
Finding Branch-decompositions and

Rank-decompositions

Petr Hliněný1⋆ and Sang-il Oum2⋆⋆

1 Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic,

hlineny@fi.muni.cz
2 Department of Combinatorics and Optimization,

University of Waterloo, Waterloo, Ontario N2L 3G1 Canada,
sangil@math.uwaterloo.ca

Abstract. We present a new algorithm that can output the rank-
decomposition of width at most k of a graph if such exists. For that
we use an algorithm that, for an input matroid represented over a fixed
finite field, outputs its branch-decomposition of width at most k if such
exists. This algorithm works also for partitioned matroids. Both these
algorithms are fixed-parameter tractable, that is, they run in time O(n3)
for each fixed value of k where n is the number of vertices / elements
of the input. (The previous best algorithm for construction of a branch-
decomposition or a rank-decomposition of optimal width due to Oum
and Seymour [Testing branch-width. J. Combin. Theory Ser. B, 97(3)
(2007) 385–393] is not fixed-parameter tractable.)

Keywords: rank-width, clique-width, branch-width, fixed parameter
tractable algorithm, graph, matroid.

1 Introduction

Many graph problems are known to be NP -hard in general. But for practical
application we still need to solve them. One method to solve them is to restrict
the input graph to have a certain structure. Clique-width, defined by Courcelle
and Olariu [1], is very useful for that purpose. Many hard graph problems (in
particular all those expressible in MSO logic of adjacency graphs) are solvable
in polynomial time as long as the input graph has bounded clique-width and is
given in the form of the decomposition for clique-width, called a k-expression [2–
6]. A k-expression is an algebraic expression with the following four operations
on vertex-labeled graph with k labels: create a new vertex with label i; take the
disjoint union of two labeled graphs; add all edges between vertices of label i
and label j; and relabel all vertices with label i to have label j. However, for
fixed k > 3, it is not known how to find a k-expression of an input graph having
clique-width at most k. (If k ≤ 3, then it has been shown in [7, 8].)

⋆ Supported in part by the Institute of Theoretical Computer Science, project 1M0545.
⋆⋆ Partially supported by NSF grant 0354742.



Rank-width is another graph complexity measure introduced by Oum and
Seymour [9], aiming at construction of an f(k)-expression of the input graph
having clique-width k for some fixed function f in polynomial time. Rank-width
is defined (Section 6) as the branch-width (see Section 2) of the cut-rank function
of graphs. Rank-width turns out to be very useful for algorithms on graphs of
bounded clique-width, since a class of graphs has bounded rank-width if and only
if it has bounded clique-width. In fact, if rank-width of a graph is k, then its
clique-width lies between k and 2k+1−1 [9] and an expression can be constructed
from a rank-decomposition of width k.

In this paper, we are mainly interested in the following problem:

• Find a fixed-parameter tractable algorithm that outputs a rank-decompo-
sition of width at most k if the rank-width of an input graph (with more
than one vertex) is at most k.

The first rank-width algorithm by Oum and Seymour [9] only finds a rank-
decomposition of width at most 3k+1 for n-vertex graphs of rank-width at most
k in time O(n9 log n). This algorithm has been improved by Oum [10] to output a
rank-decomposition of width at most 3k in time O(n3). Using this approximation
algorithm and finiteness of excluded vertex-minors [11], Courcelle and Oum [12]
have constructed an O(n3)-time algorithm to decide whether a graph has rank-
width at most k. However, this is only a decision algorithm; if the rank-width is
at most k, then this algorithm verifies that the input graph contains none of the
excluded graphs for rank-width at most k as a vertex-minor. It does not output
a rank-decomposition showing that the graph indeed has rank-with at most k.

In another paper, Oum and Seymour [13] have constructed a polynomial-time
algorithm that can output a rank-decomposition of width at most k for graphs of
rank-width at most k. However, it is not fixed-parameter tractable; its running
time is O(n8k+12 log n). Obviously, it is very desirable to have a fixed-parameter
tractable algorithm to output such an “optimal” rank-decomposition, because
most algorithms on graphs of bounded clique-width require a k-expression on
their input. So far probably the only known efficient way of constructing an
expression with bounded number of labels for a given graph of bounded clique-
width uses rank-decompositions.

In this paper, we present an affirmative answer to the above problem. An
amusing aspect of our solution is that we deeply use submodular functions and
matroids to solve the rank-decomposition problem, which shows (somehow un-
expectedly) a “truly geometrical” nature of this graph-theoretical problem. In
fact we solve the following related problem on matroids, too.

• Find a fixed-parameter tractable algorithm that, given a matroid represented
by a matrix over a fixed finite field, outputs a branch-decomposition of width
at most k if the branch-width of the input matroid is at most k.

Here we actually bring together two separate lines of research; Oum and Sey-
mour’s above sketched work on rank-width and on branch-width of submodular
functions, with Hliněný’s work [14, 15] on parametrized algorithms for matroids
over finite fields, to give the final solution of our first problem — Theorem 6.3.

2



We lastly remark that the following (indeed widely expected) hardness result
has been given only recently by Fellows, Rosamond, Rotics, and Szeider [16]; it
is NP -hard to find graph clique-width. To argue that it is NP -hard to find
rank-width, we combine some known results: Hicks and McMurray Jr. [17] (in-
dependently Mazoit and Thomassé [18]) recently proved that the branch-width
of the cycle matroid of a graph is equal to the branch-width of the graph if it
is 2-connected. Hence we can reduce (Section 6) the problem of finding branch-
width of a graph to finding rank-width of a certain bipartite graph, and finding
graph branch-width is NP -hard as shown by Seymour and Thomas [19].

