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Abstract

We prove that the rank-width of the incidence graph of a graph G is either equal
to or exactly one less than the branch-width of G, unless the maximum degree of G is
0 or 1. This implies that rank-width of a graph is less than or equal to branch-width
of the graph unless the branch-width is 0. Moreover, this inequality is tight.
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1 Introduction

In this paper, graphs have no loops and no parallel edges. The incidence graph I(G) of a
graph G = (V, E) is a graph on vertices in V ∪ E such that x, y ∈ V ∪ E are adjacent in
I(G) if one of x, y is a vertex of G, the other is an edge of G, and x is incident with y in G.
In other words, I(G) is the graph obtained from G by subdividing every edge exactly once.

We prove that the rank-width of a graph G is less than or equal to the branch-width
of G, unless the branch-width of G is 0. Definitions of branch-width and rank-width are in
Section 2. To show this, we prove a stronger theorem stating that the rank-width of I(G)
is equal to or exactly one less than the branch-width of G, or the branch-width of G is 0.
Another corollary of this theorem is that the rank-width of the line graph of a graph is less
than or equal to the branch-width of the graph.
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There are related works on this topic. In this paper we do not define clique-width [2]
but rank-width is related to clique-width. Oum and Seymour [8] showed that rw(G) ≤
cw(G) ≤ 2rw(G)+1− 1, where cw(G), rw(G) denote clique-width and rank-width respectively.
Let tw(G) be the tree-width of G. Courcelle and Olariu [2] showed that clique-width is
at most 2tw(G)+1 + 1 and later Corneil and Rotices [1] proved that clique-width is at most
3 · 2tw(G)−1. The previous results on clique-width imply that rank-width is smaller than or
equal to 3 · 2tw(G)−1. Kanté [4] showed that the rank-width is at most 4 tw(G) + 2. In this
paper, we prove that rank-width is smaller than or equal to tw(G) + 1.

2 Preliminaries

Branch-width [9] and rank-width [8] of graphs are defined in a similar way. We will describe
more general branch-width of symmetric submodular functions, and then define branch-
width of graphs and rank-width of graphs in terms of branch-width of symmetric submodular
functions. For a finite set V , let 2V be the set of subsets of V . Let Z be the set of integers.
A function f : 2V → Z is symmetric if f(X) = f(V \ X) for all X ⊆ V and submodular if
f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all X, Y ⊆ V . A tree is subcubic if every vertex
has degree 1 or 3. A branch-decomposition of a symmetric submodular function f : 2V → Z
is a pair (T, τ) of a subcubic tree T and a bijection τ : V → {t : t is a leaf of T}. The width
of an edge e ∈ E(T ) in a branch-decomposition (T, τ) is defined as f(Xe) where (Xe, Ye) is
a partition of V from a partition of leaves of T induced by deleting e from T . The width of
a branch-decomposition (T, τ) is the maximum width of all edges of T . The branch-width of
f , denoted by bw(f), is the minimum width of all branch-decompositions of f . (If |V | < 2,
then f has no branch-decomposition. In this case, we assume that bw(f) = f(∅).)

Please be warned that in the above definition, V can be any finite set, not just the set
of vertices of graphs. We define branch-width of a graph G = (V, E) as branch-width of a
certain symmetric submodular function ηG on the set E of edges as follows. For a subset X
of E, let mid(X) be the set of vertices that are incident with both an edge in X and another
edge in E \ X. Let ηG(X) = |mid(X)|. Then η : 2E → Z is a symmetric submodular
function and so the branch-width of ηG is well-defined. The branch-width bw(G) of a graph
G is defined as the branch-width of ηG.

The rank-width is defined by the cut-rank function ρG : 2V → Z of a graph G = (V, E).
For a subset X of V , consider a 0-1 matrix MX over the binary field GF(2), in which the
number of rows is |X| (so rows are indexed by X), the number of columns is |V \ X|, (so
columns are indexed by V \X), and the entry is 1 if and only if the corresponding vertices
of the row and the column are adjacent. Let ρG(X) = rank(MX) where rank is the matrix
rank function. Then ρG is symmetric and submodular [8]. The rank-width rw(G) of a graph
G is defined as the branch-width of ρG.

