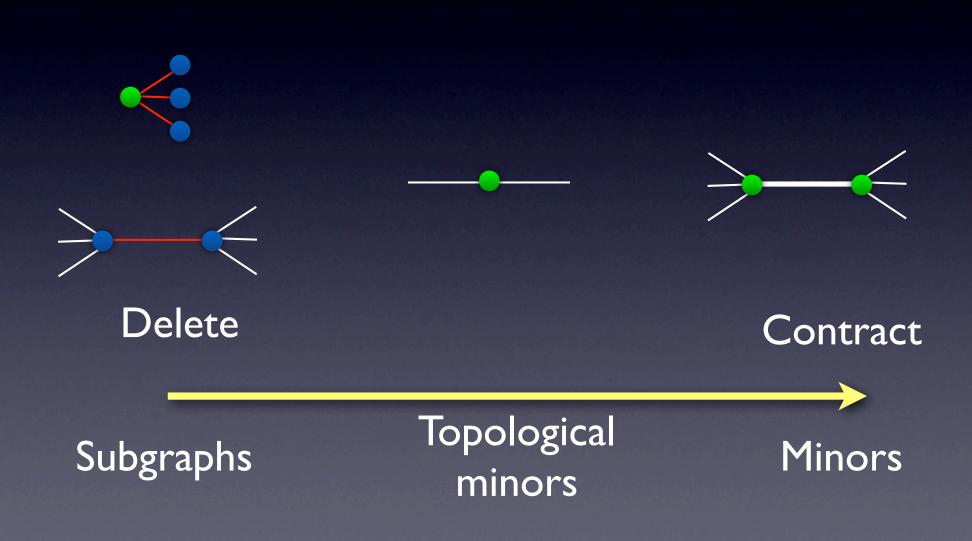
#### Vertex-minors and Pivot-minors

Sang-il Oum (엄상일) Dept. of Mathematical Sciences KAIST Daejeon, South Korea



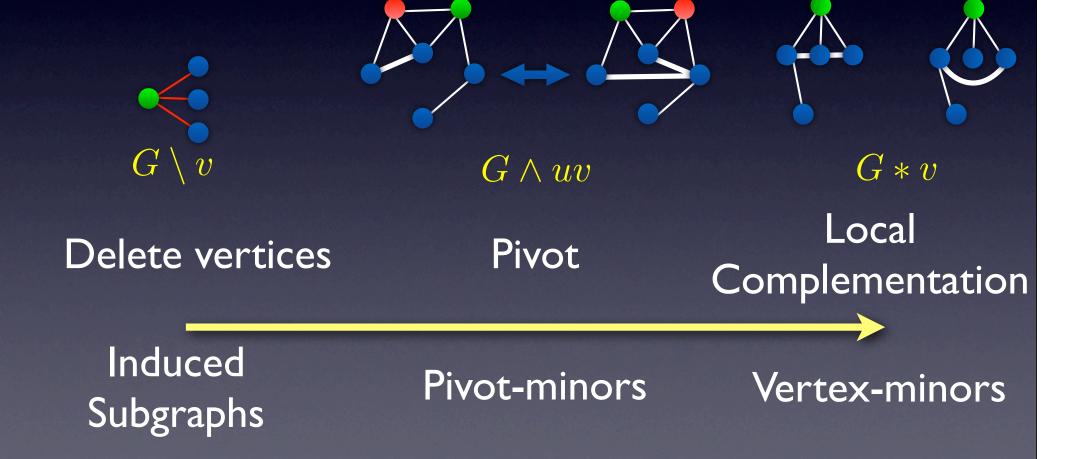
# Subgraphs and minors



# Induced subgraphs and ?

 $\mathcal{U}$ 

 $\mathcal{U}$ 

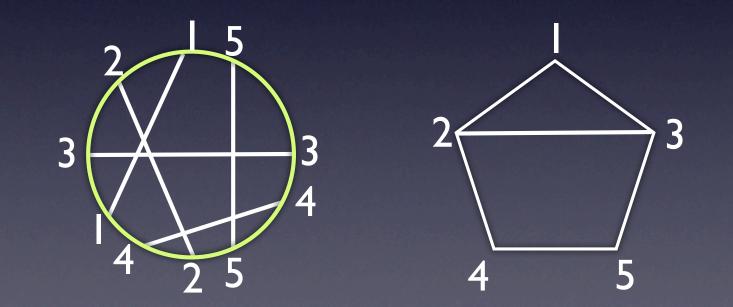


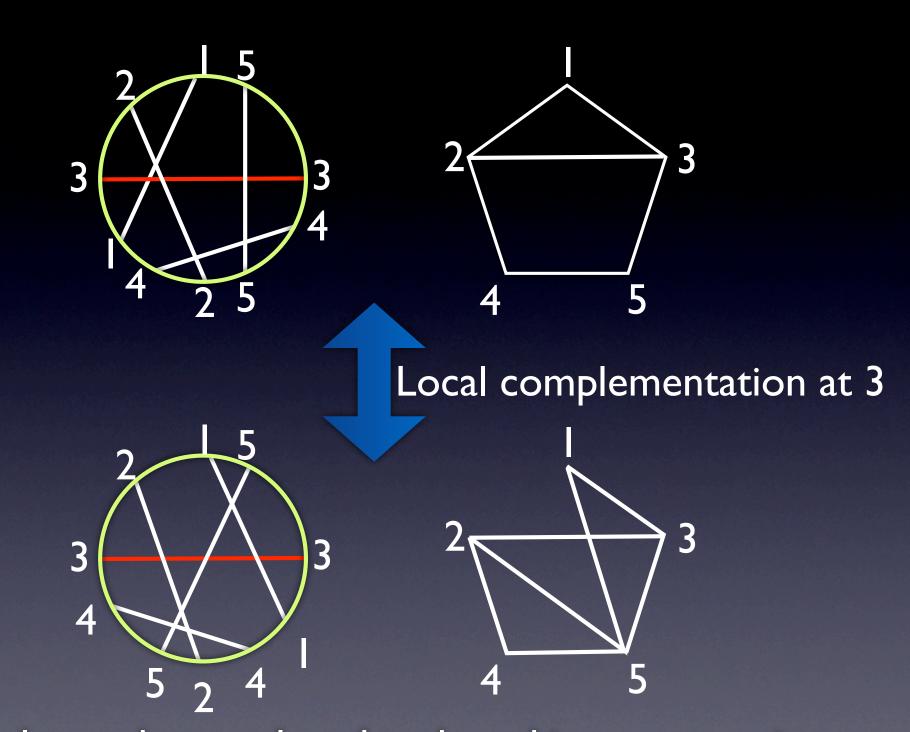
| Minors        | Vertex-minors, Pivot-minors          |
|---------------|--------------------------------------|
| Planar graphs | Circle graphs                        |
| k-connected   | k-rank-connected                     |
| Branch-width  | Rank-width                           |
| Matroids      | Delta-matroids,<br>Isotropic Systems |

| Minors        | Vertex-minors, Pivot-minors          |
|---------------|--------------------------------------|
| Planar graphs | Circle graphs                        |
| k-connected   | k-rank-connected                     |
| Branch-width  | Rank-width                           |
| Matroids      | Delta-matroids,<br>Isotropic Systems |

