Testing Branch-width

Sang-il Oum

School of Mathematics Georgia Institute of Technology

January 23, 2006

Joint work with Paul Seymour Princeton University

v(X) =number of vertices meeting both X and $E \setminus X$.

e(X) =number of edges meeting both X and $V \setminus X$. $\begin{aligned} \mathcal{M}: \text{ matroid, } \lambda(X) = \\ r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M})). \end{aligned}$

For a graph G, let A = adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$

v(X) =number of vertices meeting both X and $E \setminus X$. ¥)

e(X) =number of edges meeting both X and $V \setminus X$. $\mathcal{M}: \text{ matroid, } \lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M})).$ For a graph *G*, let *A* = adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$

v(X) =number of vertices meeting both X and $E \setminus X$.

e(X) =number of edges meeting both X and $V \setminus X$. $\mathcal{M}: \text{ matroid, } \lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M})).$

For a graph G, let A =adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X]$

v(X) =number of vertices meeting both X and $E \setminus X$. ¥)

e(X) =number of edges meeting both X and $V \setminus X$. $\mathcal{M}: \text{ matroid, } \lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M})).$

For a graph G, let A = adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$

Branch-width

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M})).$ Branch-width of matroids.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): max_e width(e)

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): max_e width(e)

Branch-width: $min_{(T,L)}$ width(T, L). (If $|V| \le 1$, then branch-width=0)

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

Width of an edge e of T: $f(A_e)$ (A_e, B_e) is a partition of V given by deleting e.

Width of (T, L): max_e width(e)

Branch-width: $min_{(T,L)}$ width(T, L). (If $|V| \le 1$, then branch-width=0)

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

For a graph G, let A =adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$ Rank-width of graphs

Testing Branch-width $\leq k$ for fixed k

- Branch-width of graphs: Linear (Bodlaender, Thilikos '97)
- Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar '00)
- Branch-width of matroids represented over a fixed finite field: $O(|E(\mathcal{M})|^3)$ (Hliněný '05)
- Rank-width of graphs: $O(|V(G)|^3)$ (Oum '05)

Poly-time algorithm to test branch-width $\leq k$ for any connectivity functions? assuming that f is given by an oracle.

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

For a graph G, let A =adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$ Rank-width of graphs

Testing Branch-width $\leq k$ for fixed k

- Branch-width of graphs: Linear (Bodlaender, Thilikos '97)
- Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar '00)
- Branch-width of matroids represented over a fixed finite field: $O(|E(\mathcal{M})|^3)$ (Hliněný '05)
- Rank-width of graphs: $O(|V(G)|^3)$ (Oum '05)

Poly-time algorithm to test branch-width $\leq k$ for any connectivity functions? assuming that f is given by an oracle.

 \mathcal{M} : matroid, $\lambda(X) = r(X) + r(E(\mathcal{M}) - X) - r(E(\mathcal{M}))$. Branch-width of matroids.

For a graph G, let A =adjacency matrix. $\rho_G(X) = \operatorname{rank} A[X, V \setminus X].$ Rank-width of graphs

Testing Branch-width $\leq k$ for fixed k

- Branch-width of graphs: Linear (Bodlaender, Thilikos '97)
- Carving-width of graphs: Linear (Thilikos, Serna, Bodlaendar '00)
- Branch-width of matroids represented over a fixed finite field: $O(|E(\mathcal{M})|^3)$ (Hliněný '05)
- Rank-width of graphs: $O(|V(G)|^3)$ (Oum '05)

Poly-time algorithm to test branch-width $\leq k$ for any connectivity functions? assuming that f is given by an oracle.

A set \mathcal{T} of subsets of V satisfying

- (11) If $f(X) \leq k$, then $X \in \mathcal{T}$ or $V \setminus X \in \mathcal{T}$.
- (T2) If $A, B, C \in T$, then $A \cup B \cup C \neq V$.

