Finding Branch-decompositions & Rank-decompositions

Sang-il Oum

Dept. of Mathematical Sciences
KAIST (Korea Adv. Institute of Sci. and Tech.)
Daejeon, Korea.

April 7, 2008

Joint work with Petr Hliněný

Workshop on Graph Decompositions:
Theoretical, Algorithmic and Logical Aspects
CIRM, Luminy, Marseille (France)
Connectivity

Partition \((E, F)\) of \(E(G)\):

\[v(X) = \# \text{vertices meeting both } X \text{ and } E \setminus X. \]

Partition \((E, F)\) of \(V(G)\):

\[e(X) = \# \text{edges meeting both } X \text{ and } V \setminus X. \]

\(M\): matroid, \(\lambda(X) = r(X) + r(E(M) - X) - r(E(M)).\)

A function \(f : 2^V \rightarrow \mathbb{Z}\) is a connectivity function if

(i) \(f(X) + f(Y) \geq f(X \cap Y) + f(X \cup Y),\) (submodular)
(ii) \(f(X) = f(V \setminus X),\) (symmetric)
(iii) \(f(\emptyset) = 0.\)
Connectivity

Partition \((E, F)\) of \(E(G)\):

\[v(X) = \#\text{vertices meeting both } X \text{ and } E \setminus X. \]

 Partition \((E, F)\) of \(V(G)\):

\[e(X) = \#\text{edges meeting both } X \text{ and } V \setminus X. \]

\(M\): matroid, \(\lambda(X) = r(X) + r(E(M) - X) - r(E(M)).\)

A function \(f : 2^V \to \mathbb{Z}\) is a connectivity function if

(i) \(f(X) + f(Y) \geq f(X \cap Y) + f(X \cup Y),\) (submodular)

(ii) \(f(X) = f(V \setminus X),\) (symmetric)

(iii) \(f(\emptyset) = 0.\)
Branch-decomposition of a connectivity function \(f \): a pair \((T, L) \) of a subcubic tree \(T \) and a bijection \(L : V \rightarrow \{ \text{leaves of } T \} \).

\[
\begin{align*}
7 & \quad 6 \\
8 & \quad 5 \\
1 & \quad 4 \\
2 & \quad 3
\end{align*}
\]

Branch-width \(V = E(G) \)

Carving-width \(V = V(G) \)

Branch-width of matroids
(\text{Branch-width of } \lambda) + 1.

\[
\lambda(X) = r(X) + r(E(M) - X) - r(E(M))
\]

\(V = E(M) \).
Branch-decomposition of a connectivity function f: a pair (T, L) of a subcubic tree T and a bijection $L : V \to \{\text{leaves of } T\}$.

Width of an edge e of T: $f(A_e)$, (A_e, B_e) is a partition of V given by deleting e.

Branch-width of matroids $(\text{Branch-width of } \lambda) + 1$:

$$\lambda(X) = r(X) + r(E(M) - X) - r(E(M)).$$

$$V = E(M).$$
Branch-decomposition of a connectivity function f: a pair (T, L) of a *subcubic tree* T and a *bijection* $L : V \rightarrow \{\text{leaves of } T\}$.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): $\max_e \text{width}(e)$

Branch-width

$$V = E(G)$$

Carving-width

$$V = V(G)$$

Branch-width of matroids

$$(\text{Branch-width of } \lambda) + 1.$$

$$\lambda(X) = r(X) + r(E(M) - X) - r(E(M)).$$

$$V = E(M).$$
Branch-decomposition of a connectivity function f: a pair (T, L) of a subcubic tree T and a bijection $L : V \rightarrow \{\text{leaves of } T\}$.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): $\max_e \text{width}(e)$

Branch-width: $\min_{(T, L)} \text{width}(T, L)$. (If $|V| \leq 1$, then branch-width=0)

Branch-width of matroids (Branch-width of λ) + 1.

$\lambda(X) = r(X) + r(E(M) - X) - r(E(M))$.