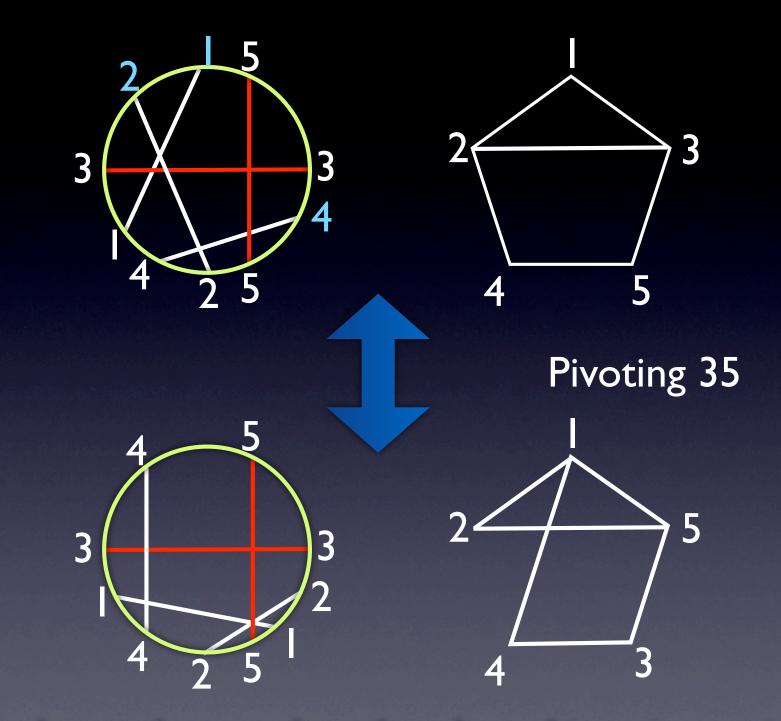
# Circle graphs

- Intersection graphs of chords of a circle
- Overlap graphs of intervals on a line

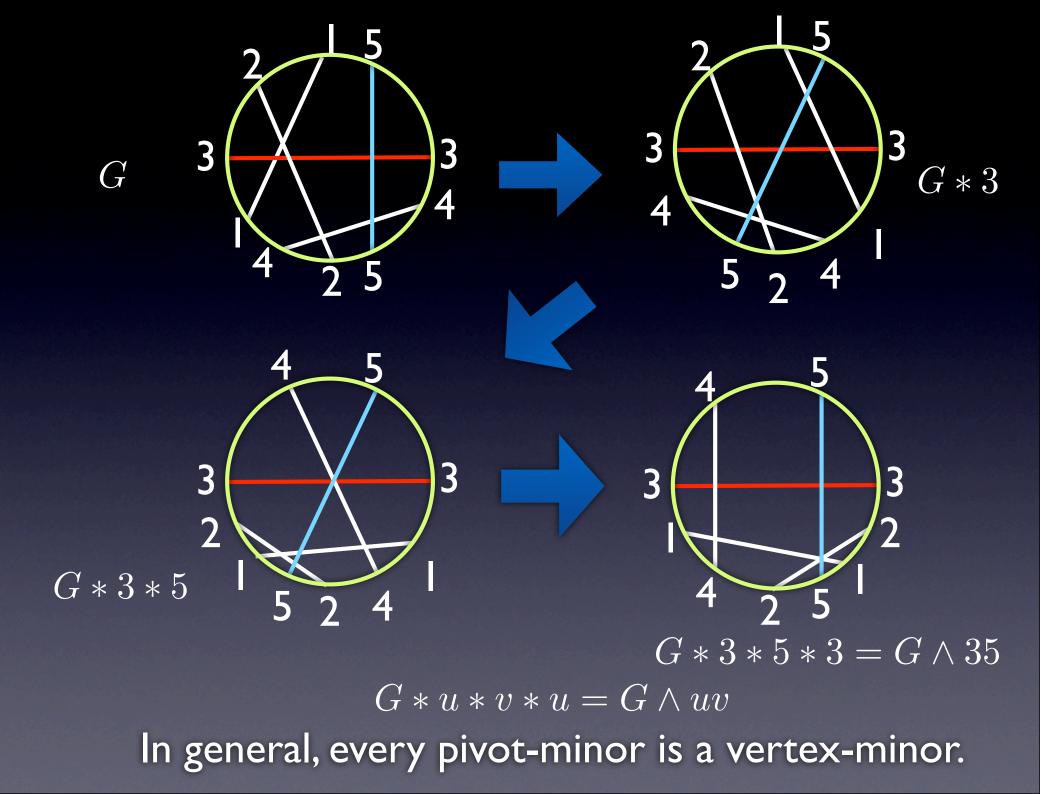




Circle graphs are closed under taking vertex-minors

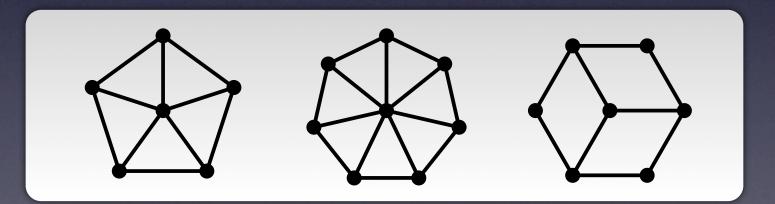


Circle graphs are closed under taking pivot-minors



# Forbidden vertex-minors for circle graphs

• A graph is a circle graph iff it has no vertex-minors isomorphic to  $W_5$   $W_7$   $BW_3$ 

