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Abstract

This article describes the notion of branch-width and its dual notion, tangles. Branch-width
was introduced by Robertson and Seymour and has been applied to various combinatorial
structures.
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Branch-width, introduced by Robertson and Seymour [41], is a general concept to describe the
difficulty of decomposing finitely many objects into a tree-like structure by partitioning them into
two parts recursively, while maintaining each cut to have small connectivity measure. Branch-width
normally is defined for graphs or hypergraphs, as discussed by Robertson and Seymour [41] but
it is easy to be extended for other combinatorial objects such as matroids and any integer-valued
symmetric submodular functions.

Roughly speaking branch-decomposition is a description on a maximal collection of non-overlapping
partitions of a finite set E. The width of a branch-decomposition is the maximum “complexity”
of each part appearing in the branch-decomposition, where the “complexity” is given by some
function on subsets of E. The branch-width is the minimum possible width over all possible
branch-decompositions of E. Precise definition will be discussed in the following section.

To show that branch-width is small, we need to illustrate how to decompose nicely; in other
words, we need to present a branch-decomposition of small width in order to certify that branch-
width is small. On the other hand, if we want to certify that branch-width is large, a naive approach
would be trying all possible branch-decompositions, which is too time consuming. For that purpose
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we use tangles. A tangle is a dual notion of branch-width which certifies why the branch-width is
large. It was also defined by Robertson and Seymour in the same paper.

In this article we explain those definitions and list their algorithmic properties.

1 Branch-width

Usually branch-width is defined for graphs and hypergraphs. But for the sake of generality, we
define it for integer-valued symmetric submodular functions first. An integer-valued function f on
subsets of a finite set E is symmetric if f(X) = f(E − X) for all subsets X of E and f is called
submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all subsets X,Y of E.

Let us now assume that an integer-valued symmetric submodular function f on subsets of a finite
set E is given. We call a tree subcubic if every vertex has degree 3 or 1. A branch-decomposition
(T, τ) of f consists of a subcubic tree T and a bijection τ from the set of leaves of T to E. Then
the width of an edge e of T is defined to be f(τ(Ae)) when (Ae, Be) is a partition of the set of
leaves of T given by T \ e. Notice that this is well-defined because f(τ(Ae)) = f(τ(Be)). The width
of a branch-decomposition (T, τ) is the maximum width of all edges of T . The branch-width of f ,
denoted by bw(f), is the minimum width of all possible branch-decompositions of f . If |E| ≤ 2,
then there are no branch-decompositions and so we just define branch-width to be f(∅).

By choosing an appropriate set E and an integer-valued symmetric submodular function, we
can generate various notions of width parameters. Let us present some of them here.

Branch-width of graphs and hypergraphs. Branch-width was first introduced by Robertson
and Seymour [41] for graphs and hypergraphs. For a graph (or a hypergraph) G and a subset X
of edges, let ηG(X) be the number of vertices which are incident with an edge in X as well as an
edge in E(G) −X. It is straightforward to prove that ηG is a symmetric submodular function on
subsets of E(G). The branch-width of G, denoted by bw(G), is defined as the branch-width of ηG.

For example, consider the Petersen graph and its optimal branch-decomposition in Figure 1.
The width of the edge e given in Figure 1 is 4. Furthermore, one can evaluate the widths of the
other edges of (T, τ) and determine that the width of (T, τ) is 4.

Branch-width of graphs is strongly related to better-known notion, tree-width by the following
inequality by Robertson and Seymour [41, (5.2)]: if G is a graph, then

branch-width(G) ≤ tree-width(G) + 1 ≤ 3

2
branch-width(G).

Rank-width of graphs. Rank-width of graphs was introduced by Oum and Seymour [37]. For
a graph G and a subset X of V = V (G), let us consider the |X| × |V −X| binary matrix MX such
that rows and columns of MX are indexed by X and V −X, respectively and the entry of MX is 1
if the vertex corresponding to the row is adjacent to the vertex corresponding to the column, and
otherwise, the entry is 0. The cut-rank function ρG(X) is defined to be the rank of MX , where
MX is considered as a matrix over the binary field GF(2). The cut-rank function is symmetric
submodular, see [37]. The rank-width of a graph is defined as the branch-width of ρG.