$V = E(G)$

$V = V(G)$

$V = E(M)$.
Branch-decomposition of a connectivity function f: a pair (T, L) of a subcubic tree T and a bijection $L: V \rightarrow \{\text{leaves of } T\}$.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): $\max_e \text{width}(e)$

Branch-width: $\min_{(T, L)} \text{width}(T, L)$. (If $|V| \leq 1$, then branch-width=0)

Branch-width of matroids
(Branch-width of λ) + 1.

$\lambda(X) = r(X) + r(E(M) - X) - r(E(M))$.

$V = E(G)$

$V = V(G)$

$V = E(M)$.
Deciding whether $\text{Branch-width} \leq k$ for fixed k

- Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
- Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
- Branch-width of matroids represented over a fixed finite field: $O(|E(M)|^3)$ (Hliněný ’05)
- Any connectivity function: $O(\gamma n^{8k+6} \log n)$ (O., Seymour ’07)
Cut-rank function: another connectivity function

\[(X, Y):\text{ partition of } V(G)\]

\[\rho_G(X) = \text{rank} \begin{pmatrix} Y \\ X \end{pmatrix} \text{ 0-1 matrix}\]

(The matrix is over the binary field \(\mathbb{GF}(2)\).)

\[\rho(\text{red vertices}) = \text{rank} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 2.\]
Rank-width

Definition of Rank-width

Rank-width of a graph $G = \text{Branch-width of the cut-rank function } \rho_G$

Graph

Rank-decomposition

Width = 2

Rank-width: min width(rank-decomposition).
Clique-width
Courcelle, Engelfriet, and Rozenberg ’93 / Courcelle, Olariu ’00

- **k-expression**: algebraic expression on vertex-labelled graphs with k labels 1, 2, \ldots, k.
 - \cdot_i a single vertex with label i
 - $G_1 \oplus G_2$ disjoint union
 - $\rho_{i \rightarrow j}(G)$ relabel vertices of label i into j
 - $\eta_{i,j}(G)$ ($i \neq j$) add edges vertices of label i and j

- **Clique-width** of a graph G:
 min k such that G has a k-expression.

Rank-width and clique-width are ‘equivalent’ (O., Seymour ’06)

$$
\text{rwd}(G) \leq \text{cwd}(G) \leq 2^{\text{rwd}(G)+1} - 1.
$$
Clique-width

Courcelle, Engelfriet, and Rozenberg ’93 / Courcelle, Olariu ’00

- **k-expression**: algebraic expression on vertex-labelled graphs with k labels $1, 2, \ldots, k$.
 - \cdot_i: a single vertex with label i
 - $G_1 \oplus G_2$: disjoint union
 - $\rho_{i \rightarrow j}(G)$: relabel vertices of label i into j
 - $\eta_{i,j}(G)$ ($i \neq j$): add edges vertices of label i and j

- **Clique-width** of a graph G:

 $\min k$ such that G has a k-expression.

Rank-width and clique-width are ‘equivalent’ (O., Seymour ’06)

$\text{rwd}(G) \leq \text{cwd}(G) \leq 2^{\text{rwd}(G)+1} - 1$.

$G_1 = \eta_{1,2}(\cdot_1 \oplus \cdot_2)$
$G_2 = \rho_{2 \rightarrow 1}(G_1) \oplus \cdot_2$
$G_3 = \eta_{1,2}(G_2)$
Clique-width

Courcelle, Engelfriet, and Rozenberg ’93 / Courcelle, Olariu ’00

- **k-expression**: algebraic expression on vertex-labelled graphs with k labels 1, 2, . . . , k.
 - \(\cdot_i \) a single vertex with label \(i \)
 - \(G_1 \oplus G_2 \) disjoint union
 - \(\rho_{i \to j}(G) \) relabel vertices of label \(i \) into \(j \)
 - \(\eta_{i,j}(G) \) (\(i \neq j \)) add edges vertices of label \(i \) and \(j \)
- **Clique-width** of a graph \(G \):
 \[\min k \text{ such that } G \text{ has a } k\text{-expression.} \]

\[
\begin{align*}
G_1 &= \eta_{1,2}(\cdot_1 \oplus \cdot_2) \\
G_2 &= \rho_{2\to1}(G_1) \oplus \cdot_2 \\
G_3 &= \eta_{1,2}(G_2)
\end{align*}
\]