(T3) $V \setminus \{v\} \notin \mathcal{T}$ for all $v \in V$.

Robertson, Seymour ('91)

Branch-width $\leq k$ if and only if no *f*-tangle of order k + 1 exists.

Naive algorithm: Choose one from X or $V \setminus X$ if $f(X) \le k$ and see whether (T2) and (T3) are satisfied.

loose *f*-tangle of order k +

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T, C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

A set T of subsets of V satisfying (1) If $f(X) \le k$, then $X \in T$ or $V \setminus X \in T$.

(T2) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq V$.

(T3) $V \setminus \{v\} \notin \mathcal{T}$ for all $v \in V$.

Robertson, Seymour ('91)

Branch-width $\leq k$ if and only if no *f*-tangle of order k + 1 exists.

Naive algorithm: Choose one from X or $V \setminus X$ if $f(X) \le k$ and see whether (T2) and (T3) are satisfied.

loose *f*-tangle of order k +

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T, C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

A set T of subsets of V satisfying

(T1) If $f(X) \le k$, then $X \in \mathcal{T}$ or $V \setminus X \in \mathcal{T}$.

(T2) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq V$.

(T3) $V \setminus \{v\} \notin T$ for all $v \in V$.

Robertson, Seymour ('91)

Branch-width $\leq k$ if and only if no *f*-tangle of order k + 1 exists.

Naive algorithm: Choose one from X or $V \setminus X$ if $f(X) \le k$ and see whether (T2) and (T3) are satisfied.

loose *f*-tangle of order k + 1

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T$, $C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

A set \mathcal{T} of subsets of V satisfying (T1) If $f(X) \leq k$, then $X \in \mathcal{T}$ or $V \setminus X \in \mathcal{T}$. (T2) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq V$. (T3) $V \setminus \{v\} \notin \mathcal{T}$ for all $v \in V$.

loose *f*-tangle of order k + 1A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T, C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

THM: An *f*-tangle of order k + 1 exists if and only if a loose *f*-tangle of order k + 1 exists.

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T, C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

Naive algorithm to find a loose *f*-tangle

(1) Begin with $T = \{X : |X| \le 1, f(X) \le k\}.$

(2) Test (L1). If it fails, then no loose *f*-tangle of order k + 1.

(3) Test (L2). If it fails, then find C and add it to \mathcal{T} . Go back to 2

(4) T is a loose *f*-tangle of order k + 1.

Problem: $|\mathcal{T}|$ can be exponentially large.

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T$, $C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

Naive algorithm to find a loose *f*-tangle

(1) Begin with $T = \{X : |X| \le 1, f(X) \le k\}.$

- (2) Test (L1). If it fails, then no loose *f*-tangle of order k + 1.
- (3) Test (L2).If it fails, then find C and add it to T. Go back to 2.
- (4) T is a loose *f*-tangle of order k + 1.

Problem: $|\mathcal{T}|$ can be exponentially large.

A set T of subsets of V satisfying (L1) $V \notin T$. (L2) If $A, B \in T$, $C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

Naive algorithm to find a loose *f*-tangle

(1) Begin with $T = \{X : |X| \le 1, f(X) \le k\}.$

- (2) Test (L1). If it fails, then no loose *f*-tangle of order k + 1.
- (3) Test (L2).If it fails, then find C and add it to T. Go back to 2.
- (4) T is a loose *f*-tangle of order k + 1.

Problem: $|\mathcal{T}|$ can be exponentially large.

```
A set T of subsets of V satisfying
(L1) V \notin T.
(L2) If A, B \in T, C \subseteq A \cup B, and f(C) \leq k, then C \in T.
(L3) If |X| \leq 1 and f(X) \leq k, then X \in T.
```


A set ${\mathcal T}$ of subsets of V satisfying

- (L2) If $A, B \in \mathcal{T}$, $C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in \mathcal{T}$.
- (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in \mathcal{T}$.