Our paper is structured as follows: The next section briefly introduces def-
initions of branch-width, partitions, matroids and the amalgam operation on
matroids. After that (Section 3) we explain the notion of so-called titanic par-
titions, which we further use to “model” partitioned matroids in ordinary ma-
troids. (At this point it is worth to note that partitioned matroids present the
key tool that allows us to shift from a branch-width-testing algorithm [14] to a
construction of an “optimal” branch-decomposition, see Theorem 4.4, and of a
rank-decomposition.) In Section 4, we will discuss a simple but slow algorithm
for matroid branch-decompositions. In Section 5, we will present a faster algo-
rithm. As the main application we then use our result to give an algorithm for
constructing a rank-decomposition of optimal width of a graph in Section 6.

2 Definitions

Branch-width. Let Z be the set of integers. For a finite set V , a function
f : 2V → Z is called symmetric if f(X) = f(V \ X) for all X ⊆ V , and is called
submodular if f(X)+ f(Y ) ≥ f(X ∩ Y ) + f(X ∪Y ) for all subsets X, Y of V . A
tree is subcubic if all vertices have degree 1 or 3. For a symmetric submodular
function f : 2V → Z on a finite set V , the branch-width is defined as follows.

A branch-decomposition of the symmetric submodular function f is a pair
(T, µ) of a subcubic tree T and a bijective function µ : V → {t : t is a leaf of T}.
(If |V | ≤ 1 then f admits no branch-decomposition.) For an edge e of T , the
connected components of T \ e induce a partition (X, Y ) of the set of leaves
of T . (In such a case, we say that µ−1(X) (or µ−1(Y )) is displayed by e in
the branch-decomposition (T, µ). We also say that V and ∅ are displayed by
the branch-decomposition.) The width of an edge e of a branch-decomposition
(T, µ) is f(µ−1(X)). The width of (T, µ) is the maximum width of all edges of
T . The branch-width of f , denoted by bw(f), is the minimum of the width of all
branch-decompositions of f . (If |V | ≤ 1, we define bw(f) = f(∅).)

A natural application of this definition is the branch-width of a graph, as
introduced by Robertson and Seymour [20] along with better known tree-width,
and its direct matroidal counterpart below in this section. We also refer to further
formal definition of rank-width in Section 6.

Partitions. A partition P of V is a collection of nonempty pairwise disjoint
subsets of V whose union is equal to V . Each element of P is called a part. For

3



a symmetric submodular function f on 2V and a partition P of V , let fP be a
function on 2P (also symmetric and submodular) such that fP(X) = f(∪Y ∈XY ).
The width of a partition P is f(P) = max{f(Y ) : Y ∈ P}.

Matroids. We refer to Oxley [21] in our matroid terminology. A matroid is a
pair M = (E, B) where E = E(M) is the ground set of M (elements of M),
and B ⊆ 2E is a nonempty collection of bases of M , no two of which are in an
inclusion. Moreover, matroid bases satisfy the “exchange axiom”: if B1, B2 ∈ B

and x ∈ B1 \ B2, then there is y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. A
typical example of a matroid is given by a set of vectors (forming the columns
of a matrix A) with usual linear independence. The matrix A is then called a
representation of the matroid.

All matroid bases have the same cardinality called the rank r(M) of the
matroid. Subsets of bases are called independent sets, and the remaining sets are
dependent. A matroid M is uniform if all subsets of E(M) of size r(M) are the
bases, and M is free if E(M) is a basis. The rank function rM (X) in M is the
maximum cardinality of an independent subset of a set X ⊆ E(M). For a subset
X of E, the deletion M \ X of X from M or the restriction M ↾ (E \ X) of M
to E \X , is the matroid on E \X in which Y ⊆ E \X is independent in M \X
if and only if Y is an independent set of M .

To define the branch-width of a matroid, we consider its (symmetric and
submodular) connectivity function λM (X) = rM (X) + rM (E \ X) − rM (E) + 1
defined for all subsets X ⊆ E = E(M). A “geometric” meaning is that the
subspaces spanned by X and E \X intersect in a subspace of rank λM (X)− 1.
Branch-width bw(M) and branch-decompositions of a matroid M are defined as
the branch-width and branch-decompositions of λM . A pair (M,P) is called a
partitioned matroid if M is a matroid and P is a partition of E(M). A connec-
tivity function of a partitioned matroid (M,P) is defined as λP

M . Branch-width
bw(M,P) and branch-decompositions of a partitioned matroid (M,P) are de-
fined as branch-width, branch-decompositions of λP

M .

Amalgams of matroids. Let M1, M2 be matroids on E1, E2 respectively and
T = E1∩E2. Moreover let us assume that M1 ↾ T = M2 ↾ T . If M is a matroid on
E1∪E2 such that M ↾ E1 = M1 and M ↾ E2 = M2, then M is called an amalgam
of M1 and M2 (see Fig. 1). It is known that an amalgam of two matroids need
not exist (and need not be unique). However, in a special case we shall use here
(see also Proposition 4.2), its existence easily follows from [21, 12.4.2];

Lemma 2.1. If M1 ↾ T is free, then an amalgam of M1 and M2 exists.