Rank-width and clique-width are ‘equivalent’ (O., Seymour ’06)

\[
rwd(G) \leq cwd(G) \leq 2^{rwd(G)+1} - 1.
\]
Every graph problem expressible in *monadic second-order logic formula* (with no edge-set variables) is solvable in time $O(n^3)$ for graphs having rank-width at most k for fixed k.

CMR’00: Minimize $w(X)$ satisfying $\varphi(X)$ for graphs of bounded rank-width.

CMR’01: Counting the number of true assignments in polynomial time. (assuming unit time for arithmetic operations on \mathbb{R}.)

Can I find a partition of vertices into three subsets such that each set has no edges inside? (graph 3-coloring problem)

$$\exists X_1 \exists X_2 \exists X_3 \forall v \forall w(v, w \in X_1 \Rightarrow \neg \text{adj}(v, w))$$
$$\wedge \forall v \forall w(v, w \in X_2 \Rightarrow \neg \text{adj}(v, w))$$
$$\wedge \forall v \forall w(v, w \in X_3 \Rightarrow \neg \text{adj}(v, w)) \cdots$$
Many other problems (that are not MS$_1$ expressible) can be also solved in polynomial time for graphs of bounded rank-width.

- Finding a chromatic number. (Kobler and Rotics ’03)
- Deciding whether a graph has a Hamiltonian cycle. (Wanke ’94)
- Given a monadic second-order logic formula φ, list all m such that there is a partition (X_1, \ldots, X_m) of $V(G)$ such that $\varphi(X_i)$ is satisfied for all i. (Rao ’07)

All of these algorithms
- need the rank-decomposition of width $\leq k$ as an input, and
- use the dynamic programming.
Many other problems (that are not MS$_1$ expressible) can be also solved in polynomial time for graphs of bounded rank-width.

- Finding a chromatic number. (Kobler and Rotics ’03)
- Deciding whether a graph has a Hamiltonian cycle. (Wanke ’94)
- Given a monadic second-order logic formula φ, list all m such that there is a partition (X_1, \ldots, X_m) of $V(G)$ such that $\varphi(X_i)$ is satisfied for all i. (Rao ’07)

All of these algorithms
- need the rank-decomposition of width $\leq k$ as an input, and
- use the dynamic programming.
Previous decision algorithm for rank-width

<table>
<thead>
<tr>
<th>Is rank-width ≤ k?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation Algorithm</td>
</tr>
<tr>
<td>Rank-width > k</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Rank-decomposition of width ≤ 3k</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Does it have an excluded vertex-minor?</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

For each k, there are finitely many excluded vertex-minors for the set of graphs of rank-width ≤ k.

For a fixed graph H, there is a modulo-2 counting monadic second-order logic formula φ_H to test whether H is a vertex-minor of G.

It does NOT output the rank-decomposition of width ≤ k for Yes instances.
For each k, there are finitely many excluded vertex-minors for the set of graphs of rank-width $\leq k$.

For a fixed graph H, there is a modulo-2 counting monadic second-order logic formula φ_H to test whether H is a vertex-minor of G.

It does NOT output the rank-decomposition of width $\leq k$ for Yes instances.
For each k, there are finitely many excluded vertex-minors for the set of graphs of rank-width $\leq k$.

For a fixed graph H, there is a modulo-2 counting monadic second-order logic formula φ_H to test whether H is a vertex-minor of G.

It does NOT output the rank-decomposition of width $\leq k$ for Yes instances.
Previous decision algorithm for rank-width

For each k, there are finitely many excluded vertex-minors for the set of graphs of rank-width $\leq k$.

