
CIRCLE GRAPH OBSTRUCTIONS UNDER PIVOTING

JIM GEELEN AND SANG-IL OUM

Abstract. A circle graph is the intersection graph of a set of
chords of a circle. The class of circle graphs is closed under pivot-
minors. We determine the pivot-minor-minimal non-circle-graphs;
there 15 obstructions. These obstructions are found, by computer
search, as a corollary to Bouchet’s characterization of circle graphs
under local complementation. Our characterization generalizes
Kuratowski’s Theorem.

1. Introduction

The class of circle graphs is closed with respect to vertex-minors and
hence also pivot-minors. (Definitions are postponed until Section 2.)
Bouchet [5] gave the following characterization of circle graphs; the
graphs W5, F7, and W7 are defined in Figure 1.

Theorem 1.1 (Bouchet). A graph is a circle graph if and only it has
no vertex-minor that is isomorphic to W5, F7, or W7.

Figure 1. W5, W7, and F7: Excluded vertex-minors for
circle graphs.

As a corollary to Bouchet’s theorem we prove the following result.

Theorem 1.2. A graph is a circle graph if and only it has no pivot-
minor that is isomorphic to any of the graphs depicted in Figure 2.

In addition we prove the following related theorem.
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Figure 2. Excluded pivot-minors for circle graphs

Theorem 1.3. Let G be a class of simple graphs closed under vertex-
minors. If the excluded vertex-minors for G each have at most k ver-
tices, then the excluded pivot-minors for G each have at most 2k − 1
vertices.

The bounds in Theorem 1.3 are not tight enough to be of practical
use in proving Theorem 1.2. We show that the excluded pivot-minors
can be determined from the excluded vertex-minors by a simple in-
ductive search. Before we discuss this method further, we will briefly
discuss the motivation.

De Fraysseix [7] showed that bipartite circle graphs are fundamental
graphs of planar graphs. It is then straightforward to show that The-
orem 1.2 is a generalization of Kuratowski’s Theorem. In fact, Theo-
rem 1.2 applied to bipartite circle graphs is equivalent to the following
result, initially due to Tutte [11]: a binary matroid is the cycle matroid
of a planar graph if and only if it does not contain a minor isomorphic
to F7, M(K5), M(K3,3), or to the dual of any of these matroids. The
fundamental graphs of matroids are bipartite and it is straightforward
to verify that a pivot-minor of a fundamental graph of a binary matroid
(or graph) is a fundamental graph of a minor of the given matroid (or
graph). Finally, the graphs H1, H2, and F7 are fundamental graphs of
K3,3, K5, and F7 respectively. (See Figure 3 for drawings of H1 and
H2.)

The primary motivation for Theorem 1.2 is as a step towards char-
acterizing PU-orientable graphs (defined in Section 2). Bipartite PU-
orientable graphs are the fundamental graphs of regular matroids. Sey-
mour’s decomposition theorem [10] provides a good characterization
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Figure 3. H1, H2, and Q3

and a recognition algorithm for regular matroids and we hope to ob-
tain similar results for PU-orientable graphs. Bouchet [2] proved that
circle graphs admit PU-orientations and we hope that the class of cir-
cle graphs will play a central role in a decomposition theorem for PU-
orientable graphs. The class of PU-orientable graphs is closed under
pivot-minors but not under vertex-minors, and hence it is desirable to
have the excluded pivot minor for the class of circle graphs. Although
the class of PU-orientable graphs is not closed under local complemen-
tation, Bouchet’s theorem does imply the following curious connection
between PU-orientability and circle graphs: a graph is a circle graph if
and only if every locally equivalent graph is PU-orientable.

We prove Theorem 1.2 by studying the graphs that are pivot-minor-
minimal while containing a vertex-minor isomorphic to one of W5, F7,
or W7. We require the following two lemmas that are proved in Sec-
tion 3. The proofs are direct but inelegant. These facts are transparent
in the context of isotropic systems; see Bouchet [3]. However, the direct
proofs are shorter than the requisite introduction to isotropic systems.

Lemma 1.4 (Bouchet [3, (9,2)]). Let H be a vertex-minor of a simple
graph G, let v ∈ V (G) − V (H), and let w be a neighbour of v. Then
H is a vertex-minor of one of the graphs G − v, (G ∗ v) − v, and
(G× vw)− v.

