/Y are matroids. Matroids of the form M \ X/Y
are called a minor of the matroid M .

Given a field F and a set of vectors in F
m, we can construct a

matroid by letting r(X) be the dimension of the vector space spanned
by vectors in X. If a matroid permits this construction, then we say
that the matroid is F-representable or representable over F.

The connectivity function of a matroid M = (E, r) is λM(X) =
r(X) + r(E \ X) − r(E) + 1. A branch-decomposition of a matroid
M = (E, r) is a pair (T,L) of a subcubic tree T and a bijection L :
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E → {t : t is a leaf of T}. For each edge e = uv of the tree T , the
connected components of T \ e induce a partition (Xe, Ye) of the leaves
of T and we call λM(L−1(Xe)) the width of e. The width of a branch-
decomposition (T,L) is the maximum width of all edges of T . The
branch-width bw(M) of a matroid M = (E, r) is the minimum width
of all its branch-decompositions. (If |E| ≤ 1, then we define that
bw(M) = 1.)

8.2. Tutte chain-groups. We review Tutte chain-groups [24]. For a
finite set V and a field F, a chain on V to F is a mapping f : V → F.
The sum f + g of two chains f , g is the chain on V satisfying

(f + g)(x) = f(x) + g(x) for all x ∈ V.
If f is a chain on V to F and λ ∈ F, the product λf is a chain on V
such that

(λf)(x) = λf(x) for all x ∈ V.
It is easy to see that the set of all chains on V to F, denoted by FV ,
is a vector space. A Tutte chain-group on V to F is a subspace of FV .
The support of a chain f on V to F is {x ∈ V : f(x) 6= 0}.

Theorem 8.1 (Tutte [22]). Let N be a Tutte chain-group on a finite
set V to a field F. The minimal nonempty supports of N form the
circuits of a F-representable matroid M{N} on V , whose rank is equal
to |V | − dimN . Moreover every F-representable matroid M admits a
Tutte chain-group N such that M = M{N}.

Let S be a subset of V . For a chain f on V to F, we denote f · S
for a chain on S to F such that (f · S)(v) = f(v) for all v ∈ S. For
a Tutte chain-group N on V to F, we let N · S = {f · S : f ∈ N},
N × S = {f · S : f ∈ N, f(v) = 0 for all v /∈ S}, and N⊥ = {g :
g is a chain on V to F,

∑
v∈V f(v)g(v) = 0 for all f ∈ N}.

A minor of a Tutte chain-group N on V to F is a Tutte chain-group
of the form (N×S)·T where T ⊆ S ⊆ V . By definition, it is easy to see
thatM{N}\X = M{N×(V \X)} andM{N}/X = M{N ·(V \X)}. So
the notion of representable matroid minors is equivalent to the notion
of Tutte chain-group minors.

Tutte [25, Theorem VIII.7.] showed the following theorem. The
proof is basically equivalent to the proof of Theorem 3.4.

Lemma 8.2 (Tutte [25, Theorem VIII.7.]). If N is a Tutte chain-group
on V to F and X ⊆ V , then (N ·X)⊥ = N⊥ ×X.

We now relate Tutte chain-groups to Lagrangian chain-groups. For
a chain f on V to F, let f ∗, f∗ be chains on V to K = F

2 such that
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f ∗(v) =
(
f(v)
0

)
∈ K, f∗(v) =

(
0

f(v)

)
∈ K for every v ∈ V . For a Tutte

chain-group N on V to F, we let Ñ be a Tutte chain-group on V to

K such that Ñ = {f ∗ + g∗ : f ∈ N, g ∈ N⊥}. Assume that 〈 , 〉K is
symmetric.

Lemma 8.3. If N is a Tutte chain-group on V to F, then Ñ is a
Lagrangian chain-group on V to K = F

2.

Proof. By definition, for all f ∈ N and g ∈ N⊥, 〈f ∗, f ∗〉 = 〈g∗, g∗〉 = 0

and 〈f ∗, g∗〉 =
∑

v∈V f(v)g(v) = 0. Thus, Ñ is isotropic. Moreover,

dimN + dimN⊥ = dimFV = |V | and therefore dim Ñ = |V |. (Note

that Ñ is isomorphic to N ⊕ N⊥ as a vector space.) So Ñ is a La-
grangian chain-group. �

Lemma 8.4. Let N1, N2 be Tutte chain-groups on V1, V2 (respectively)
to F. Then N1 is a minor of N2 as a Tutte chain-group if and only if

Ñ1 is a minor of Ñ2 as a Lagrangian chain-group.