For a fixed graph H, there is a modulo-2 counting monadic second-order logic formula φ_H to test whether H is a vertex-minor of G.

It does NOT output the rank-decomposition of width $\leq k$ for Yes instances.
Previous decision algorithm for rank-width

Is rank-width \(\leq k \)?

<table>
<thead>
<tr>
<th>Approximation Algorithm</th>
<th>Rank-width (> k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank-decomposition of width (\leq 3k)</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Does it have an excluded vertex-minor?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Yes

- For each \(k \), there are **finitely many excluded vertex-minors** for the set of graphs of rank-width \(\leq k \).
- For a fixed graph \(H \), there is a **modulo-2 counting monadic second-order logic formula** \(\varphi_H \) to test whether \(H \) is a vertex-minor of \(G \).
- It does **NOT** output the rank-decomposition of width \(\leq k \) for Yes instances.
Previous decision algorithm for rank-width

<table>
<thead>
<tr>
<th>Is rank-width $\leq k$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation Algorithm</td>
</tr>
<tr>
<td>Rank-width $> k$</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Rank-decomposition of width $\leq 3k$</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

- For each k, there are finitely many excluded vertex-minors for the set of graphs of rank-width $\leq k$.
- For a fixed graph H, there is a modulo-2 counting monadic second-order logic formula φ_H to test whether H is a vertex-minor of G.
- It does NOT output the rank-decomposition of width $\leq k$ for Yes instances.
Previous decision algorithm for branch-width

Deciding branch-width \(\leq k \)

Any connectivity function: \(O(\gamma n^{8k+6} \log n) \) (O., Seymour ’07)

Suppose that branch-width \(\leq k \) (for a connectivity function).

How can we construct a branch-decomposition of width \(\leq k \)?

Jim Geelen (2005, in O., Seymour ’07)

- We can test branch-width of connectivity functions induced by partitions of \(V \) (by treating each part as one element).
- Recursively find a pair \(a, b \in V \) such that merging them does not increase branch-width. Merge them in one part.

We can construct, in time \(O(\gamma n^{8k+9} \log n) \),

- rank-decomposition of width \(\leq k \) (if \(\text{rwd} \leq k \))
- branch-decomposition of width \(\leq k \) (if \(\text{bwd} \leq k \)) for matroids.
Previous decision algorithm for branch-width

Deciding branch-width $\leq k$

Any connectivity function: $O(\gamma n^{8k+6} \log n)$ (O., Seymour ’07)

Suppose that branch-width $\leq k$ (for a connectivity function).

How can we construct a branch-decomposition of width $\leq k$?

Jim Geelen (2005, in O., Seymour ’07)

- We can test branch-width of connectivity functions induced by partitions of V (by treating each part as one element).
- Recursively find a pair $a, b \in V$ such that merging them does not increase branch-width. Merge them in one part.

We can construct, in time $O(\gamma n^{8k+9} \log n)$,

- rank-decomposition of width $\leq k$ (if rwd $\leq k$)
- branch-decomposition of width $\leq k$ (if bwd $\leq k$) for matroids.
We present:

Fixed-parameter-tractable algorithm to construct

- rank-decomposition of width $\leq k$ (if $\text{rwd} \leq k$)
- branch-decomposition of width $\leq k$ (if $\text{bwd} \leq k$)

for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid $\leq k$?

- **Partition**: disjoint nonempty subsets of V whose union is V.
- **Partitioned matroid**: a matroid with a partition of the element set.
- **Branch-width of a partitioned matroid**: treat each part as a single element.

Then recursively find a pair a, b such that merging them does not increase branch-width. Merge them in one part and repeat.
We present:

Fixed-parameter-tractable algorithm to construct

- rank-decomposition of width $\leq k$ (if $\text{rwd} \leq k$)
- branch-decomposition of width $\leq k$ (if $\text{bwd} \leq k$)
 for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid $\leq k$?

- Partition = disjoint nonempty subsets of V whose union is V.
- Partitioned matroid:
 a matroid with a partition of the element set.
- Branch-width of a partitioned matroid:
 treat each part as a single element.