Note that the vertex w in Lemma 1.4 is an arbitrary neighbour of
v. Indeed, if w1 and w2 are neighbours of v, then G × vw1 = (G ×
vw2)×w1w2; see [8, Proposition 2.5]. (This fact is elementary and has
been known for more than 20 years, but we could not find an earlier
reference.) Therefore (G×vw1)−v is pivot-equivalent to (G×vw2)−v.
We let G/v denote the graph (G× vw)− v for some neighbour w of v;
if v has no neighbours then we let G/v denote G− v. Thus G/v is well
defined up to pivot-equivalence and, hence, also up to local-equivalence.

Let H be a graph. A graph G is called H-unique if G contains H as a
vertex-minor and, for each vertex v ∈ V (G), at most one of the graphs
G− v, (G ∗ v)− v, and G/v has a vertex-minor isomorphic to H. Note
that if G is a graph that is pivot-minor-minimal with the property that
it has a vertex-minor isomorphic to H, then G is H-unique.
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Figure 4. W5-unique graphs

Lemma 1.5. Let G be an H-unique graph and let G′ be a vertex-minor
of G that contains H as a vertex-minor. Then G′ is H-unique.

As an immediate corollary to Lemma 1.5 we obtain the following
result.

Lemma 1.6. Let H be a simple graph and let k > |V (H)|. If there
is no H-unique graph on k vertices, then every H-unique graph has at
most k − 1 vertices.

Using Lemma 1.6 and computer search we prove the following three
results. The computation takes less than 3 minutes on a SUN Work-
station; we use the package NAUTY for isomorphism-testing.

Lemma 1.7. Every W5-unique graph is isomorphic to one of the 11
graphs depicted in Figure 4.

Lemma 1.8. If G is W7-unique then either G is locally equivalent to
W7 or G has a vertex-minor isomorphic to W5.

Lemma 1.9. If G is F7-unique then either G is locally equivalent to
F7 or Q3, or G has a vertex-minor isomorphic to W5. (The graph Q3

is depicted in Figure 3.)

Theorem 1.1 and the above lemmas imply that every pivot-minor-
minimal non-circle-graph is locally-equivalent to W7, F7, Q3, or to one
of the 11 graphs depicted in Figure 4. The number below each of
the graphs is the number of pair-wise non-isomorphic graphs that are
locally equivalent to it; in total there are 4239 such graphs. In addition,
there are 9 + 22 + 4 graphs locally equivalent to F7, W7, and Q3. To
prove Theorem 1.2, it suffices to check which of these 4274 graphs is a
pivot-minor-minimal non-circle-graph. This is also done by computer
and takes less than 3 minutes. This includes 2.5 minutes to generate
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the 4274 graphs, 3 seconds to generate all circle graphs up to 9 vertices,
and 2 seconds to test which of the 4274 graphs is a pivot-minor-minimal
non-circle-graph.

In the context of delta-matroids, Theorem 1.2 is an excluded-minor
characterization for the class of even eulerian delta-matroids. Using
Lemmas 1.7, 1.8, and 1.9 one can prove that all excluded-minors for
the class of eulerian delta-matroids have at most 10 elements. We
discuss this further in Section 4.

We conclude the introduction by proving the following theorem that
immediately implies Theorem 1.3.

Theorem 1.10. Let H be a simple graph with |V (H)| = k. Then ever
H-unique graph has at most 2k − 1 vertices.

Proof. Let G be an H-unique graph. Up to local equivalence we may
assume that H is an induced subgraph of G.

Consider any vertex v ∈ V (G)−V (H). Let Gv denote the subgraph
of G induced by the vertex set V (H) ∪ {v}. By Lemma 1.5, Gv is H-
unique. Note that Gv−v = H and, hence, (Gv ∗v)−v 6= H. Therefore
v has at least two neighbours in V (H).

Now consider any two distinct vertices u, v ∈ V (G)−V (H). Let Guv

denote the subgraph of G induced by the vertex set V (H)∪{u, v}. By
Lemma 1.5, Guv is H-unique. Note that Guv − u − v = H. Suppose
that u and v both have the same neighbours among V (H). If u and
v are adjacent, then Guv × uv = Guv and, hence, both Guv − u and
Guv/u have H as a vertex-minor. If u and v are not adjacent, then
Guv ∗ u ∗ v = Guv and, hence, both Guv − u and (Guv ∗ u) − u have
H as a vertex-minor. In either case we contradict the fact that Guv is
H-unique, and hence u and v have distinct neighbours among V (H).