3 Titanic Partitions and Gadgets

Let V be a finite set and f be a symmetric submodular function on 2V . A subset
X of V is called titanic with respect to f if whenever A1, A2, A3 are pairwise
disjoint subsets of X such that A1∪A2 ∪A3 = X , there is i ∈ {1, 2, 3} such that

4



⊕ →

Fig. 1. A “geometrical” illustration of an amalgam of two matroids, in which hollow
points are the shared elements T .

f(Ai) ≥ f(X). A partition P of V is called titanic with respect to f if every
part of P is titanic with respect to f . The following lemma is equivalent to a
lemma by Geelen, Gerards, and Whittle [22, 4.4], which generalizes a result of
Robertson and Seymour [20, (8.3)].

Lemma 3.1. Let V be a finite set and f be a symmetric submodular function
on 2V of branch-width at most k. If P is a titanic partition of width at most k
with respect to f , then the branch-width of fP is at most k.

The purpose of this section is to show how a partitioned matroid may be
“modeled” by an ordinary matroid having the same branch-width. We aim
to transform a partitioned matroid (M,P) to another partitioned matroid
(M#,P#), such that they have the same branch-width and P# is a titanic
partition with respect to λM# .

It is easy to see that, in order to measure the branch-width of a partitioned
matroid (M,P), we may assume each part T of P satisfies λM (T ) = |T | + 1 if
|T | > 1. This means that M ↾ T is a free matroid. For each part T of (M,P),
if |T | > 1, then we define a matroid UT as a rank-|T | uniform matroid on the
ground set ET = E(UT ) such that |ET | = 3|T | − 2, E(M) ∩ ET = T , and
ET ∩ ET ′ = ∅ if T ′ 6= T is a part of P and |T ′| > 1. Since M ↾ T = UQ ↾ T is a
free matroid, an amalgam of M and UT exists by Lemma 2.1. Moreover, it can
be shown that the set E(UT ) is always titanic in this amalgam.

Theorem 3.2. Let (M0,P0) be a partitioned matroid and let T1, T2, . . . , Tm be
the parts of P0 having at least two elements. Assume that λM0

(Ti) = |Ti| + 1
for every i ∈ {1, 2, . . . , m}. For all i = 1, 2, . . . , m, let Mi be an amalgam of
Mi−1 and UTi

. Then the branch-width of Mm is equal to the branch-width of the
partitioned matroid (M0,P0).

We call resulting M# = Mm the normalized matroid of (M0,P0).

4 Branch-decompositions of Represented Partitioned

Matroids

We now specialize the above ideas to the case of representable matroids. We
aim to provide an efficient algorithm for testing small branch-width on such

5



matroids. For the rest of our paper, a represented matroid is the vector matroid
of a (given) matrix over a fixed finite field. We also write F-represented matroid
to explicitly refer to the field F. In other words, an F-represented matroid is a
set of points (a point configuration) in a (finite) projective geometry over F.

Not all matroids are representable over F. Particularly, in the construction
of the normalized matroid (Theorem 3.2) we apply amalgams with (uniform)
matroids which need not be F-representable. To achieve their representability,
we extend the field F to an extension field F′ = F(α) with |F|d elements in the
standard algebraic way with a polynomial root α of degree d.

Lemma 4.1. The n-element rank-r uniform matroid Ur,n is representable over
any (finite) field F such that |F| ≥ n − 1.

Proposition 4.2 (cf. Lemma 2.1). Let M1, M2 be two matroids such that
E(M1) ∩ E(M2) = T and M1 ↾ T = M2 ↾ T . If both M1, M2 are F-represented,
and the matroid M1 ↾ T is free, then there exists an amalgam of M1 and M2

which is also F-represented.

Let k be a fixed integer now. We outline a simple fixed-parameter-tractable
algorithm for testing branch-width ≤ k on F-represented partitioned matroids:

– First we extend F to a (nearest) field F′ such that |F′| ≥ 3k − 6.
– If, for a given partitioned matroid (M,P), the width of P is more than k,

then the immediate answer is NO.
– Otherwise, we construct the normalized matroid M# (Theorem 3.2), to-

gether with its vector representation over F′ (Lemma 4.1 and Proposi-
tion 4.2).

– Finally, we use the algorithm of Hliněný [14] to test the branch-width ≤ k
of M#.

Hence we conclude:

Theorem 4.3. Let k > 1 be fixed and F be a finite field. For a partitioned
matroid (M,P) represented over F, one can test in time O(|E(M)|3) (with
fixed k,F) whether the branch-width of (M,P) is at most k.

Now that we are able to test branch-width of partitioned matroids, we show
how this result can be extended to finding an appropriate branch-decomposition,
which was not known before.

Theorem 4.4. Let K be a class of matroids and let k be an integer. If there is
an f(|E(M)|, k)-time algorithm to decide whether a partitioned matroid (M,P)
has branch-width at most k for every pair of a matroid M ∈ K and a partition
P of E(M), then a branch-decomposition of the partitioned matroid (M,P) of
width at most k, if it exists, can be found in time O

(

|P|3 · f(|E(M)|, k)
)

.

The idea of the proof is due to Jim Geelen, published by Oum and Seymour in
[13]. We briefly outline the algorithm since it is a base for our improved algorithm
in the next section.

6



– If |P| ≤ 2, then it is trivial to output a branch-decomposition.
– We find a pair X, Y of disjoint parts of P such that a partitioned matroid

(M, (P \ {X, Y }) ∪ {X ∪ Y }) has branch-width at most k. Let P ′ = (P \
{X, Y }) ∪ {X ∪ Y }.