Rank-width was motivated by another useful graph width parameter, clique-width, defined by
Courcelle and Olariu [6]. They are related in the following sense; if the clique-width of a graph
is k, then its rank-width is at most k and conversely if the rank-width of a graph is r, then the
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Figure 1: The Petersen graph and its optimal branch-decomposition

clique-width is at most 2r+1 − 1 [37]. Oum [35] showed that the rank-width of a graph G is less
than or equal to the branch-width of G, unless G has no edges.

Branch-width of matroids. Unlike tree-width, it is natural to extend the notion of branch-
width of graphs to branch-width of matroids. For a matroid M on a finite set E with the rank
function r, the connectivity function of M is given as ηM (X) = r(X) + r(E−X)− r(M) + 1. Since
r is submodular, ηM is symmetric submodular. Branch-width of a matroid M is defined to be the
branch-width of ηM . It was first studied by Dharmatilake [8] and has played an important role in
the development of the matroid structure theory by Geelen, Gerards, and Whittle [16, 17].

If a graph G has at least one cycle of length at least 2, then G and its cycle matroid M(G) has
the same branch-width, shown by Hicks and McMurray Jr. [24] and independently by Mazoit and
Thomassé [34] later.

Carving-width of graphs. Carving-width of graphs was introduced by Seymour and Thomas [42].
For a graph G and a subset A of vertices, we write δG(A) to denote the set of all edges joining a
vertex in A with a vertex in V (G)−A. Let pG(X) = |δG(A)|. Again pG is symmetric submodular.
The carving-width of a graph is the branch-width of pG. Carving-width is a useful tool for the
branch-width of a planar graph because the branch-width of a planar graph is exactly half of the
carving-width of its medial graph [42].

2 Tangles

Tangles are introduced as a means to certify that the branch-width is large. If we wish to convince
that branch-width is small, we can simply present a branch-decomposition of small width. However,
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Figure 2: A “large” part in a order-4 tangle of the Petersen graph

we do not want to try all possible branch-decompositions in order to convince that branch-width is
big. Tangles play such a role; if a tangle is presented, then no branch-decomposition of small width
can exist.

For an integer-valued symmetric submodular function f on subsets of a finite set E, an f -tangle
of order k + 1 is a collection T of subsets of E satisfying the following three axioms.

(T1) For all A ⊆ E, if f(A) ≤ k, then either A ∈ T or E −A ∈ T .

(T2) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(T3) For all e ∈ E, we have E − {e} /∈ T .

Let us call a set X in a tangle T small and the complement E −X large. Informally speaking,
a large set is a “highly connected” set so that it is impossible to decompose a large set properly to
construct a branch-decomposition of small width. In Figure 2, we illustrate a large set in a tangle
of order 3 for the Petersen graph. Edges shown in Figure 2 form a large set.

Robertson and Seymour introduced tangles and proved lots of useful properties. The following
duality theorem is very useful. The following theorem was implicitly proved by Robertson and
Seymour [41, (3.5)]. Geelen et al. [19, Theorem 3.2] rewrote the proof.

Theorem 1. Let f be an integer-valued symmetric submodular function on subsets of E. Then no
f -tangle of order k + 1 exists if and only if the branch-with of f is at most k.

This allows us to define the branch-width from tangles; the branch-width is equal to the max-
imum k such that a tangle of order k exists. And to show that bw(f) = k for an integer k, we
frequently construct both a branch-decomposition of width k for an upper bound on the branch-
width and an f -tangle of order k for a lower bound.

Providing a lower bound for the branch-width is generally harder than finding an upper bound.
Therefore much of the work to find the exact branch-width is usually devoted to finding a tangle. For
the branch-width of the n× n grid, Kleitman and Saks (in Robertson and Seymour [41]) presented
a tangle of order n, thus proving that the branch-width of the n × n grid is n. Geelen et al. [18]
used tangles to prove that the branch-width of the cycle matroid of the n × n grid is n. For the
rank-width of the n × n grid G, Jeĺınek [30] presented a ρG-tangle of order n − 1, thus certifying
that the rank-width of the n× n grid is n− 1.