In summary, each vertex in V (G)− V (H) has at least 2 neighbours
in V (H) and no two vertices in V (G)−V (H) have the same neighbours
in V (H). Therefore |V (G)| ≤ |V (H)|+ 2k − (k + 1) = 2k − 1. �

We remark that we can slightly improve the above bound to 2k−2k−
1 when the graph H has minimum degree at least 2 and H has no “twin”
vertices. Two distinct vertices u, v ∈ V (H) are twins if NH(u)−{v} =
NH(v)− {u}); here NH(v) denotes the set of all neighbours of v.

2. Definitions

We assume that readers are familiar with elementary definitions in
matroid theory including cycle matroids, binary matroids, regular ma-
troids, duality, and minors; see Oxley [9]. However, all references to
matroids are peripheral to the main results in the paper.
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All graphs in this paper are finite. The following definitions are
mostly well-known.

Circle graphs. A chord of a circle is a straight line segment whose
two ends lie on the circle. Let V be a finite set of chords of a circle;
the intersection graph of V is the simple graph G = (V, E) where
uv ∈ E if and only if the chords u and v intersect. A circle graph is
the intersection graph of a set of chords of a circle.

PU-orientable graphs. A principally unimodular matrix is a square
matrix over the reals such that each non-singular principal submatrix
has determinant ±1. Let G = (V, E) be an orientation of a simple
graph. The signed adjacency matrix of G is the V × V matrix (auv)
where auv = 1 when uv ∈ E, auv = −1 when vu ∈ E, and auv = 0 oth-
erwise. A simple graph G is PU-orientable if it admits an orientation
whose signed adjacency matrix is principally unimodular.

Local complementation and vertex-minors. Let v be a vertex of
a simple graph G. The graph G∗v is the simple graph obtained from G
by applying local complementation at v; that is, if u and w are distinct
neighbours of v in G, then uw is an edge in exactly one of G and G∗ v.
If G′ can be obtained by a sequence of local complementations from G,
then we say that G and G′ are locally equivalent. A vertex-minor of
G is an induced subgraph of any graph that is locally equivalent to G.
(An induced subgraph is one that is obtained by vertex deletion.)

Pivot-minors. Let uv be an edge of a simple graph G. Let G× uv =
G∗u∗v∗u; this operation is referred to as pivoting. It is straightforward
to verify that G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v and, hence, that pivoting
is well defined. If G′ can be obtained by a sequence of pivots from G,
the we say that G and G′ are pivot equivalent. A pivot-minor of G is
an induced subgraph of any graph that is pivot equivalent to G.

Fundamental graphs. Let B be a basis of a matroid M . The fun-
damental graph of M with respect to B is the graph with vertex set
E(M) and edges uv where u ∈ B, v ∈ E(M)−B, and (B−{u})∪{v}
is a basis of M . Note that the fundamental graph is bipartite. A funda-
mental graph of a graph G is a fundamental graph of the cycle matroid
of G.
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3. Vertex-minors

In this section we prove Lemmas 1.4 and 1.5. As noted in the
introduction, these results are easy in the context of isotropic sys-
tems [3], but the direct proofs given here avoid a lengthy introduction
to isotropic systems. We start by proving the following key lemma.

Lemma 3.1. Let G = (V, E) be a simple graph and let v, w ∈ V .

(1) If v 6= w and vw 6∈ E, then (G ∗ w) − v, (G ∗ w ∗ v) − v, and
(G ∗ w)/v are locally equivalent to G − v, G ∗ v − v, and G/v
respectively.

(2) If v 6= w and uv ∈ E, then (G ∗ w) − v, (G ∗ w ∗ v) − v, and
(G ∗w)/v are locally equivalent to G− v, G/v, and (G ∗ v)− v
respectively.

(3) If v = w, then (G ∗w)− v, ((G ∗w) ∗ v)− v, and (G ∗w)/v are
locally equivalent to (G ∗ v)− v, G− v, and G/v respectively.

Proof. We first consider the case that v 6= w. It is obvious that (G ∗
w)− v = (G− v) ∗ w and hence that (G ∗ w)− v is locally equivalent
to G− v.