– Let (T ′, µ′) be the branch-decomposition of (M,P ′) of width at most k
obtained by calling this algorithm recursively.

– Let T be a tree obtained from T ′ by splitting the leaf µ′(X∪Y ) into two leaves
which we denote by µ(X) and µ(Y ). Let µ(Z) = µ′(Z) for all Z ∈ P\{X, Y }.
We output (T, µ) as a branch-decomposition of (M, P ) of width at most k.

Corollary 4.5. For fixed k and finite field F, we can find a branch-
decomposition of a given F-represented matroid M of branch-width at most k, if
it exists, in time O(|E(M)|6).

Remark 4.6. One can actually improve the bound in Theorem 4.4 to O
(

|P|2 ·

f(|E(M)|, k)
)

time. The basic idea is the following: At the first level of recursion
we find not only one pair of parts, but a maximal set of disjoint pairs of parts
from P that can be joined (pairwise) while keeping the branch-width at most k.
At the deeper levels of recursion we then use the same approach but process only
such pairs of parts that contain one joined at the previous level. The details of
this approach can be found further in Theorem 5.2.

5 Faster Algorithm for Branch-decompositions

Even with Remark 4.6 in account, the approach of Section 4 results in an O(n5)
(at best) parametrized algorithm for constructing a branch-decomposition of
an n-element matroid represented over a finite field. That is still far from the
running time O(n3) (note fixed k and F) of the decision algorithm in [14]. Al-
though not straightforwardly, we are able to improve the running time of our
constructive algorithm to asymptotically match O(n3) of [14] and [12].

It is the purpose of this section to present a detailed analysis of such a faster
implementation of the algorithmic idea of Theorem 4.4 in Algorithm 5.1. For
that we have to dive into fine details of the algorithms in [14], and recall few
necessary technical definitions here.

Briefly speaking, a parse tree [15] of an F-represented matroid M is a rooted
tree T , with at most two children per node, such that: The leaves of T hold
non-loop elements of M represented by points of a projective geometry over F
(or loops of M represented by the empty set). The internal nodes of T , on the
other hand, hold composition operators over F. A composition operator ⊙ is a
configuration in the projective geometry over F such that ⊙ has three subspaces
(possibly empty) distinguished as its boundaries ; two of which are used to “glue”
the matroid elements represented in the left and right subtrees, respectively,
together. The third one, upper boundary, is then used to “glue” this node further
up in the parse tree T . (Our “glue” operation, precisely the boundary sum by
[15], is analogous to the amalgam of matroids in Proposition 4.2.) The ranks
of adjacent boundaries of two composition operators in T must be equal for

7



“gluing”. A parse tree T is ≤t-boundaried if all composition operators in T
have boundaries of rank at most t. (Such a parse tree actually gives a branch-
decomposition of width at most t + 1 and vice versa.)

Algorithm 5.1. Computing a branch-decomposition of a represented parti-
tioned matroid:

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ Fr×n and a partition P of the columns of A.

(Assume n ≥ 2.)
Output: For the vector matroid M = M(A) on the columns of A, either a

branch-decomposition of the partitioned matroid (M,P) of width at most
k, or the answer NO if bw(M,P) > k.

1. Using brute force, we extend the field F to a (nearest) finite field F′ such that
|F′| ≥ 3k − 6.

2. We check whether bw(M,P) ≤ k (Theorem 4.3, in cubic time). If not, then we an-
swer NO. Otherwise we keep the normalized matroid M# and its F′-representation
A

# obtained at this step. We denote by P1 the (titanic) partition of E(M#) cor-
responding with P , and by τ (T ) ∈ P for T ∈ P1 the corresponding parts.

3. We compute a ≤3(k − 1)-boundaried parse tree T for the matroid M# which isF′-represented by A
# (regardless of P1). This is done by [14, Algorithm 4.1] in

cubic time.
4. We initially set T1 := T , Q1 := ∅, Q2 :=

˘

{T1, T2} : T1 6= T2, T1, T2 ∈ P1

¯

, and
create a new rooted forest D consisting so far of the set of disconnected nodes P1.
Then we repeat the following steps (a),(b), until P1 contains at most two parts:

(a) While there is {T1, T2} ∈ Q2 such that T1, T2 ∈ P1, we do:

i. Let Q2 := Q2 \
˘

{T1, T2}
¯

. Calling [14, Algorithm 4.9] in linear time,
we compute connectivity ℓ = λM1(T1 ∪ T2) over the parse tree T1 which
now represents a matroid M1. If ℓ > k, then we continue this cycle again
from (a).

ii. We call Algorithm 5.3 on T1 and W = T1 ∪T2 to compute a ≤(3k + ℓ−2)-
boundaried parse tree T2. The matroid M2 of T2 is actually a represented
amalgam (Proposition 4.2) of our titanic gadget — a uniform matroid
UW ≃ Uℓ−1,3ℓ−5, with the matroid M1 (formally replacing W with an
(ℓ − 1)-element free sub-matroid of UW ).

iii. We can immediately check whether branch-width bw(M2) ≤ k by applying
[14, Corollary 5.4] on T2, that is by linear-time testing of the (finitely many
by [23]) excluded minors for branch-width at most k. If bw(M2) > k, then
we continue this cycle again from (a).

iv. So (Lemma 3.1) we have bw
`

M1, P1∪{W}\{T1, T2}
´

= bw(M2) ≤ k, and
we add a new node E(UW ) adjacent to T1 and T2 in our constructed decom-
position D and make the new node the root for its connected component.
We update P1 := P2 = P1∪{E(UW )}\{T1, T2}, and Q1 := Q1∪{E(UW )}.

v. Lastly, by calling [14, Algorithm 4.1.3] on T2, we compute in quadratic
time a new ≤3(k − 1)-boundaried parse tree T3 for the matroid M2, and
set T1 := T3.