Lemma 2 $Z_{2} Z_{1}$ Suppose $f_{min}(X, Y) = m, X \subseteq Z_{1}, Z_{2} \subseteq V \setminus Y.$ If $f(Z_{1}) = f(Z_{2}) = m,$ then $f(Z_{1} \cup Z_{2}) = m.$

(L1) $V \notin T$. (L2) If $A, B \in T$, $C \subseteq A \cup B$, and $f(C) \leq k$, then $C \in T$. (L3) If $|X| \leq 1$ and $f(X) \leq k$, then $X \in T$.

loose *f*-tangle kit of order k + 1

A pair (P, μ) where $P = \{(A, B) : A \cap B = \emptyset, \max(|A|, |B|) \le f_{\min}(A, B) \le k.\}$ and $\mu : P \to 2^V$ is a function satisfying the following. (K1) $\mu(\emptyset, \emptyset) \ne V$ if $(\emptyset, \emptyset) \in P$. (K2) If $(A, B), (C, D), (E, F) \in P, E \subseteq X \subseteq \mu(A, B) \cup \mu(C, D) - F$, and $f_{\min}(E, F) = f(X)$, then $X \subseteq \mu(E, F)$. (K3) If $|X| \le 1$, $f(X) \le 1$, then there exists $(A, B) \in P$ such that $A \subseteq X \subseteq V \setminus B$, $f(X) = f_{\min}(A, B)$, and $X \subseteq \mu(A, B)$. (K1) $\mu(\emptyset, \emptyset) \neq V$ if $(\emptyset, \emptyset) \in P$.

(K2) If $(A, B), (C, D), (E, F) \in P, E \subseteq X \subseteq \mu(A, B) \cup \mu(C, D) - F$, and $f_{\min}(E, F) = f(X)$, then $X \subseteq \mu(E, F)$.

(K3) If $|X| \le 1$, $f(X) \le 1$, then there exists $(A, B) \in P$ such that $A \subseteq X \subseteq V \setminus B$, $f(X) = f_{\min}(A, B)$, and $X \subseteq \mu(A, B)$.

Poly-time algorithm to find a loose *f*-tangle

(A1) Let $P = \{(A, B) : A \cap B = \emptyset, \max(|A|, |B|) \le f_{\min}(A, B) \le k\}.$

- (A2) For each $v \in V$, if $0 < f(\{v\}) \le k$, then find $B \subseteq V \setminus \{v\}$ such that $|B| \le f_{\min}(\{v\}, B) \le k$. Let $\mu(\{v\}, B) = \{v\}$. Let $\mu(\emptyset, \emptyset) = \{v \in V : f(\{v\}) = 0\}$ if $(\emptyset, \emptyset) \in P$. For all other $(A, B) \in P$, let $\mu(A, B) = \emptyset$.
- (A3) Test (K1). If it fails, then no loose *f*-tangle kit of order k + 1.
- (A4) Test (K2).
 - If it fails, then find X and enlarge $\mu(E, F)$. Go back to (A3).
- (A5) (P, μ) is a loose *f*-tangle kit of order k + 1.

(K1) $\mu(\emptyset, \emptyset) \neq V$ if $(\emptyset, \emptyset) \in P$.

(K2) If $(A, B), (C, D), (E, F) \in P, E \subseteq X \subseteq \mu(A, B) \cup \mu(C, D) - F$, and $f_{\min}(E, F) = f(X)$, then $X \subseteq \mu(E, F)$.

(K3) If $|X| \le 1$, $f(X) \le 1$, then there exists $(A, B) \in P$ such that $A \subseteq X \subseteq V \setminus B$, $f(X) = f_{\min}(A, B)$, and $X \subseteq \mu(A, B)$.

