
Testing Branch-width

Sang-il Oum

School of Mathematics
Georgia Institute of Technology

January 23, 2006

Joint work with
Paul Seymour

Princeton University

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number
of vertices
meeting both X
and E \ X .

e(X) =number
of edges
meeting both X
and V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number
of vertices
meeting both X
and E \ X .

e(X) =number
of edges
meeting both X
and V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number
of vertices
meeting both X
and E \ X .

e(X) =number
of edges
meeting both X
and V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number
of vertices
meeting both X
and E \ X .

e(X) =number
of edges
meeting both X
and V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].

A function f : 2V → Z is a connectivity function if
(i) f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y), (submodular)
(ii) f (X) = f (V \ X), (symmetric)
(iii) f (∅) = 0.

v(X) =number
of vertices
meeting both X
and E \ X .

e(X) =number
of edges
meeting both X
and V \ X .

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8 f ({1, 2, 3, 4})

Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given
by deleting e.

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

, 2})
f ({3, 4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given
by deleting e.

Width of (T , L): maxe width(e)

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

, 2})
f ({3, 4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given
by deleting e.

Width of (T , L): maxe width(e)

Branch-width: min(T ,L) width(T , L).
(If |V | ≤ 1, then branch-width=0)

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-decomposition of f : a pair (T , L) of
a subcubic tree T and a bijection L : V → {leaves of T}.

1

2 3

4

5

67

8

f ({1})
f ({1

, 2})
f ({3, 4})

f ({
3}

)

f (
{2
}) f ({4})

f ({1, 2, 3, 4})

f ({5, 6})

f ({7, 8})
Width of an edge e of T : f (Ae)
(Ae, Be) is a partition of V given
by deleting e.

Width of (T , L): maxe width(e)

Branch-width: min(T ,L) width(T , L).
(If |V | ≤ 1, then branch-width=0)

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

Branch-width
Carving-width

M: matroid, λ(X) =
r(X) + r(E(M)− X)− r(E(M)).
Branch-width of matroids.

For a graph G, let A =
adjacency matrix.
ρG(X) = rank A[X , V \ X].
Rank-width of graphs

Testing Branch-width ≤ k for fixed k
Branch-width of graphs: Linear (Bodlaender, Thilikos ’97)
Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar
’00)
Branch-width of matroids represented over a fixed finite field:
O(|E(M)|3) (Hliněný ’05)
Rank-width of graphs: O(|V (G)|3) (Oum ’05)

Poly-time algorithm to test branch-width≤ k for any connectivity
functions? assuming that f is given by an oracle.

f -tangle of order k + 1 (Robertson and Seymour)
A set T of subsets of V satisfying
(T1) If f (X) ≤ k , then X ∈ T or V \ X ∈ T .
(T2) If A, B, C ∈ T , then A ∪ B ∪C 6= V .
(T3) V \ {v} /∈ T for all v ∈ V .

Robertson, Seymour (’91)
Branch-width≤ k if and only if no f -tangle of order k + 1 exists.

Naive algorithm: Choose one from X or V \ X if f (X) ≤ k and see
whether (T2) and (T3) are satisfied.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

THM: An f -tangle of order k + 1 exists if and only if
a loose f -tangle of order k + 1 exists.

f -tangle of order k + 1 (Robertson and Seymour)
A set T of subsets of V satisfying
(T1) If f (X) ≤ k , then X ∈ T or V \ X ∈ T .
(T2) If A, B, C ∈ T , then A ∪ B ∪C 6= V .
(T3) V \ {v} /∈ T for all v ∈ V .

Robertson, Seymour (’91)
Branch-width≤ k if and only if no f -tangle of order k + 1 exists.

Naive algorithm: Choose one from X or V \ X if f (X) ≤ k and see
whether (T2) and (T3) are satisfied.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

THM: An f -tangle of order k + 1 exists if and only if
a loose f -tangle of order k + 1 exists.

f -tangle of order k + 1 (Robertson and Seymour)
A set T of subsets of V satisfying
(T1) If f (X) ≤ k , then X ∈ T or V \ X ∈ T .
(T2) If A, B, C ∈ T , then A ∪ B ∪C 6= V .
(T3) V \ {v} /∈ T for all v ∈ V .

Robertson, Seymour (’91)
Branch-width≤ k if and only if no f -tangle of order k + 1 exists.