(b) When the “while” cycle (4.a) is finished, we set Q2 :=
˘

{T1, T2} : T1 6= T2,

T1 ∈ P1, T2 ∈ Q1

¯

and Q1 := ∅, and continue with (4.).

8



5. Finally, if |P1| = 2, then we connect by an edge in D the two nodes T1, T2 ∈ P1.
We output (D, τ ) as the branch-decomposition of (M,P).

Theorem 5.2. Let k be a fixed integer and F be a fixed finite field. We assume
that a vector matroid M = M(A) is given as an input together with a partition P
of E(M), where n = |E(M)| and |P| ≥ 2. Algorithm 5.1 outputs in time O(n3)
(parametrized by k and F), a branch-decomposition of the partitioned matroid
(M,P) of width at most k, or confirms that bw(M,P) > k.

Note that Algorithm 5.1 implements the general outline of Theorem 4.4.
Our proof of this theorem constitutes the following four claims holding true if
bw(M,P) ≤ k.

(I) The computation of Algorithm 5.1 maintains invariants, with respect to
the actual matroid M2 of T2, the decomposition D and current value P2

of the partition variable P1 after each call to step (4.a.iv), that
– P2 is the set of roots of D, and a titanic partition of M2 such that

bw(M2,P2) = bw(M2) ≤ k,
– λM

(

τD(S)
)

= λP2

M2
(S) for each S ⊆ P2, where τD(S) is a shortcut

for the union of τ(T ) with T running over all leaves of the connected
components of D whose root is in S (see Algorithm 5.1 step 2. for τ).

(II) Each iteration of the main cycle in Algorithm 5.1 (4.) succeeds to step
(4.a.iv) at least once.

(III) The main cycle in Algorithm 5.1 (4.) is repeated O(n) times. Moreover,
the total number of calls to the steps in (4.a) is: O(n2) for steps i,ii,iii,
and O(n) for steps iv,v.

(IV) Further defined Algorithm 5.3 (cf. step (4.a.ii)) computes correctly in
time O(n).

Having all these facts at hand, it is now easy to finish the proof. It is immedi-
ate from (I) that resulting (D, τ) is a branch-decomposition of width at most k of
(M,P). Note that all parse trees involved in the algorithm have constant width
less than 4k (see in steps (4.a.ii,v)). The starting steps (1.),(2.),(3.) of the algo-
rithm are already known to run in time O(n3) (Hliněný [14] and Theorem 4.3),
and the particular steps in (4.a) need time O(n2) ·O(n) + O(n) ·O(n2) = O(n3)
by (III) and (IV).

We are left with (IV), an immediate extension of [14, Algorithm 4.9] com-
puting λM1

(W ).

Algorithm 5.3. Computing an amalgam with a uniform matroid on the parse
tree.

Input: A ≤(3k − 1)-boundaried parse tree T1 of a matroid M1, and a set W ⊆
E(M1) such that λM1

(W ) = ℓ ≤ k.
Output: A ≤(3k + ℓ−2)-boundaried parse tree T2 representing a matroid M2 on

the ground set E(M2) = E1∪E2 where E1 = E(M1)\W and E2∩E(M1) = ∅;
such that M2 ↾ E1 = M1 ↾ E1, M2 ↾ E2 = UW ≃ Uℓ−1,3ℓ−5, and the set
E2 = E(UW ) is spanned both by E1 and by W in the (combined) point
configuration M1 ∪ M2.

9



6 Finding a Rank-Decomposition of a Graph

In this last section, we present a fixed-parameter-tractable algorithm to find a
rank-decomposition of width at most k or confirm that the input graph has rank-
width larger than k. It is a direct translation of the algorithm of Theorem 5.2.
Let us first review necessary definitions. We assume that all graphs in this section
have no loops and no parallel edges.

We have seen in Section 2 that every symmetric submodular function can
be used to define branch-width. We define a symmetric submodular function on
a graph, called the cut-rank function of a graph. For an X × Y matrix R and
A ⊆ X , B ⊆ Y , let R[A, B] be the A × B submatrix of R. For a graph G, let
A(G) be the adjacency matrix of G, that is a V × V matrix over the binary
field GF(2) such that an entry is 1 if and only if vertices corresponding to the
column and the row are adjacent in G. The cut-rank function ρG(X) of a graph
G = (V, E) is defined as the rank of the matrix A(G)[X, V \ X ] for each subset
X of V . Then ρG is symmetric and submodular, see [9]. Rank-decomposition
and rank-width and of a graph G is branch-decomposition and branch-width of
the cut-rank function ρG of the graph G, respectively. So if the graph has at
least two vertices, then the rank-width is at most k if and only if there is a
rank-decomposition of width at most k.