Roughly speaking a set of maximal tangles is used to identify highly connected pieces in a
combinatorial structure. Robertson and Seymour [41] (see also Geelen et al. [18]) showed that any
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symmetric submodular function on E has at most (|E|−2)/2 maximal tangles, which are displayed
by a tree structure. That tree structure has been used to describe and prove the structure of graphs
or binary matroids without some fixed minor.

3 Computing branch-width

One of the most natural questions after defining branch-width is the complexity of computing the
branch-width of integer-valued symmetric submodular functions on subsets of a finite set E. Since
we may need 2n values of f for all subsets of E in order to input f , we will assume that f is given
by an oracle so that we can query the oracle to compute f(X) for the input set X at a unit time.

Hardness results. In general, it is hard to decide whether branch-width is at most k for an
integer-valued symmetric submodular function f given by an oracle and an input k in time poly-
nomial in n. Seymour and Thomas [42] showed that it is NP-hard to compute branch-width or
carving-width of a graph. Kloks et al. [31] proved that computing branch-width is NP-hard even
for bipartite graphs or split graphs. Computing branch-width of a matroid given as a matrix rep-
resentation is also NP-hard and computing rank-width of a graph is also NP-hard, because of the
relationship between branch-width of graphs and branch-width of cycle matroids [24, 34].

Exact exponential-time algorithms. For the efficient exact algorithm, Oum [36] found an
O∗(2|E|)-time algorithm to compute the branch-width of any integer-valued symmetric submodular
function f given by an oracle as above. (Here, O∗(2|E|) means O(2|E||E|O(1)).) It is not known
whether O∗(2|E|) can be improved to O∗(c|E|) for some 1 < c < 2. For graphs G = (V,E),
branch-width can be computed in time O∗((2

√
3)|V |), shown by Fomin et al. [14].

Exact polynomial-time algorithms for special classes. When we restrict inputs, the branch-
width can sometimes be computed efficiently. Branch-width can be computed in polynomial time for
circular arc graphs [33] and interval graphs [31, 39]. For planar graphs, branch-width and carving-
width can be computed in polynomial time, shown by Seymour and Thomas [42]. More precisely
their algorithm can decide in time O(n2) whether a given planar graph has branch-width at most k
for a given k and output an optimal decomposition in time O(n4). Gu and Tamaki [20] improved
that result to construct an O(n3)-time algorithm to output an optimal carving-decomposition or
an optimal branch-decomposition of n-vertex planar graphs.

Testing branch-width at most k for fixed k. As we discussed above, we can not hope to have
a polynomial-time algorithm to test whether branch-width is at most k for an input k. However, if
we fix k as a constant, then the situation is different. Oum and Seymour [38] proved that for any

fixed constant k, one can answer whether the branch-width is at most k in time O(|E|8k+c
) where

c only depends on f(∅). Moreover one can construct a branch-decomposition of width at most k in

time O(|E|8k+c+3
).

For many applications on fixed-parameter tractable algorithms, it is desirable to have an algo-
rithm which runs in time O(g(k)nc) for some function g and a constant c independent of k. Such
an algorithm is called a fixed-parameter tractable algorithm with parameter k. It is still unknown
whether there is a fixed-parameter tractable algorithm to decide whether branch-width of f is at
most k when f is an integer-valued symmetric submodular function given as an oracle.
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Fortunately fixed-parameter tractable algorithms are known for most interesting classes of
integer-valued symmetric submodular functions. Bodlaender and Thilikos [43, 1] constructed a
linear-time algorithm to test whether branch-width of an input graph is at most k for fixed k. Thi-
likos et al. [44] constructed a linear-time algorithm to decide whether carving-width is at most k for
fixed k. Hliněný and Oum [29] showed that there exists a cubic-time algorithm to decide whether
rank-width of a graph is at most k for fixed k. Their algorithm also works for branch-width of
matroids represented over a fixed finite field. All of these algorithms mentioned above can output
the corresponding branch-decomposition as well.

Fixed-parameter tractable approximation algorithms. For applications on fixed-parameter
tractable algorithms with the branch-width as a parameter, we often need an fixed-parameter
tractable algorithm to construct a branch-decomposition of small width in order to use the dynamic
programming approach. So far, we do not know the existence of a fixed-parameter tractable algo-
rithm that can output a branch-decomposition of width at most k if such a branch-decomposition
exists, for an integer-valued symmetric submodular function given by an oracle. As we discussed
above, the best algorithm known runs in time O(|E|8k+c+3).