Proof. Let N be a Tutte chain-group on V to F and let S be a subset

of V . It is enough to show that Ñ · S = Ñ � (V \ S) and Ñ × S =

Ñ  (V \ S).

Let us first show that Ñ · S = Ñ � (V \ S). Since dim Ñ · S =

dim Ñ � (V \S) = |S| by Lemma 8.3, it is enough to show that Ñ · S ⊆
Ñ � (V \S). Suppose that f ∈ N ·S and g ∈ (N ·S)⊥. By Lemma 8.2,
(N · S)⊥ = N⊥ × S. So there are f̄ , ḡ ∈ N such that f̄ · S = f ,
ḡ · S = g, and ḡ(v) = 0 for all v ∈ V \ S. Now it is clear that
f ∗ + g∗ = (f̄ ∗ + ḡ∗) · S ∈ N � (V \ S).

Now it remains to show that Ñ × S = Ñ  (V \ S). Let f ∈ N × S,

g ∈ (N×S)⊥ = N⊥ ·S. A similar argument shows that f ∗+g∗ ∈ Ñ S
and therefore Ñ × S ⊆ Ñ  (V \ S). This proves our claim because
these two Lagrangian chain-groups have the same dimension. �

Now let us show that for a Tutte chain-group N on V to F, the
branch-width of a matroid M{N} is exactly one more than the branch-

width of the Lagrangian chain-group Ñ . It is enough to show the
following lemma.

Lemma 8.5. Let N be a Tutte chain-group on V to F. Let X be a
subset of V . Then,

λM{N}(X) = λÑ(X) + 1.

Proof. Recall that the connectivity function of a matroid is λM{N}(X) =
r(X)+r(V \X)−r(V )+1 and the connectivity function of a Lagrangian
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chain-group is λÑ(X) = |X| − dim(Ñ × X). Let Y = V \ X. Let r
be the rank function of the matroid M{N}. Then r(X) is equal to the
rank of the matroid M{N} \ Y = M{N × X}. So by Theorem 8.1,
r(X) = |X| − dim(N ×X). Therefore

λM{N}(X) = dimN − dim(N ×X)− dim(N × Y ) + 1.

From our construction, λÑ(X) = |X|−dim(Ñ ×X) = |X|− (dim(N ×
X) + dim(N⊥ × X)) = |X| − dimN × X − dim(N · X)⊥ = |X| −
dimN × X − (|X| − dimN · X) = dimN · X − dimN × X. It is
enough to show that dimN = dimN × Y + dimN ·X. Let L : N →
N · X be a surjective linear transformation such that L(f) = f · X.
Then dim kerL = dim({f ∈ N : f · X = 0}) = dim(N × Y ). Thus,
dimN ·X = dimN − dimN × Y . �

8.3. Application to matroids. We are now ready to deduce the fol-
lowing theorem by Geelen, Gerards, and Whittle [8] from Theorem 6.1.

Theorem 8.6 (Geelen, Gerards, and Whittle [8]). Let k be a constant
and let F be a finite field. If M1,M2, . . . is an infinite sequence of F-
representable matroids having branch-width at most k, then there exist
i and j with i < j such that Mi is isomorphic to a minor of Mj.

To deduce this theorem, we use Tutte chain-groups.

Proof. Let Ni be the Tutte chain-group on E(Mi) to F such that
M{Ni} = Mi. By Lemma 8.5, the branch-width of the Lagrangian

chain-group Ñi is at most k − 1. By Theorem 6.1, there are i < j

such that Ñi is simply isomorphic to a minor of Ñj. This implies
that Mi = M{Ni} is isomorphic to a minor of Mj = M{Nj} by
Lemma 8.4. �

Geelen et al. [8] showed that Theorem 8.6 implies the following the-
orem. (We omit the definition of tree-width.) Thus our theorem also
implies the following theorem of Robertson and Seymour.

Theorem 8.7 (Robertson and Seymour [14]). Let k be a constant.
Every infinite sequence G1, G2, . . . of graphs having tree-width at most
k has a pair i < j such that Gi is isomorphic to a minor of Gj.
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