Now let us recall why bipartite graphs are essentially binary matroids. Oum
[11] showed that the connectivity function of a binary matroid is exactly one more
than the cut-rank function of its fundamental graph. The fundamental graph of
a binary matroid M on E = E(M) with respect to a basis B is a bipartite graph
on E such that two vertices in E are adjacent if and only if one vertex v is in B,
another vertex w is not in B, and (B \ {v}) ∪ {w} is independent in M . Given
a bipartite graph G, we can easily construct a binary matroid having G as a
fundamental graph; if (C, D) is a bipartition of V (G), then take the matrix







1 0 A(G)[C, D]
. . . C × D submatrix of

0 1 the adjacency matrix







as the representation of a binary matroid. (Thus the column indices are ele-
ments of the binary matroid and a set of columns is independent in the ma-
troid if and only if its vectors are linearly independent.) After all, finding the
rank-decomposition of a bipartite graph is equivalent to finding the branch-
decomposition of the associated binary matroid, that is essentially Theorem 5.2.

To find a rank-decomposition of non-bipartite graphs, we transform the graph
into a canonical bipartite graph. For a finite set V , let V ∗ be a disjoint copy of
V , that is, formally speaking, V ∗ = {v∗ : v ∈ V } such that v∗ 6= w for all w ∈ V
and v∗ 6= w∗ for all w ∈ V \{v}. For a subset X of V , let X∗ = {v∗ : v ∈ X}. For
a graph G = (V, E), let bip(G) be the bipartite graph on V ∪ V ∗ such that vw∗

are adjacent in bip(G) if and only if v and w are adjacent in G. Let Pv = {v, v∗}
for each v ∈ V . Then Π(G) = {Pv : v ∈ V } is a canonical partition of V (bip(G)).

10



V

V
∗

Fig. 2. Graph G and the associated bipartite graph bip(G) with its canonical partition.

Lemma 6.1. For every subset X of V (G), 2ρG(X) = ρbip(G)(X ∪ X∗).

Corollary 6.2. Let p : V (G) → Π(G) be the bijective function such that p(x) =

Px. If (T, µ) is a branch-decomposition of ρ
Π(G)
bip(G) of width k, then (T, µ ◦ p) is

a branch-decomposition of ρG of width k/2. Conversely, if (T, µ′) is a branch-
decomposition of ρG of width k, then (T, µ′ ◦ p−1) is a branch-decomposition of

ρ
Π(G)
bip(G) of width 2k. Therefore the branch-width of ρG is equal to the half of the

branch-width of ρ
Π(G)
bip(G).

Let M = mat(G) be the binary matroid on V ∪ V ∗ represented by the matrix:

(

V V ∗

V
Identity
matrix

A(G)
)

.

Since the bipartite graph bip(G) is a fundamental graph of M , we have λM (X) =
ρbip(G)(X)+1 for all X ⊆ V ∪V ∗ (see Oum [11]) and therefore (T, µ) is a branch-
decomposition of a partitioned matroid (M, Π(G)) of width k + 1 if and only if

it is a branch-decomposition of ρ
Π(G)
bip(G) of width k. Corollary 6.2 implies that a

branch-decomposition of ρ
Π(G)
bip(G) of width k is equivalent to that of ρG of width

k/2. So we can deduce the following theorem from Theorem 5.2.

Theorem 6.3. Let k be a constant. Let n ≥ 2. For an n-vertex graph G, we can
output the rank-decomposition of width at most k or confirm that the rank-width
of G is larger than k in time O(n3).

Acknowledgments The authors are very grateful to Jim Geelen for his com-
ments on the possible approach to the problem.

References

1. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3) (2000) 77–114

2. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2) (2000)
125–150

11



3. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54(2-
3) (1994) 251–266

4. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Graph-theoretic concepts in
computer science (Boltenhagen, 2001). Volume 2204 of Lecture Notes in Comput.
Sci., Berlin, Springer (2001) 117–128

5. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126(2-3) (2003) 197–221

6. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299(1-3) (2003) 719–734

7. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14(4) (1985) 926–934

8. Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial time
recognition of clique-width ≤ 3 graphs (extended abstract). In: Gonnet, Gastón H.
(ed.) et al., LATIN 2000: Theoretical informatics. 4th Latin American symposium,
Punta del Este, Uruguay, April 10-14, 2000. Volume 1776 of Lecture Notes in
Comput. Sci. Springer, Berlin (2000) 126–134

9. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin.
Theory Ser. B 96(4) (2006) 514–528

10. Oum, S.: Approximating rank-width and clique-width quickly. Submitted, an
extended abstract appeared in [24] (2006)

11. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1) (2005)
79–100

12. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjec-
ture by Seese. J. Combin. Theory Ser. B 97(1) (2007) 91–126

13. Oum, S., Seymour, P.: Testing branch-width. J. Combin. Theory Ser. B 97(3)
(2007) 385–393

14. Hliněný, P.: A parametrized algorithm for matroid branch-width. SIAM J. Com-
put. 35(2) (2005) 259–277, loose erratum (electronic)

15. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for ma-
troids. J. Combin. Theory Ser. B 96(3) (2006) 325–351

16. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization
is NP-hard. In: Proceedings of the 38th annual ACM Symposium on Theory of
Computing, ACM Press New York, NY, USA (2006) 354–362

17. Hicks, I.V., McMurray Jr., N.B.: The branchwidth of graphs and their cycle ma-
troids. J. Combin. Theory Ser. B (2007) doi:10.1016/j.jctb.2006.12.007.