Naive algorithm: Choose one from X or V \ X if f (X) ≤ k and see
whether (T2) and (T3) are satisfied.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

THM: An f -tangle of order k + 1 exists if and only if
a loose f -tangle of order k + 1 exists.

f -tangle of order k + 1 (Robertson and Seymour)
A set T of subsets of V satisfying
(T1) If f (X) ≤ k , then X ∈ T or V \ X ∈ T .
(T2) If A, B, C ∈ T , then A ∪ B ∪C 6= V .
(T3) V \ {v} /∈ T for all v ∈ V .

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

THM: An f -tangle of order k + 1 exists if and only if
a loose f -tangle of order k + 1 exists.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

Naive algorithm to find a loose f -tangle
(1) Begin with T = {X : |X | ≤ 1, f (X) ≤ k}.
(2) Test (L1).

If it fails, then no loose f -tangle of order k + 1.
(3) Test (L2).

If it fails, then find C and add it to T . Go back to 2.
(4) T is a loose f -tangle of order k + 1.

Problem: |T | can be exponentially large.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

Naive algorithm to find a loose f -tangle
(1) Begin with T = {X : |X | ≤ 1, f (X) ≤ k}.
(2) Test (L1).

If it fails, then no loose f -tangle of order k + 1.
(3) Test (L2).

If it fails, then find C and add it to T . Go back to 2.
(4) T is a loose f -tangle of order k + 1.

Problem: |T | can be exponentially large.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

Naive algorithm to find a loose f -tangle
(1) Begin with T = {X : |X | ≤ 1, f (X) ≤ k}.
(2) Test (L1).

If it fails, then no loose f -tangle of order k + 1.
(3) Test (L2).

If it fails, then find C and add it to T . Go back to 2.
(4) T is a loose f -tangle of order k + 1.

Problem: |T | can be exponentially large.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

Lemma

X Y

Let fmin(A, B) = min{f (X) : A ⊆ X ⊆ V \ B}.
If fmin(X , Y) = m, then ∃Z such that

(i) f (Z) = m

(ii) X ⊆ Z ⊆ V \ Y .
Conversely, if f (Z) = m, then ∃X , Y such that

(i) |X |, |Y | ≤ m and X ⊆ Z ⊆ V \ Y ,
(ii) fmin(X , Y) = m.

loose f -tangle of order k + 1
A set T of subsets of V satisfying
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

Lemma 2

Z2 Z1

X Y

Suppose fmin(X , Y) = m, X ⊆ Z1, Z2 ⊆ V \ Y .
If

f (Z1) = f (Z2) = m,

then
f (Z1 ∪ Z2) = m.

loose f -tangle of order k + 1
(L1) V /∈ T .
(L2) If A, B ∈ T , C ⊆ A ∪ B, and f (C) ≤ k , then C ∈ T .
(L3) If |X | ≤ 1 and f (X) ≤ k , then X ∈ T .

loose f -tangle kit of order k + 1
A pair (P, µ) where
P = {(A, B) : A ∩ B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k .}
and µ : P → 2V is a function satisfying the following.
(K1) µ(∅, ∅) 6= V if (∅, ∅) ∈ P.
(K2) If (A, B), (C, D), (E, F) ∈ P, E ⊆ X ⊆ µ(A, B) ∪ µ(C, D)− F , and

fmin(E, F) = f (X), then X ⊆ µ(E, F).
(K3) If |X | ≤ 1, f (X) ≤ 1,

then there exists (A, B) ∈ P such that A ⊆ X ⊆ V \ B,
f (X) = fmin(A, B), and X ⊆ µ(A, B).

(K1) µ(∅, ∅) 6= V if (∅, ∅) ∈ P.
(K2) If (A, B), (C, D), (E, F) ∈ P, E ⊆ X ⊆ µ(A, B) ∪ µ(C, D)− F , and

fmin(E, F) = f (X), then X ⊆ µ(E, F).
(K3) If |X | ≤ 1, f (X) ≤ 1,

then there exists (A, B) ∈ P such that A ⊆ X ⊆ V \ B,
f (X) = fmin(A, B), and X ⊆ µ(A, B).

Poly-time algorithm to find a loose f -tangle
(A1) Let P = {(A, B) : A ∩ B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}.
(A2) For each v ∈ V , if 0 < f ({v}) ≤ k , then find B ⊆ V \ {v} such

that |B| ≤ fmin({v}, B) ≤ k . Let µ({v}, B) = {v}.
Let µ(∅, ∅) = {v ∈ V : f ({v}) = 0} if (∅, ∅) ∈ P.
For all other (A, B) ∈ P, let µ(A, B) = ∅.

(A3) Test (K1). If it fails, then no loose f -tangle kit of order k + 1.
(A4) Test (K2).