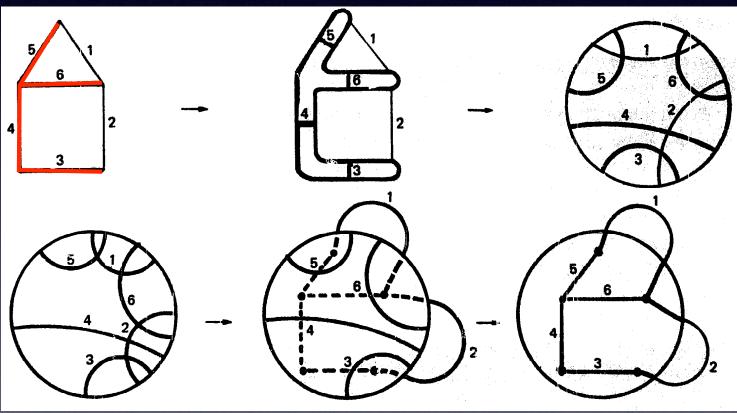


Bouchet '94

#### Circle v.s. Planar

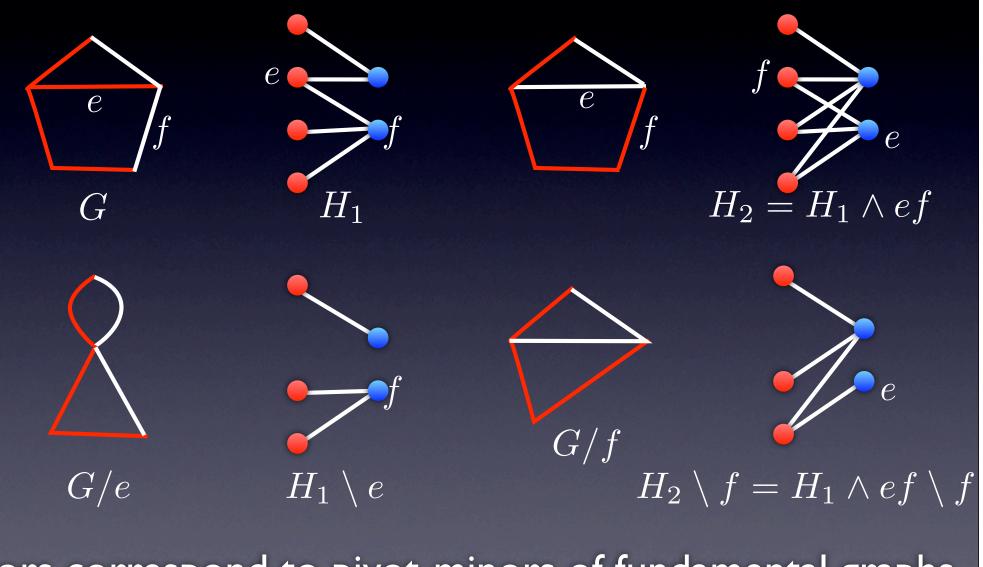
• A bipartite graph is a circle graph iff

it is a fundamental graph of a planar graph.



#### de Fraysseix '81

#### Minors & Pivot-minors

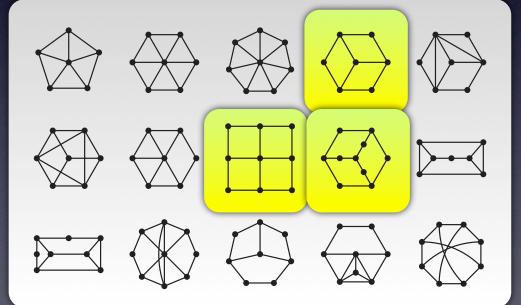


Minors correspond to pivot-minors of fundamental graphs.

# Forbidden pivot-minors for circle graphs

A graph is a circle graph iff

it has no pivot-minors isomorphic to



FG of Fano matroid

 $M(K_5)$ 

 $M(K_{3,3})$ 

Implies Kuratowski's theorem!