18. Mazoit, F., Thomassé, S.: Branchwidth of graphic matroids. Manuscript (2005)
19. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2)

(1994) 217–241
20. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.

J. Combin. Theory Ser. B 52(2) (1991) 153–190
21. Oxley, J.G.: Matroid theory. Oxford University Press, New York (1992)
22. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Tangles, tree-decompositions, and

grids in matroids. Research Report 04-5, School of Mathematical and Computing
Sciences, Victoria University of Wellington (2004)

23. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.: On the excluded minors
for the matroids of branch-width k. J. Combin. Theory Ser. B 88(2) (2003) 261–265

24. Oum, S.: Approximating rank-width and clique-width quickly. In: Graph-theoretic
concepts in computer science (Metz, 2005). Volume 3787 of Lecture Notes in Com-
put. Sci. Springer (2005) 49–58

12



Appendix: some proofs

Theorem 3.2, proof:

Lemma A.4. Let M be a matroid and T be a subset of E(M) such that
λM (T ) = |T | + 1. Let M ′ be an amalgam of M and UT . Then the following
are true:

(1) If T ⊆ X ⊆ E(M ′), then rM (X ∩ E(M)) = rM ′(X).
(2) λM (X) = λM ′(X) for all X ⊆ E(M) \ T .
(3) The set E(UT ) is titanic in the matroid M ′.

Proof (Lemma A.4). (1) Because M ′ ↾ E(M) = M , we have rM (X ∩ E(M)) =
rM ′(X ∩ E(M)) ≤ rM ′(X).

Since T is independent in UT , we can pick a maximally independent subset
I of X in M ′ such that T ⊆ I. Since M ′ ↾ E(UT ) = UT , the set I ∩ E(UT )
is independent in UT and therefore I ∩ E(UT ) = T . So I ⊆ E(M). Therefore
rM (X ∩ E(M)) ≥ |I| = rM ′(X).

(2) Let Y = E(M ′) \X . We note that E(UT ) is a subset of Y . By definition,

λM (X) = rM (X) + rM (Y ∩ E(M)) − r(M) + 1,

λM ′(X) = rM ′(X) + rM ′(Y ) − r(M ′) + 1.

Since M ′ ↾ E(M) = M , we have rM (X) = rM ′(X). By (1), rM (Y ∩ E(M)) =
rM ′(Y ) and r(M ′) = r(M). Thus λM (X) = λM ′ (X).

(3) We claim that if X is a subset of E(UT ) and |X | ≥ |T |, then λM ′ (X) ≥
λM ′ (E(UT )). Since UT is a uniform matroid of rank |T |, we have

rM ′(X) = |T | = rM ′(E(UT )),

rM ′(E(M ′) \ X) ≥ rM ′(E(M ′) \ E(UT )).

Therefore, λM ′ (X) ≥ λM ′(E(UT )).
Now suppose that X1, X2, X3 are pairwise disjoint subsets of E(UT ). Then

there is i ∈ {1, 2, 3} such that |Xi| ≥
⌈

|E(UT )|/3
⌉

= |T | and therefore λM ′(Xi) ≥
λM ′ (E(UT )). So E(UT ) is titanic in M ′. ⊓⊔

Now let us prove Theorem 3.2. Let Pi = (P0 \ {Ti}) ∪ {E(UTi
)}. By Lemma

A.4 (2), the branch-width of (Mi,Pi) is equal to that of (Mi−1,Pi−1) and there-
fore the branch-width of (Mm,Pm) is equal to the branch-width of (M0,P0).
By Lemma A.4 (3), Pm is a titanic partition. Let k be the branch-width of
Mm. It is easy to see that the branch-width of the uniform matroid UTi

is
|Ti|+1 = λMm

(E(UTi
)). Since UTi

is a minor of Mm, the branch-width of Mm is
at least |Ti|+1 for all i and therefore the width of Pm is at most k. We conclude
that the branch-width of (Mm,Pm) is at most k by Lemma 3.1.

To finish the proof, we need to show that the branch-width of (Mm,Pm) is
at least k. Let (T, µ) be the branch-decomposition of (Mm,Pm) of width at most
k. From (T, µ), we would like to obtain a branch-decomposition (T ′, µ′) of Mm

13



whose width is at most k as follows. We first prepare branch-decompositions
(Ti, µi) of width at most k for each i. For each leaf of T corresponding to E(Ui),
we attach Ti by subdividing one edge of Ti and join the new vertex to the leaf of
T . Let T ′ be the new tree obtained by the above process for all i. The bijection
µ′ from V to leaves of T ′ is easily obtained from µi. Since λMm

(X) = |X | + 1
for all X ⊆ E(UTi

), the width of (T ′, µ′) is at most k. ⊓⊔

Theorem 4.4, proof:
At each level of recursion, we call the decision algorithm at most

(

|P|
2

)

=
O(|P|2) times. The depth of recursion is |P| − 1, and therefore the number of
calls to the decision algorithm is at most O(|P|3). Thus, the running time of the
algorithm is O

(

|P|3 · f(|E(M)|, k)
)

.
Now it remains to show that the algorithm is indeed correct. It is obvious that

in every subcubic tree with at least three leaves, there are two leaves that have
a common neighbor. Suppose that (T, µ) is a branch-decomposition of (M,P) of
width at most k. Then there are two leaves µ(X) and µ(Y ) having a common
neighbor z in T . It is easy to see that if we remove µ(X) and µ(Y ) from T and
map X ∪Y to z by µ, then (T, µ) is a branch-decomposition of (M,P ′) of width
at most k. Therefore the branch-width of (M,P ′) is at most k.