Suppose that vw ∈ E. Note that (G∗w∗v)−v = (G∗w∗v∗w∗w)−v =
((G × vw) − v) ∗ w = (G/v) ∗ w and hence (G ∗ w ∗ v) − v is locally
equivalent to G/v. Similarly, (G ∗ w)/v = ((G ∗ w) × vw) − v =
(G∗w ∗w ∗v ∗w)−v = ((G∗v)−v)∗w and hence ((G∗w)/v is locally
equivalent to (G ∗ v)− v.

Now suppose that vw 6∈ E. Note that (G ∗ w ∗ v) − v = (G ∗
v ∗ w) − v = ((G ∗ v) − v) ∗ w and hence (G ∗ w ∗ v) − v is locally
equivalent to (G ∗ v) − v. Let u be a neighbour of v. If uw 6 E, then
((G∗w)×uv)−v = ((G×uv)∗w)−v = (G/v)∗w and hence ((G∗w)/v
is locally equivalent to G/v. Hence we may assume that uw ∈ E. Now
(G ∗w)/v = (G ∗w ∗ u ∗ v ∗ u)− v and (G ∗w ∗ u ∗ v ∗ u)− v is locally
equivalent to (G ∗w ∗ u ∗ v ∗w)− v = (G ∗w ∗ u ∗w ∗w ∗ v ∗w)− v =
(G× uw × vw)− v = (G× uv)− v = G/v, as required.

Now suppose that v = w. Then (G ∗ w) − v = (G ∗ v) − v and
(G ∗ w ∗ v) − v = G − v. Moreover, if uv ∈ E, then (G ∗ w)/v =
((G∗v)×uv)−v = (G∗v∗v∗u∗v)−v = (G∗u∗v)−v = ((G×uv)−v)∗u
and hence (G ∗ w)− v is locally equivalent to G/v. �

We now prove Lemma 1.4 which we restate here for convenience.
This lemma appeared in [3, (9.2)].

Lemma 3.2. Let H be a vertex-minor of a simple graph G and let
v ∈ V (G) − V (H). Then H is a vertex-minor of one of the graphs
G− v, (G ∗ v)− v, and G/v.
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Proof. If H is a vertex-minor of G, then there is a graph G′ that is
locally equivalent to G such that H is an induced subgraph of G. Now
G′ − v contains H as a vertex-minor. Since G is locally equivalent to
G′ the result follows by Lemma 3.1. �

Finally we now prove Lemma 1.5 which again we restate for conve-
nience.

Lemma 3.3. Let G be an H-unique graph and let G′ be a vertex-minor
of G that contains H as a vertex-minor. Then G′ is H-unique.

Proof. By Lemma 3.1 every graph that is locally equivalent to G is
H-unique. Then, inductively, it suffices to consider the case that G′ =
G−v for some vertex v. If G−v is not H-unique, then there is a vertex
w 6= v such that at least two of (G − v) − w, ((G − v) ∗ w) − w, and
(G−v)/w contain H as a vertex-minor. But then at least two of G−w,
(G ∗ w)− w, and G/w contain H as a vertex-minor, contradicting the
fact that G is H-unique. �

4. Eulerian delta-matroids

In this section we prove the following theorem.

Theorem 4.1. The excluded minors for the class of eulerian delta-
matroids have at most 10 elements.

The class of eulerian delta-matroids is contained in the class of binary
delta-matroids. Bouchet and Duchamp [6] determined the excluded
minors for the class of binary delta-matroids; the the largest of these
has four elements. Then to prove Theorem 4.1, it suffices to consider
binary delta-matroids. We give a terse introduction to binary delta-
matroids and to eulerian delta matroids, for more detail the reader is
referred to Bouchet [1, 4].

Delta-matroids and minors. For sets X and Y , we let X∆Y denote
the symmetric difference of X and Y . A delta-matroid is a pair M =
(V,F) of a finite set V and a nonempty set F of subsets of V , satisfying
the symmetric exchange axiom: if A, B ∈ F and x ∈ A∆B, then there
is y ∈ A∆B such that A∆{x, y} ∈ F . The sets in F are called feasible
sets of M . For X ⊆ V , we abuse notation be letting M∆X denote the
set-system (V,F ′) where F ′ = {F∆X : F ∈ F}. It is straightforward
to verify that M∆X is a delta-matroid. Now let M \ X denote the
set-system (V −X,F ′′) where F ′′ = {F ⊆ V −X : F ∈ F}. If M \X
has at lease one feasible set, then M \ X is a delta-matroid. For any
sets X, Y ⊆ V , if (M∆X)\Y has a feasible set, then we call it a minor
of M . Two delta-matroids M1, M2 are equivalent if M1 = M2∆X for
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some set X. A delta-matroid is even if its feasible sets either all have
even cardinality or all have odd cardinality.