Geelen, O. '09

### Distance-hereditary

 Distance-hereditary: graphs that can be generated from a graph with no edges by

• creating twins

- creating pendant vertices
- Closed under taking vertex-minors
- "series-parallel graphs" for vertex-minors
- Distance-hereditary iff no  $C_5$  vertex-minors iff no  $C_5, C_6$  pivot-minors Bandelt, Mulder '86 Bouchet'87,'88

# Finitely many forbidden graphs

- Thm: Every minor-closed class of graphs has finitely many forbidden minors.
- Conj: Every pivot-minor-closed class of graphs has finitely many forbidden pivot-minors.
- Weak Conj: Every vertex-minor-closed class of graphs has finitely many forbidden vertex-minors.
  - If Weak Conj is true then: every vertex-minorclosed class of graphs has finitely many forbidden pivot-minors. (Geelen, O.'09)

## Well-quasi-ordering

- Equivalently: Every infinite set of graphs contains a pair of graphs H, G such that H is isomorphic to a vertex-minor of G.
- Known to be true when graphs are:
  - bipartite graphs (by binary matroids)
  - line graphs (by group-labelled graphs)
  - bounded rank-width (O.'08)
  - circle graphs (by Graph Minors XXIII, immersion order of 4-regular graphs)

pivotminors

| Minors        | Vertex-minors, Pivot-minors          |
|---------------|--------------------------------------|
| Planar graphs | Circle graphs                        |
| k-connected   | k-rank-connected                     |
| Branch-width  | Rank-width                           |
| Matroids      | Delta-matroids,<br>Isotropic Systems |

#### Connectivity

- For a subset X of E, mid(X)=set of vertices meeting X and E-X.
- k-connected:
  If |mid(X)|<k, then X or E-X is "small".</li>
  ("small": no vertices meet edges in X only)
- mid(X) can only decrease if we take a minor

## 

- k-rank-connected: If  $\rho_G(X) < k$ then  $\min(|X|, |V - X|) \le \rho(X)$
- All graphs are 0-rank-connected.
- All connected graphs are I-rank-connected.
- k-rank-connected  $\rightarrow$  (k 1)-rank-connected

#### 2-rank-connected graphs

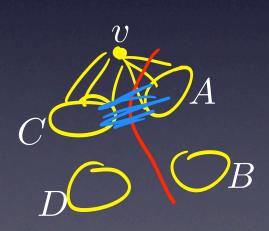
- 2-rank-connected=  $\min(|X|, |V X|) \le 1$  whenever  $\rho(X) < 2$
- Split (X,Y) (|X|,|Y|>I)
- 2-rank-connected = no splits (1-join)
- 2-rank-connected = prime w.r.t.
  split decompositions

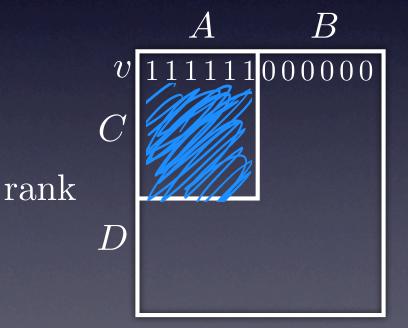
Cunningham '82

X

# Rank-connectivity and vertex-minors

• Cut-rank is invariant under taking local complementation.





#### Chain theorems

- If G is simple 3-connected, then G has a simple simple 3-connected minor with one fewer edges, unless G=wheel.
- If G is 2-rank-connected with |V|>4, then G has a 2-rank-connected pivot-minor with one fewer vertices, unless G=cycle.
- If G is 2-rank-connected with |V|>5, then G has a 2-rank-connected vertex-minor with one fewer vertices. Tutte'61