We will need a definition of matroid branch-width. A matroid is a pair M = (E, r) of
a finite set E and a rank function r : 2E → Z satisfying the following axioms: r(∅) = 0,
r(X) ≤ |X| for all X ⊆ E, r(X) ≤ r(Y ) if X ⊆ Y , and r is submodular. The connectivity
function of a matroid M = (E, r) is λM(X) = r(X) + r(E \X)− r(E) + 1. It is easy to see
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that λM is symmetric and submodular. The branch-width bw(M) of a matroid M is defined
as the branch-width of λM .

Given a matrix A over GF(2) whose columns are indexed by E, let rA(X) = rank AX

where AX is the submatrix of A obtained by removing columns not in X. Then rA satisfies
the matroid rank axiom and therefore M = (E, rA) is a matroid. A matroid that has such a
representation is called a binary matroid. Since the elementary row operations do not change
rA, every binary matroid has the standard representation A in which AB is an identity matrix
for some B ⊆ E. The fundamental graph F (M) of a binary matroid with respect to the
above standard representation is a bipartite graph on vertices E with a bipartition (B, V \B)
such that x ∈ B and y ∈ V \ B are adjacent if and only if the row having 1 in the column
vector of x in A has 1 in the column vector of y in A. Oum [6] showed the following.

Lemma 1 (Oum [6]). The branch-width of a binary matroid M is exactly one more than
the rank-width of its fundamental graph.

The cycle matroid M(G) of a graph G = (V, E) is a binary matroid having the following
standard representation: Let B be an edge set of the spanning forest F of G. Let A be a
0-1 matrix (aij)i∈B,j∈V such that aij = 1 if and only if i = j ∈ B or the fundamental circuit
of j /∈ B with respect to F contains i. Then A is a (standard) representation of M(G).
It is well-known that λM(G)(X) ≤ ηG(X) for all nonempty X ⊂ E(G). This implies that
the branch-width of M(G) is at most the branch-width of G if G has at least two edges.
The following theorem was shown by Hicks and McMurray [3] and Mazoit and Thomassé [5]
independently.

Theorem 2 (Hicks and McMurray [3]; Mazoit and Thomassé [5]). The branch-width of a
2-connected graph G is equal to the branch-width of the cycle matroid M(G).

3 Main Theorem

Now let us prove the main theorem.

Theorem 3. For a graph G, rw(I(G)) is equal to bw(G)− 1 or bw(G) unless the maximum
degree of G is 0 or 1. (If the maximum degree of G is 0 or 1, then rw(I(G)) ≤ 1 and
bw(G) = 0.)

Proof. This proof will work even if G has parallel edges. (If G has loops, then I(G) has
parallel edges, but rw(I(G)) is defined only if I(G) has no parallel edges and no loops.)
Without loss of generality, we may assume that G is connected and has at least two vertices.
If |V (G)| = 2 then rw(I(G)) = 1 and bw(G) ≤ |V (G)| = 2.

Now we assume that |V (G)| > 2, |E(G)| > 1, and bw(G) ≥ 1 and so G admits rank-
decompositions and branch-decompositions. Let us construct a graph Ĝ by adding a new
vertex v to G that is adjacent to all vertices of G. Then Ĝ is 2-connected. Let F be a
spanning tree of Ĝ consisting of all edges incident with v and B = E(F ). It is easy to see
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that the fundamental graph of M(Ĝ) with respect to B is I(G). Therefore by Lemma 1,
rw(I(G)) = bw(M(Ĝ))− 1. By Theorem 2, bw(M(Ĝ)) = bw(Ĝ).