If it fails, then find X and enlarge µ(E, F). Go back to (A3).
(A5) (P, µ) is a loose f -tangle kit of order k + 1.

Time Complexity: O(n2knn6k+1nn5 log n)

Consequence to Matroids
Poly-time algorithm to test matroid branch-width ≤ k for fixed k ,
when the input matroid is given by an independence oracle.

(K1) µ(∅, ∅) 6= V if (∅, ∅) ∈ P.
(K2) If (A, B), (C, D), (E, F) ∈ P, E ⊆ X ⊆ µ(A, B) ∪ µ(C, D)− F , and

fmin(E, F) = f (X), then X ⊆ µ(E, F).
(K3) If |X | ≤ 1, f (X) ≤ 1,

then there exists (A, B) ∈ P such that A ⊆ X ⊆ V \ B,
f (X) = fmin(A, B), and X ⊆ µ(A, B).

Poly-time algorithm to find a loose f -tangle
(A1) Let P = {(A, B) : A ∩ B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}.
(A2) For each v ∈ V , if 0 < f ({v}) ≤ k , then find B ⊆ V \ {v} such

that |B| ≤ fmin({v}, B) ≤ k . Let µ({v}, B) = {v}.
Let µ(∅, ∅) = {v ∈ V : f ({v}) = 0} if (∅, ∅) ∈ P.
For all other (A, B) ∈ P, let µ(A, B) = ∅.

(A3) Test (K1). If it fails, then no loose f -tangle kit of order k + 1.
(A4) Test (K2).

If it fails, then find X and enlarge µ(E, F). Go back to (A3).
(A5) (P, µ) is a loose f -tangle kit of order k + 1.

Time Complexity: O(n2knn6k+1nn5 log n)

Consequence to Matroids
Poly-time algorithm to test matroid branch-width ≤ k for fixed k ,
when the input matroid is given by an independence oracle.

Poly-time algorithm to find a loose f -tangle
(A1) Let P = {(A, B) : A ∩ B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}.
(A2) For each v ∈ V , if 0 < f ({v}) ≤ k , then find B ⊆ V \ {v} such

that |B| ≤ fmin({v}, B) ≤ k . Let µ({v}, B) = {v}.
Let µ(∅, ∅) = {v ∈ V : f ({v}) = 0} if (∅, ∅) ∈ P.
For all other (A, B) ∈ P, let µ(A, B) = ∅.

(A3) Test (K1). If it fails, then no loose f -tangle kit of order k + 1.
(A4) Test (K2).

If it fails, then find X and enlarge µ(E, F). Go back to (A3).
(A5) (P, µ) is a loose f -tangle kit of order k + 1.

Time Complexity: O(n2knn6k+1nn5 log n)

Consequence to Matroids
Poly-time algorithm to test matroid branch-width ≤ k for fixed k ,
when the input matroid is given by an independence oracle.

Constructing Branch-decomposition of width ≤ k

Is it possible to construct the branch-decomposition of width ≤ k
if there exists one in polynomial time (in |V |)? Yes.

Jim Geelen (2005, private communication):
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width.
We only need O(n3) calls to testing branch-width at most k .

Further topics
Is it fixed parameter tractable?
In other words, is it possible to have a running time O(f (k)|V |c) for
all k?

Thank you!

Constructing Branch-decomposition of width ≤ k

Is it possible to construct the branch-decomposition of width ≤ k
if there exists one in polynomial time (in |V |)? Yes.

Jim Geelen (2005, private communication):
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width.
We only need O(n3) calls to testing branch-width at most k .

Further topics
Is it fixed parameter tractable?
In other words, is it possible to have a running time O(f (k)|V |c) for
all k?

Thank you!

Constructing Branch-decomposition of width ≤ k

Is it possible to construct the branch-decomposition of width ≤ k
if there exists one in polynomial time (in |V |)? Yes.

Jim Geelen (2005, private communication):
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width.
We only need O(n3) calls to testing branch-width at most k .

Further topics
Is it fixed parameter tractable?
In other words, is it possible to have a running time O(f (k)|V |c) for
all k?

Thank you!

Constructing Branch-decomposition of width ≤ k

Is it possible to construct the branch-decomposition of width ≤ k
if there exists one in polynomial time (in |V |)? Yes.

Jim Geelen (2005, private communication):
Recursively find a pair a, b ∈ V such that
merging them does not increase branch-width.
We only need O(n3) calls to testing branch-width at most k .

Further topics
Is it fixed parameter tractable?
In other words, is it possible to have a running time O(f (k)|V |c) for
all k?

Thank you!

