
Finding Branch-decompositions &
Rank-decompositions

Sang-il Oum

Dept. of Combinatorics and Optimization
Faculty of Mathematics,

Univ. of Waterloo.

July, 2007

Joint work with Petr Hliněný
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A function f : 2V → Z is a connectivity function if
(i) f (X ) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ), (submodular)
(ii) f (X ) = f (V \ X ), (symmetric)
(iii) f (∅) = 0.

v(X ) =number of
vertices meeting
both X and E \X .

e(X ) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X ) =
r(X ) + r(E(M)− X )− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X ) = rank A[X , V \ X ].
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Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.
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Branch-width
Carving-width M: matroid, λ(X ) =

r(X ) + r(E(M)− X )− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X ) = rank A[X , V \ X ].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)
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Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given by
deleting e.
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Width of (T , L): maxe width(e)
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Constructing Branch-decomposition of width ≤ k
Suppose that branch-width ≤ k (for a connectivity function).

How can we construct a branch-decomposition of width ≤ k?

Jim Geelen (2005, in OS’07)

We can test branch-width of connectivity functions induced by
partitions of V (by treating each part as one element).
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width. Merge them in one
part.

We can construct, in time O(γn8k+9 log n),
rank-decomposition of width ≤ k (if rwd ≤ k )
branch-decomposition of width≤ k (if bwd ≤ k ) for matroids.
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We present:

Fixed-parameter-tractable algorithm to construct
rank-decomposition of width ≤ k (if rwd ≤ k )
branch-decomposition of width≤ k (if bwd ≤ k )
for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid ≤ k?

Partition= disjoint nonempty subsets of V whose union is V .
Partitioned matroid:
a matroid with a partition of the element set.
Branch-width of a partitioned matroid:
treat each part as a single element.

Then recursively find a pair a, b such that merging them does not
increase branch-width. Merge them in one part and repeat.
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Essence of the algorithm

From a given partitioned matroid (M,P)
represented over a finite field F ,

find a ‘normalized matroid’ N such that bwd(M,P) = bwd(N).
Try to apply Hliněný’s algorithm to
decide whether branch-width of N ≤ k .

Attach a gadget to each part to create N.
Make sure that N is representable over a finite filed F ′,
where |F ′| < some function(|F |, k).
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Gadget: titanic set

Definition
A set A is titanic if
for every partition (X1, X2, X3) of A,
∃i , f (Xi) ≥ f (A).
A partition {P1, P2, . . . , Pm} is titanic
if Pi is titanic for all i .
Width of a partition: max f (Pi).

RS1991, Graph Minors X: if bwd(f ) ≤ k , f (A) ≤ k , and A is titanic,
then V \ A is k -branched.

Theorem
If P: titanic partition of width ≤ k , and bwd(f ) ≤ k ,
then bwd(f ,P) ≤ k .



Gadget for matroids: Amalgam with uniform matroids

A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)
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A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)

uniform matroid
of 3|A|+ 1 elements, rank |A|



Gadget for matroids: Amalgam with uniform matroids

“Normalized matroid”



Graphs to Binary matroids

V

V ∗

M = matroid represented by


V V ∗

V
1

. . .
1

Adjacency
Matrix of G

.

Partition P = {v , v∗ : v ∈ V (G)}.

Rank-width of G = (Branch-width of (M,P))/2



Running time

We can output
branch-decomposition of matroids (represented over a fixed finite
field) of width ≤ k
rank-decomposition of graphs of width ≤ k

in time
O(n6) with the naive implementation.
O(n3) if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?

Thanks for the attention!
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