Conversely, suppose that (T ′, µ′) is the branch-decomposition of (M,P ′).
Since (M,P) has branch-width at most k, we know that λM (X) ≤ k and
λM (Y ) ≤ k. Thus (T, µ) is a branch-decomposition of (M,P) of width at most
k. ⊓⊔

Theorem 5.2, proof:
The proof of (I) essentially extends arguments of Theorem 4.4. Initially, with

M1 and P1 in place of M2, P2, all the claims of (I) obviously hold true, analo-
gously to Theorem 4.3. Each call to step (4.a.iv) then adds a new titanic (see
Section 3) set E(UW ) to P2, and hence the partition P2 remains titanic for M2

and, subsequently, bw(M2,P2) = bw
(

M1, P1 ∪ {W} \ {T1, T2}
)

= bw(M2) ≤ k
follows from Lemma 3.1. The most complex claim of (I) is the last assertion,
that λM

(

τD(S)
)

= λP2

M2

(S) for each S ⊆ P2. By induction, we may assume that

λM

(

τD(S1)
)

= λP1

M1
(S1) holds for all S1 ⊆ P1 just before this call to (4.a.iv).

Now, by Algorithm 5.3, the titanic gadget E(UW ) in the representation spans
exactly the same subspace as it is the guts of the separation given by W = T1∪T2

in M1. Therefore, for all S1 ⊆ P1 such that |S1∩{T1, T2}| 6= 1, the corresponding
S ⊆ P2 satisfies λP2

M2
(S) = λP1

M1
(S1). This proves the assertion.

To prove (II), we use that bw(M1,P1) ≤ k at each iteration of the main
cycle (4.), which directly follows from above bw(M2,P2) ≤ k. Then, by the same
arguments as in Theorem 4.4, there is a pair {T1, T2} ⊂ P1 for which (4.a) would
succeed up to step (4.a.iv) (which happens if bw

(

M1, P1∪{T1∪T2}\{T1, T2}
)

≤
k). We call such a pair T1, T2 admissible. It remains to argue that all admissible
pairs {T1, T2} ⊂ P1 belong also to Q2, which is trivial only during the first round
of (4.). For a contradiction, assume that {T1, T2} 6∈ Q2 at the least round i > 1.
Consider now the values of our variables P1,Q1,Q2 at the previous round i− 1:

14



It was {T1, T2} ∩ Q1 = ∅ by (4.b), and so {T1, T2} ⊂ P1 already at round i − 1.
That means the pair T1, T2 has been admissible all time since round i−1, but it
has not been processed only due to {T1, T2} 6∈ Q2 at round i−1. That contradicts
our least choice of i.

Concerning (III), each iteration of (4.) adds at least one new node to the
decomposition D by (II), and hence no more than O(n) iterations occur. The
precisely same argument also bounds the total number of calls to the crucial
steps (4.a.iv–v). The situation with steps i,ii,iii is more versatile, and we bound
the total number of calls to them from above by the total number of iterations
of the cycle in (4.a): During the initial round of the main cycle (4.), there are
clearly at most |Q2| = O(n2) iterations of (4.a). For each subsequent round
i > 1, the number of iteration is at most |Q2| ≤ qi · |P1| where qi = |Q1| at the
end of the previous run i−1. Hence the total number of iterations of the cycle in
(4.a) is at most O(n2) + O(n) ·

∑r

i=2 qi since always |P1| = O(n). It remains to
argue that

∑r

i=2 qi = O(n), which follows from the fact that each element ever
assigned to Q1 in step (4.a.iv) appears as an internal node of the decomposition
D, and |V (D)| = O(n). ⊓⊔

Algorithm 5.3, body:
This algorithm is an immediate extension of [14, Algorithm 4.9] computing

λM1
(W ). We describe it in terms of projective geometry and the point configu-

ration representing M1 by T1.
At the beginning we make T2 a copy of T1. The idea is to “enlarge” all the

composition operators in T2 to fully contain the guts Γ (a projective subspace
of rank ℓ − 1) of the separation of W , and then to “glue” a (constant-size)
decomposition of the uniform matroid UW ≃ Uℓ−1,3ℓ−5 to the root of T2 so that
it spans Γ . We apply leaves-to-root dynamic programming on T2 with constant-
time operations at each node, hence computing in time O(n).

At node x ∈ V (T2), we compute the subspace Σx ⊆ Γ which is spanned by
the elements of W held in the leaves below x. Knowing Σx′ and Σx′′ for the
children x′, x′′ of x in T2, it is a constant-time manipulation to determine Σx

using the composition operator ⊙ at x. (Notice that, as our algorithm is set up,
Σx is also a subspace of ⊙.) If the upper boundary of ⊙ does not fully contain
Σx, we enlarge it accordingly, and we also freely enlarge the matching boundary
at the parent node of x. Note that Σr = Γ will become the upper boundary of
the root node r.

After finishing that, we take an arbitrary parse tree T3 of the uniform matroid
UW ≃ Uℓ−1,3ℓ−5, and add to T2 a new root node r′ adjacent to the former root
of T2 and the root of T3. The composition operator at r′ “glues” UW directly to
Σr. Finally, we strip from T2 all leaves holding the points of W . (This is trivial
since our definition of a parse tree allows nodes with only one descendant.) ⊓⊔

15