Bouchet'87, Allys'94

## Splitter theorems

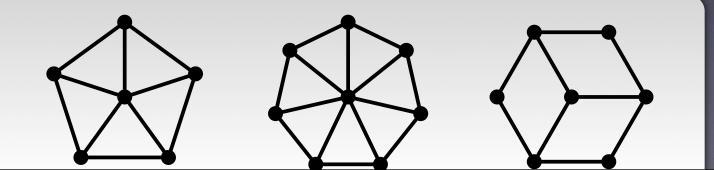
- If H is a simple 3-connected minor of a simple 3connected graph G, then G has a simple 3-connected minor with one fewer edges having a minor isomorphic to H unless |V(G)|=|V(H)| or H=wheel.
- If H is a 2-rank-connected pivot-minor of a 2-rank-connected graph G and |V(H)|>4, then G has a 2-rank-connected pivot-minor with one fewer vertices having a pivot-minor isomorphic to H, unless |V(G)|=|V(H)| or H=cycle. Seymour '80, Negami '82 Bouchet (unpublished), Geelen '95

- If H is a simple 3-connected minor of a simple 3connected graph G, then G has a simple 3-connected minor with one fewer edges having a minor isomorphic to H unless |V(G)|=|V(H)| or H=wheel.
- If H is a 2-rank-connected pivot-minor of a 2-rank-connected graph G and |V(H)|>4, then G has a 2-rank-connected pivot-minor with one fewer vertices having a pivot-minor isomorphic to H, unless |V(G)|=|V(H)| or H=cycle.
- If H is a 2-rank-connected vertex-minor of a 2-rank-connected graph G and |V(H)|>4, then G has a 2-rank-connected vertex-minor with one fewer vertices having a vertex-minor isomorphic to H, unless |V(G)|=|V(H)|.

Seymour '80, Negami '82 Bouchet (unpublished), Geelen '95

### Applications of Splitter Theorems

- Graphs with no K<sub>5</sub> minor= Planar graphs+K<sub>3,3</sub>+V<sub>8</sub> +their 0-, I-,2-,3-sums
- Graphs with no W<sub>5</sub> vertex-minor= circle graphs+W<sub>7</sub> +BW<sub>3</sub>+cube +their disjoint unions + their I-joins W<sub>5</sub> W<sub>7</sub> BW<sub>3</sub>



Wagner'3? Geelen'95

| Minors        | Vertex-minors, Pivot-minors          |
|---------------|--------------------------------------|
| Planar graphs | Circle graphs                        |
| k-connected   | k-rank-connected                     |
| Branch-width  | Rank-width                           |
| Matroids      | Delta-matroids,<br>Isotropic Systems |

#### Rank-width

- "Branch-width measured by cut-rank"
- Rank-decomposition= A subcubic tree T whose leaves are labeled bijectively by V(G)
- Width of an edge of T=cutrank of the partition given by an edge of T
- Width(T,L)= max width of all edges
- Rank-width= min Width (T,L)
- Rank-width(H)≤Rank-width(G) if H=vertex-minor
  O., Seymour '06

#### Rank-width

- Related to branch-width of matroids and graphs
- Poly-time algorithm to construct a decomposition of width≤k if it exists, for fixed k
- Thm: Graphs of bounded rank-width are well-quasi-ordered by the pivot-minor relation.

Hineny, O. '08 O.'05, O.'08

| Minors        | Vertex-minors, Pivot-minors          |
|---------------|--------------------------------------|
| Planar graphs | Circle graphs                        |
| k-connected   | k-rank-connected                     |
| Branch-width  | Rank-width                           |
| Matroids      | Delta-matroids,<br>Isotropic Systems |

#### Delta-matroids

- - $(I)\mathcal{F}$  is nonempty.

(2) If  $X, Y \in \mathcal{F}$  and  $a \in X \Delta Y$ then there exists  $b \in X \Delta Y$  such that  $X \Delta \{a, b\} \in \mathcal{F}$ 

- Delta-matroid: set-system satisfying (1), (2)
- Binary: represented by a matrix over GF(2) Bouchet'87

Iwisting (1) $\mathcal{F}$  is nonempty. (2) If  $X, Y \in \mathcal{F}$  and  $a \in X \Delta Y$ then there exists  $b \in X \Delta Y$  such that  $X\Delta\{a,b\} \in \mathcal{F}$ • Twisting: Replacing A by A $\Delta X$  for some X • Thm: If M is binary, then  $M\Delta X$  is binary Tucker'60: X Y  $A = \frac{X}{Y} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \qquad A * X = \frac{X}{Y} \begin{pmatrix} \alpha^{-1} & \alpha^{-1}\beta \\ -\gamma\alpha^{-1} & \delta - \gamma\alpha^{-1}\beta \end{pmatrix} \quad A^*X[Y] \text{ is nonsingular}$ iff principal pivot  $(A^*X)^*Y = A^*(X\Delta Y) A[X\Delta Y]$  is nonsingular If X={u,v}, then  $A(G) * X = A(G \land uv)$ 

