
Finding Branch-decompositions &
Rank-decompositions

Sang-il Oum

Dept. of Combinatorics and Optimization
Faculty of Mathematics,

Univ. of Waterloo.

July, 2007

Joint work with Petr Hliněný

Dagstuhl workshop 2007.

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number of
vertices meeting
both X and E \X .

e(X) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number of
vertices meeting
both X and E \X .

e(X) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number of
vertices meeting
both X and E \X .

e(X) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number of
vertices meeting
both X and E \X .

e(X) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number of
vertices meeting
both X and E \X .

e(X) =number of
edges meeting
both X and
V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8 f ({1, 2, 3, 4})

Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given by
deleting e.

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

,2})
f ({3,4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given by
deleting e.

Width of (T , L): maxe width(e)

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

,2})
f ({3,4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given by
deleting e.

Width of (T , L): maxe width(e)

Branch-width: min(T ,L) width(T , L).
(If |V | ≤ 1, then branch-width=0)

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

,2})
f ({3,4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given by
deleting e.

Width of (T , L): maxe width(e)

Branch-width: min(T ,L) width(T , L).
(If |V | ≤ 1, then branch-width=0)

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Branch-width
Carving-width M: matroid, λ(X) =

r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A = adj matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar ’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)
Any connectivity function: O(γn8k+6 log n) (Oum and Seymour
’07)

Constructing Branch-decomposition of width ≤ k
Suppose that branch-width ≤ k (for a connectivity function).

How can we construct a branch-decomposition of width ≤ k?

Jim Geelen (2005, in OS’07)

We can test branch-width of connectivity functions induced by
partitions of V (by treating each part as one element).
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width. Merge them in one
part.

We can construct, in time O(γn8k+9 log n),
rank-decomposition of width ≤ k (if rwd ≤ k)
branch-decomposition of width≤ k (if bwd ≤ k) for matroids.

Constructing Branch-decomposition of width ≤ k
Suppose that branch-width ≤ k (for a connectivity function).

How can we construct a branch-decomposition of width ≤ k?

Jim Geelen (2005, in OS’07)

We can test branch-width of connectivity functions induced by
partitions of V (by treating each part as one element).
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width. Merge them in one
part.

We can construct, in time O(γn8k+9 log n),
rank-decomposition of width ≤ k (if rwd ≤ k)
branch-decomposition of width≤ k (if bwd ≤ k) for matroids.

We present:

Fixed-parameter-tractable algorithm to construct
rank-decomposition of width ≤ k (if rwd ≤ k)
branch-decomposition of width≤ k (if bwd ≤ k)
for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid ≤ k?

Partition= disjoint nonempty subsets of V whose union is V .
Partitioned matroid:
a matroid with a partition of the element set.
Branch-width of a partitioned matroid:
treat each part as a single element.

Then recursively find a pair a, b such that merging them does not
increase branch-width. Merge them in one part and repeat.

We present:

Fixed-parameter-tractable algorithm to construct
rank-decomposition of width ≤ k (if rwd ≤ k)
branch-decomposition of width≤ k (if bwd ≤ k)
for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid ≤ k?

Partition= disjoint nonempty subsets of V whose union is V .
Partitioned matroid:
a matroid with a partition of the element set.
Branch-width of a partitioned matroid:
treat each part as a single element.

Then recursively find a pair a, b such that merging them does not
increase branch-width. Merge them in one part and repeat.

We present:

Fixed-parameter-tractable algorithm to construct
rank-decomposition of width ≤ k (if rwd ≤ k)
branch-decomposition of width≤ k (if bwd ≤ k)
for matroids represented over a fixed finite field.

An essential step is:

Can we test branch-width of a partitioned matroid ≤ k?

Partition= disjoint nonempty subsets of V whose union is V .
Partitioned matroid:
a matroid with a partition of the element set.
Branch-width of a partitioned matroid:
treat each part as a single element.

Then recursively find a pair a, b such that merging them does not
increase branch-width. Merge them in one part and repeat.

Essence of the algorithm

From a given partitioned matroid (M,P)
represented over a finite field F ,

find a ‘normalized matroid’ N such that bwd(M,P) = bwd(N).
Try to apply Hliněný’s algorithm to
decide whether branch-width of N ≤ k .

Attach a gadget to each part to create N.
Make sure that N is representable over a finite filed F ′,
where |F ′| < some function(|F |, k).

Essence of the algorithm

From a given partitioned matroid (M,P)
represented over a finite field F ,

find a ‘normalized matroid’ N such that bwd(M,P) = bwd(N).
Try to apply Hliněný’s algorithm to
decide whether branch-width of N ≤ k .

Attach a gadget to each part to create N.
Make sure that N is representable over a finite filed F ′,
where |F ′| < some function(|F |, k).

Gadget: titanic set

Definition
A set A is titanic if
for every partition (X1, X2, X3) of A,
∃i , f (Xi) ≥ f (A).
A partition {P1, P2, . . . , Pm} is titanic
if Pi is titanic for all i .
Width of a partition: max f (Pi).

RS1991, Graph Minors X: if bwd(f) ≤ k , f (A) ≤ k , and A is titanic,
then V \ A is k -branched.

Theorem
If P: titanic partition of width ≤ k , and bwd(f) ≤ k ,
then bwd(f ,P) ≤ k .

Gadget for matroids: Amalgam with uniform matroids

A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)

Gadget for matroids: Amalgam with uniform matroids

A

λ(A) = |A| ≤ k
(otherwise, contract or delete some ∈ A,
maintaining the same partitioned
branch-width)

uniform matroid
of 3|A|+ 1 elements, rank |A|

Gadget for matroids: Amalgam with uniform matroids

“Normalized matroid”

Graphs to Binary matroids

V

V ∗

M = matroid represented by


V V ∗

V
1

. . .
1

Adjacency
Matrix of G

.

Partition P = {v , v∗ : v ∈ V (G)}.

Rank-width of G = (Branch-width of (M,P))/2

Running time

We can output
branch-decomposition of matroids (represented over a fixed finite
field) of width ≤ k
rank-decomposition of graphs of width ≤ k

in time
O(n6) with the naive implementation.
O(n3) if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?

Thanks for the attention!

Running time

We can output
branch-decomposition of matroids (represented over a fixed finite
field) of width ≤ k
rank-decomposition of graphs of width ≤ k

in time
O(n6) with the naive implementation.
O(n3) if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?

Thanks for the attention!

Running time

We can output
branch-decomposition of matroids (represented over a fixed finite
field) of width ≤ k
rank-decomposition of graphs of width ≤ k

in time
O(n6) with the naive implementation.
O(n3) if combined Hliněný’s algorithm more seriously.

(n: number of elements in a matroid, or number of vertices in a graph)

Can you do this for arbitrary connectivity functions?

Thanks for the attention!