As a workaround, Oum and Seymour [37] constructed the following algorithm: for each fixed
k, it runs in time O(|E|7 log |E|) to either output a branch-decomposition of width at most 3k+ c′

or confirm that the branch-width is larger than k, where c′ only depends on f(∅) and max{f({e} :
e ∈ E}. (In fact, the paper [37] only discusses the case when f(∅) = 0 and f({e}) ≤ 1 for all
e ∈ E. But its argument can be modified to accommodate the case when there is an element e ∈ E
such that f({e}) − f(∅) > 1.) This allows us to construct a branch-decomposition of small width
from the given adjacency list of a graph, and this branch-decomposition can be used to solve other
algorithmic problems by dynamic programming technique.

There are similar algorithms for branch-width of matroids represented over a finite field [25].

Heuristics. Cook and Seymour [3, 4] gave a heuristic algorithm to produce branch-decompositions
of graphs and used it in their work on the ring-routing problem and the traveling salesman prob-
lem. Hicks [21] also found another branch-width heuristic that was comparable to the heuristic
of Cook and Seymour. Recently, Ma and Hicks [32] found two heuristics to derive near-optimal
branch-decompositions of linear matroids; one of the heuristics uses classification techniques and
the other one is similar to the heuristics for graphs which use flow algorithms.

4 Algorithmic Applications

Branch-width of graphs. There are many graph-theoretic algorithmic problems that are shown
to be polynomial-time solvable on the class of graphs of bounded branch-width. Many of them
actually run their algorithms based on tree-width. We refer to the section on tree-width for such
applications.

Branch-width is used to design exact subexponential-time algorithms or efficient parameterized
algorithms on the class of planar graphs or the class of graphs with no fixed minor [13, 10, 9, 15,
11, 12].

Branch-width of matroids. Hliněný [26] extended Courcelle’s theorem on graphs of bounded
tree-width or branch-width to matroids represented over a fixed finite field. Namely, for a fixed
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finite field F and a given monadic second-order formula ϕ on matroids, one can test whether an
input F -represented matroid of bounded branch-width satisfies ϕ in time polynomial in the size of
the matroid. The requirement that the matroid has to be represented over a finite field can not be
relaxed unless NP=P, shown by Hliněný [28].

Hliněný [27] also found a fixed-parameter tractable algorithm to evaluate the Tutte polynomial
of an input matroid represented over a fixed finite field of bounded branch-width.

Rank-width of graphs. Rank-width is a sibling of better known clique-width, that is a kind of a
generalization of tree-width. Oum and Seymour [37] proved not only that for every class of graphs,
rank-width is bounded if and only if clique-width is bounded, but also that one can translate a
rank-decomposition into a decomposition for clique-width and vice versa in polynomial time. It
had been known that many algorithmic properties of tree-width could be generalized to graphs of
bounded clique-width, even before rank-width was introduced and it is easy to see that all of such
algorithmic results on graphs of bounded clique-width apply to rank-width.

Here is one of the most important theorems for graphs of bounded rank-width. Courcelle,
Makowsky, and Rotics [5] proved that there is a cubic-time algorithm to decide whether a fixed
monadic second-order formula without edge-set quantification is satisfied by an input graph of
bounded rank-width. As a corollary, many hard problems such as 3-colorability are solvable in a
cubic time for graphs of bounded rank-width.

Practical algorithms. Although theory indicates the fruitful potential of these algorithms, the
number of practical algorithms in the literature is scant. Most notable is the work of Cook and
Seymour [4] who produced the best known solutions for the 12 unsolved problems in TSPLIB95,
a library of standard test instances for the traveling salesman problem [40]. Hicks presented a
practical algorithm for general graph minor containment [22] and constructing optimal branch
decompositions [23]. One is also referred to the work of Christian [2].

Based on branch-width of matroids, Cunningham and Geelen [7] proposed a pseudopolynomial-
time algorithm to solve an integer programming problem max(ctx : Ax = b, x ≥ 0, x ∈ Zn) when A
is nonnegative and the matroid represented by A has bounded branch-width. Their algorithm shows
some hope to make branch-width much more useful for practical applications, as many problems
are modelled as an integer programming.
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