# **Twisting:** Replacing A by ABX for some X

#### • Thm: If M is binary, then $M\Delta X$ is binary

Tucker'60: X = YX  $A = \frac{X}{Y} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \qquad A * X = \frac{X}{Y} \begin{pmatrix} \alpha^{-1} & \alpha^{-1}\beta \\ -\gamma\alpha^{-1} & \delta - \gamma\alpha^{-1}\beta \end{pmatrix} \qquad A^*X[Y] \text{ is nonsingular}$ iff principal pivot  $(A^*X)^*Y = A^*(X\Delta Y) A[X\Delta Y]$  is nonsingular If X={u,v}, then  $A(G) * X = A(G \land uv)$ Binary even Delta-matroids up to twisting = Graphs up to pivot equivalence Binary even Delta-maroid minors = Graph pivot-minors

#### lsotropic systems

- Introduced by Bouchet '87
- Linear-algebraic description of equivalent classes of graphs up to local complementations
- Minors of isotropic systems
  =Vertex-minors
- Powerful tool for vertex-minors

# Other topics

# Algorithmic Aspects

- Can we decide whether G has a H-pivotminor in poly time for fixed H?
  - Yes if G has bounded rank-width
  - Yes if G is a bipartite graph
  - Yes if G is a line graph
  - Yes if G is a circle graph and H is bipartite

matroid result

formula

grouplabelled graph

bounded rank-width

### Structural Aspects

- Any interesting class of graphs closed under vertex-minors or pivot-minors?
  - circle graphs, graphs of bounded rankwidth, distance-hereditary graphs, bipartite graphs (pivot-minors), pivotminors of line graphs (pivot-minors)
- Structures of graphs with no H vertexminors?

### Fields other than GF(2)

- Pivot-minors and vertex-minors of graphs: generalizing minors of binary matroids
- One can define: delta-matroids representable over a field F : pivot-minors of edge-labelled directed graphs
- Thm: Delta-matroids of "bounded branch-width" over a finite field are well-quasi-ordered.
- Structural theory for skew-symmetric matrices over a finite field?

Interlace polynomials  $q(G; x, y) = \sum_{S \subseteq V} (x - 1)^{\operatorname{rank}(G[S])} (y - 1)^{\operatorname{nullity}(G[S])}$ Over GF(2)

 Reduction formula is given in terms of pivot-minor operations.

 $q(G) = q(G \setminus a) + q(G \wedge ab \setminus a) + ((x-1)^2 - 1)q(G \wedge ab \setminus a \setminus b)$ 

q(n-vertex graph with no edges) =  $y^n$ 

 If G is a graph and H is a FG of G, then q(H;2,y)=T(H;y,y) (Tutte polynomial)

> Arratia, Bollobás, Sorkin'04 Aigner, van der Holst '04

#### More...

- Measurement based quantum computation "Graph States"
  - >10 papers in last 5 years in Physics journals using local complementations and pivoting
- Coding theory "Self-dual additive codes over GF(4)"
- Local complementation on directed graphs
  - "Eulerian systems" (Bouchet '87)
  - "Directed rank-width" (Kanté '09)
  - "Weakly $\mathbb{Z}_2^n$ -equivariant homeomorphism classes of small covers of the n-dim cube" (Choi '08)

### Thank you!

#### http://mathsci.kaist.ac.kr/~sangil/

| minor                                                                                                 | vertex-minor<br>pivot-minor                                                                                                              |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| graph<br>planar graph<br>series parallel<br>Tutte poly.<br>Tree-width<br>k-connected<br>cycle matroid | simple graph<br>circle graph<br>distance-hereditary<br>Interlace poly.<br>Rank-width<br>rank-(k-I)-connected<br>delta-matroids/iso. sys. |
| totally unimodular                                                                                    | principally unimodular                                                                                                                   |