Poly-time algorithm to find a loose *f*-tangle

(A1) Let $P = \{(A, B) : A \cap B = \emptyset, \max(|A|, |B|) \le f_{\min}(A, B) \le k\}.$

- (A2) For each $v \in V$, if $0 < f(\{v\}) \le k$, then find $B \subseteq V \setminus \{v\}$ such that $|B| \le f_{\min}(\{v\}, B) \le k$. Let $\mu(\{v\}, B) = \{v\}$. Let $\mu(\emptyset, \emptyset) = \{v \in V : f(\{v\}) = 0\}$ if $(\emptyset, \emptyset) \in P$. For all other $(A, B) \in P$, let $\mu(A, B) = \emptyset$.
- (A3) Test (K1). If it fails, then no loose *f*-tangle kit of order k + 1.
- (A4) Test (K2).

If it fails, then find X and enlarge $\mu(E, F)$. Go back to (A3).

(A5) (P, μ) is a loose *f*-tangle kit of order k + 1.

Poly-time algorithm to find a loose *f*-tangle

(A1) Let $P = \{(A, B) : A \cap B = \emptyset, \max(|A|, |B|) \le f_{\min}(A, B) \le k\}.$

- (A2) For each $v \in V$, if $0 < f(\{v\}) \le k$, then find $B \subseteq V \setminus \{v\}$ such that $|B| \le f_{\min}(\{v\}, B) \le k$. Let $\mu(\{v\}, B) = \{v\}$. Let $\mu(\emptyset, \emptyset) = \{v \in V : f(\{v\}) = 0\}$ if $(\emptyset, \emptyset) \in P$. For all other $(A, B) \in P$, let $\mu(A, B) = \emptyset$.
- (A3) Test (K1). If it fails, then no loose *f*-tangle kit of order k + 1.

(A4) Test (K2). If it fails, then find X and enlarge μ(E, F). Go back to (A3). (A5) (P, μ) is a loose *f*-tangle kit of order k + 1.

Time Complexity: $O(n^{2k}nn^{6k+1}nn^5\log n)$

Consequence to Matroids

Poly-time algorithm to test matroid branch-width $\leq k$ for fixed k, when the input matroid is given by an independence oracle.

Constructing Branch-decomposition of width $\leq k$

Is it possible to construct the branch-decomposition of width $\leq k$ if there exists one in polynomial time (in |V|)? Yes.

Jim Geelen (2005, private communication): Recursively find a pair $a, b \in V$ such that merging them does not increase branch-width. We only need $O(n^3)$ calls to testing branch-width at most k.

Further topics

Is it fixed parameter tractable? In other words, is it possible to have a running time $O(f(k)|V|^c)$ for all k?

Constructing Branch-decomposition of width $\leq k$

Is it possible to construct the branch-decomposition of width $\leq k$ if there exists one in polynomial time (in |V|)? Yes.

Jim Geelen (2005, private communication): Recursively find a pair $a, b \in V$ such that merging them does not increase branch-width. We only need $O(n^3)$ calls to testing branch-width at most k.

Further topics

Is it fixed parameter tractable? In other words, is it possible to have a running time $O(f(k)|V|^c)$ for all k?

Is it possible to construct the branch-decomposition of width $\leq k$ if there exists one in polynomial time (in |V|)? Yes.

Jim Geelen (2005, private communication): Recursively find a pair $a, b \in V$ such that merging them does not increase branch-width. We only need $O(n^3)$ calls to testing branch-width at most k.

Further topics

Is it fixed parameter tractable? In other words, is it possible to have a running time $O(f(k)|V|^c)$ for all k?

Is it possible to construct the branch-decomposition of width $\leq k$ if there exists one in polynomial time (in |V|)? Yes.

Jim Geelen (2005, private communication): Recursively find a pair $a, b \in V$ such that merging them does not increase branch-width. We only need $O(n^3)$ calls to testing branch-width at most k.

Further topics

Is it fixed parameter tractable? In other words, is it possible to have a running time $O(f(k)|V|^c)$ for all k?