Then recursively find a pair a, b such that merging them does not increase branch-width. Merge them in one part and repeat.
We present:

Fixed-parameter-tractable algorithm to construct

- rank-decomposition of width $\leq k$ (if rwd $\leq k$)
- branch-decomposition of width $\leq k$ (if bwd $\leq k$) for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid $\leq k$?

- Partition = disjoint nonempty subsets of V whose union is V.
- Partitioned matroid: a matroid with a partition of the element set.
- Branch-width of a partitioned matroid: treat each part as a single element.

Then recursively find a pair a, b such that merging them does not increase branch-width. Merge them in one part and repeat.
Essence of the algorithm

From a given partitioned matroid \((M, \mathcal{P})\) represented over a finite field \(F\),

- find a ‘normalized matroid’ \(N\) such that \(\text{bwd}(M, \mathcal{P}) = \text{bwd}(N)\).
- Try to apply Hliněný’s algorithm to decide whether branch-width of \(N \leq k\).

- Attach a gadget to each part to create \(N\).
- Make sure that \(N\) is representable over a finite field \(F'\), where \(|F'| < \text{some function}(|F|, k)\).
Essence of the algorithm

From a given partitioned matroid \((M, \mathcal{P})\) represented over a finite field \(F\),

- find a ‘normalized matroid’ \(N\) such that \(\text{bwd}(M, \mathcal{P}) = \text{bwd}(N)\).
- Try to apply Hliněný’s algorithm to decide whether branch-width of \(N \leq k\).

- Attach a gadget to each part to create \(N\).
- Make sure that \(N\) is representable over a finite field \(F'\), where \(|F'| < \text{some function}(|F|, k)\).
Gadget: titanic set

Definition

- A set A is **titanic** if for every partition (X_1, X_2, X_3) of A, $\exists i, f(X_i) \geq f(A)$.
- A partition $\{P_1, P_2, \ldots, P_m\}$ is **titanic** if P_i is titanic for all i.
- Width of a partition: $\max f(P_i)$.

RS1991, Graph Minors X: if $\text{bwd}(f) \leq k$, $f(A) \leq k$, and A is titanic, then $V \setminus A$ is k-branched.

Theorem

If \mathcal{P}: titanic partition of width $\leq k$, and $\text{bwd}(f) \leq k$, then $\text{bwd}(f, \mathcal{P}) \leq k$.
Gadget for matroids: Amalgam with uniform matroids

\[\lambda(A) = |A| \leq k \]
(otherwise, contract or delete some \(\in A \), maintaining the same partitioned branch-width)
$\lambda(A) = |A| \leq k$

(otherwise, contract or delete some $\in A$, maintaining the same partitioned branch-width)

uniform matroid
of $3|A| + 1$ elements, rank $|A|$
Gadget for matroids: Amalgam with uniform matroids

“Normalized matroid”
Graphs to Binary matroids

$M = \text{matroid represented by } V \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdots & \cdots & \cdots & 1
\end{pmatrix}.$

Partition $\mathcal{P} = \{v, v^* : v \in V(G)\}$.

Rank-width of $G = \frac{\text{Branch-width of } (M, \mathcal{P})}{2}$.
Running time

We can output
- branch-decomposition of matroids (represented over a fixed finite field) of width $\leq k$
- rank-decomposition of graphs of width $\leq k$

in time
- $O(n^6)$ with the naive implementation.
- $O(n^3)$ if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?
Running time

We can output

- branch-decomposition of matroids (represented over a fixed finite field) of width $\leq k$
- rank-decomposition of graphs of width $\leq k$

in time

- $O(n^6)$ with the naive implementation.
- $O(n^3)$ if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?
Running time

We can output

- branch-decomposition of matroids (represented over a fixed finite field) of width $\leq k$
- rank-decomposition of graphs of width $\leq k$

in time

- $O(n^6)$ with the naive implementation.
- $O(n^3)$ if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?

Thanks for the attention!