Binary delta-matroids. Let A be a symmetric V × V matrix over
GF(2). For X ⊆ V , we let A[X] denote the principal submatrix of
A induced by X. A subset X of V is called feasible if A[X] is non-
singular. By convention, A[∅] is non-singular. We let FA denote the
set of all feasible sets and let DM(A) = (V,FA). Bouchet [4] proved
that DM(A) is indeed a delta-matroid. A delta-matroid is binary if it
is equivalent to DM(A) for some symmetric matrix A. We remark that
DM(A) is even if and only if the diagonal of A is zero.

Eulerian delta-matroids. Let G = (V, E) be a graph and let X ⊆ V .
Let A(G, X) denote the symmetric V × V matrix obtained from the
adjacency matrix of G by changing the diagonal entries indexed by X
from 0 to 1. Thus any symmetric binary matrix can be written as
A(G, X) for the appropriate choice of G and X. The binary delta-
matroid DM(A(G, X))∆Y is eulerian if and only if G is a circle graph.
This is the most convenient definition for the purpose of proving The-
orem 4.1, but eulerian delta-matroids arise more naturally in relation
to euler tours in a connected 4-regular graph; see Bouchet [1].

Bouchet and Duchamp [6] proved that the class of binary delta-
matroids is minor-closed. The class of eulerian delta-matroids is also
minor-closed, because the class of circle graphs is closed under local
complementation.

If v ∈ X, then it is straightforward to prove that

DM(A(G, X))∆{v} = DM(A(G ∗ v, X∆NG(v)).

Similarly, if uv ∈ E and u, v 6∈ X, then

DM(A(G, X))∆{u, v} = DM(A(G× uv,X)).

The operations A(G, X) → A(G ∗ x, X∆NG(v)), for v ∈ X, and
A(G, X) → A(G × uv,X), for uv ∈ E and u, v 6∈ X, are referred to
as elementary pivots. If DM(A(G1, X1)) = DM(A(G2, X2))∆Y , then
we can obtain A(G2, X2) from A(G1, X1) via a sequence of elementary
pivots, implied by the uniqueness of binary representation for binary
delta-matroids; see Bouchet and Duchamp [6, Property 3.1].

Lemma 4.2. Let G = (V, E) be a graph, let X ⊆ V , and let v ∈ V .
If DM(A(G, X)) is an excluded minor for the class of eulerian delta-
matroids, then at least two of the graphs G− v, (G ∗ v)− v, and G/v
are circle graphs.
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Proof. Suppose that v ∈ X. Then DM(A(G, X)) \ {v} and
(DM(A(G, X))∆{v}) \ {v} are both eulerian. Thus G − v and
(G ∗ v) − v are both circle graphs, as required. Now suppose that
v 6∈ X. Since G − v is a circle graph but G is not, NG(v) 6= ∅; let
w ∈ NG(v). Now suppose that w 6∈ X. Then DM(A(G, X)) \ {v} and
(DM(A(G, X))∆{v, w}) \ {v} are both eulerian. Thus G− v and G/v
are both circle graphs, as required. Finally suppose that w ∈ X. Now
DM(A(G, X))∆{w} = DM(A(G∗w,X∆NG(w))) is an excluded minor
for the class of eulerian delta-matroids and v ∈ X∆NG(w). Then, by
the first case in the proof, (G∗w)−v and ((G∗w)∗v)−v are both circle
graphs. So, by Lemma 3.1, G− v and G/v are both circle graphs. �

Lemma 4.2 and Theorem 1.1 imply that, if DM(A(G, X)) is an ex-
cluded minor for the class of eulerian delta-matroids, then G is W5-,
W7-, or F7-unique. Then Theorem 4.1 follows immediately from Lem-
mas 1.7, 1.8 and 1.9.

By computer search, we found 166 non-equivalent binary excluded
minors for the class of eulerian delta-matroids. Combined with the
excluded minors for the class of binary delta-matroids, we conclude
that there are exactly 171 excluded minors for the class of eulerian
delta-matroids. This computation takes 14 minutes if the list of all
W5-unique graphs is given.
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