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Connectivity

Partition (E ,F ) of E(G):

v(X ) =#vertices meeting both X
and E \ X .

Partition (E ,F ) of V (G):

e(X ) =#edges meeting both X and
V \ X .

M: matroid, λ(X ) = r(X ) + r(E(M)− X )− r(E(M)).

A function f : 2V → Z is a connectivity function if
(i) f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ), (submodular)
(ii) f (X ) = f (V \ X ), (symmetric)
(iii) f (∅) = 0.
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Branch-decomposition of a connectivity function f : a pair (T ,L) of
a subcubic tree T and a bijection L : V → {leaves of T}.
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Branch-width

V = E(G)

Carving-width

V = V (G)

Branch-width of matroids
(Branch-width of λ) + 1.
λ(X ) =
r(X ) + r(E(M)− X )− r(E(M)).
V = E(M).
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(Ae,Be) is a partition of V given by
deleting e.
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Branch-width is “good”

Deciding whether Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Any connectivity function: O(γn8k+6 log n) (O., Seymour ’07)



Cut-rank function: another connectivity function

(X , Y ): partition of V (G)

ρG(X ) = rank

X

Y

0-1 matrix


(The matrix is over the binary field
GF(2).)

ρ(red vertices) = rank


0 0 0
0 1 1
1 0 1
1 1 0

 = 2.



Rank-width

Definition of Rank-width
Rank-width of a graph G = Branch-width of the cut-rank function ρG
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Rank-decomposition
Width= 2

Rank-width: min width(rank-decomposition).



Clique-width
Courcelle, Engelfriet, and Rozenberg ’93 / Courcelle, Olariu ’00

k -expression: algebraic expression on vertex-labelled graphs with
k labels 1,2, . . . , k .

I ·i a single vertex with label i
I G1 ⊕G2 disjoint union
I ρi→j(G) relabel vertices of label i into j
I ηi,j(G) (i 6= j) add edges vertices of label i and j

Clique-width of a graph G:
min k such that G has a k -expression.

1 2
G1 = η1,2(·1 ⊕ ·2) 1

1

2

G2 = ρ2→1(G1)⊕ ·2
1

1

2

G3 = η1,2(G2)

Rank-width and clique-width are ‘equivalent’ (O., Seymour ’06)

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.
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Solvable problems when rank-width is bounded (I)
Courcelle, Makowsky, and Rotics ’00
Every graph problem expressible in
monadic second-order logic formula (with no edge-set variables)
is solvable in time O(n3)
for graphs having rank-width at most k for fixed k .

CMR’00: Minimize w(X ) satisfying ϕ(X ) for graphs of bounded
rank-width.
CMR’01: Counting the number of true assignments in polynomial time.
(assuming unit time for arithmetic operations on R.)

Can I find a partition of vertices into three subsets such that each set
has no edges inside? (graph 3-coloring problem)

∃X1∃X2∃X3∀v∀w(v ,w ∈ X1 ⇒ ¬adj(v ,w))

∧ ∀v∀w(v ,w ∈ X2 ⇒ ¬adj(v ,w))

∧ ∀v∀w(v ,w ∈ X3 ⇒ ¬adj(v ,w)) · · ·



Solvable problems when rank-width is bounded (II)

Many other problems (that are not MS1 expressible) can be also
solved in polynomial time for graphs of bounded rank-width.

Finding a chromatic number. (Kobler and Rotics ’03)
Deciding whether a graph has a Hamiltonian cycle. (Wanke ’94)
Given a monadic second-order logic formula ϕ, list all m such that
there is a partition (X1, . . . ,Xm) of V (G) such that ϕ(Xi) is
satisfied for all i . (Rao ’07)

All of these algorithms
need the rank-decomposition of width ≤ k as an input, and
use the dynamic programming.
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Previous decision algorithm for rank-width
Is rank-width ≤ k?

Approximation Algorithm
Rank-width > k-

Rank-decomposition of width ≤ 3k
?

No

Does it have an excluded vertex-minor? No

Yes

-

?

Yes

No

For each k , there are finitely many excluded vertex-minors for the
set of graphs of rank-width ≤ k .
For a fixed graph H, there is a modulo-2 counting monadic
second-order logic formula ϕH to test whether H is a vertex-minor
of G.
It does NOT output the rank-decomposition of width ≤ k for Yes
instances.
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Previous decision algorithm for branch-width
Deciding branch-width≤ k

Any connectivity function: O(γn8k+6 log n) (O., Seymour ’07)

Suppose that branch-width ≤ k (for a connectivity function).

How can we construct a branch-decomposition of width ≤ k?

Jim Geelen (2005, in O., Seymour ’07)

We can test branch-width of connectivity functions induced by
partitions of V (by treating each part as one element).
Recursively find a pair a,b ∈ V such that
merging them does not increase branch-width. Merge them in one
part.

We can construct, in time O(γn8k+9 log n),
rank-decomposition of width ≤ k (if rwd ≤ k )
branch-decomposition of width≤ k (if bwd ≤ k ) for matroids.
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We present:

Fixed-parameter-tractable algorithm to construct
rank-decomposition of width ≤ k (if rwd ≤ k )
branch-decomposition of width≤ k (if bwd ≤ k )
for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid ≤ k?

Partition= disjoint nonempty subsets of V whose union is V .
Partitioned matroid:
a matroid with a partition of the element set.
Branch-width of a partitioned matroid:
treat each part as a single element.

Then recursively find a pair a,b such that merging them does not
increase branch-width. Merge them in one part and repeat.
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Essence of the algorithm

From a given partitioned matroid (M,P)
represented over a finite field F ,

find a ‘normalized matroid’ N such that bwd(M,P) = bwd(N).
Try to apply Hliněný’s algorithm to
decide whether branch-width of N ≤ k .

Attach a gadget to each part to create N.
Make sure that N is representable over a finite filed F ′,
where |F ′| < some function(|F |, k).
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Gadget: titanic set

Definition
A set A is titanic if
for every partition (X1,X2,X3) of A,
∃i , f (Xi) ≥ f (A).
A partition {P1,P2, . . . ,Pm} is titanic
if Pi is titanic for all i .
Width of a partition: max f (Pi).

RS1991, Graph Minors X: if bwd(f ) ≤ k , f (A) ≤ k , and A is titanic,
then V \ A is k -branched.

Theorem
If P: titanic partition of width ≤ k , and bwd(f ) ≤ k ,
then bwd(f ,P) ≤ k .



Gadget for matroids: Amalgam with uniform matroids

A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)
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A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)

uniform matroid
of 3|A|+ 1 elements, rank |A|



Gadget for matroids: Amalgam with uniform matroids

“Normalized matroid”



Graphs to Binary matroids

V

V ∗

M = matroid represented by


V V ∗

V
1

. . .
1

Adjacency
Matrix of G

.
Partition P = {v , v∗ : v ∈ V (G)}.

Rank-width of G = (Branch-width of (M,P))/2



Running time

We can output
branch-decomposition of matroids (represented over a fixed finite
field) of width ≤ k
rank-decomposition of graphs of width ≤ k

in time
O(n6) with the naive implementation.
O(n3) if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?
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Thanks for the attention!
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