Now it is enough to show that bw(Ĝ) = bw(G) or bw(G) + 1 when G is connected and
|V (G)| > 2. (This is false when G has a single edge; bw(G) = 0 but bw(Ĝ) = 2.) Since G is
a minor of Ĝ, bw(G) ≤ bw(Ĝ). Let (T, τ) be a branch-decomposition of G of width bw(G).
For every vertex w of G, pick an edge fw of G incident with w. Then let ew be the unique
edge of T incident to the leaf τ(fw). We subdivide ew and attach a new leaf corresponding
to the edge vw of Ĝ. (If an edge xy of G is chosen twice and exactly one of its ends, say x,
has degree 1, then we apply the above operation for vy first and then apply for vx. This is
to avoid having {xy, vy} in one side of the branch-decomposition because ηĜ({xy, vy}) = 3.)

It is easy to see that the obtained branch-decomposition of Ĝ has width at most bw(G) + 1.
(Notice that bw(G) ≥ 1 and therefore bw(G) + 1 ≥ 2.) Consequently bw(Ĝ) ≤ bw(G) + 1.
This proves the theorem.

If we use an easy inequality bw(M(G)) ≤ bw(G) instead of Theorem 2, we can still prove
that rw(I(G)) ≤ bw(G) unless the maximum degree of G is 0 or 1. Actually this will be
enough to prove the following two corollaries of Theorem 3.

We will need a definition of a vertex-minor. The local complementation at a vertex v
of a graph G is an operation to obtain a graph G ∗ v on the vertices of G such that two
distinct vertices x, y in G ∗ v are adjacent if and only if either (i) both x and y are neighbors
of v and they are nonadjacent in G, or (ii) at least one of x or y is nonadjacent to v and
x, y are adjacent in G. It is shown in [6] that local complementations preserve the cut-rank
functions and rank-width. A vertex-minor of a graph is a graph obtainable by successive
local complementations and vertex deletions.

Lemma 4 (Oum [6]). If H is a vertex-minor of G, then rw(H) ≤ rw(G).

Corollary 5. For a graph G, rw(G) ≤ max(bw(G), 1).

Proof. A graph G is a vertex-minor of I(G), because we get G by applying local comple-
mentations to vertices of I(G) corresponding to edges of G and delete those vertices. Then
by Lemma 4, rw(G) ≤ rw(I(G)). By Theorem 3, either rw(I(G)) ≤ bw(G) or rw(I(G)) ≤ 1
and bw(G) = 0.

The above corollary implies that rw(G) ≤ tw(G) + 1, because bw(G) ≤ tw(G) + 1 [9].

Corollary 6. Let G be a graph. The rank-width of the line graph L(G) of G is at most the
branch-width of G.

Proof. If no two edges of G are adjacent, then L(G) has no edges and therefore rw(L(G)) =
bw(G) = 0. We may now assume that bw(G) > 0. It is enough to show that L(G) is a
vertex-minor of I(G). We apply local complementations to vertices in I(G) corresponding to
vertices of G and then remove those vertices. The remaining graph is a line graph of G.
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We remark that with different methods, Oum [7] showed that the rank-width of L(G) is
exactly one of bw(G)− 2, bw(G)− 1, or bw(G) if G is 2-connected.

Let us now show that the inequalities in Theorem 3 and Corollary 5 and 6 are tight.
Robertson and Seymour [9] showed that bw(Kn) = d2n/3e for n ≥ 3. It is straightforward
to prove that bw(I(Kn)) = bw(Kn) = d2n/3e for n ≥ 3. (In fact, bw(G) = bw(I(G)) for
any graphs G with branch-width at least 2.) We know from the proof of Theorem 3 that
rw(I(Kn)) = bw(M(K̂n)) − 1 = bw(M(Kn+1)) − 1 = bw(Kn+1) − 1 = d2(n + 1)/3e − 1 =
d(2n− 1)/3e. So if n ≥ 3 and n ≡ 0, 1 (mod 3), then rw(I(Kn)) = bw(I(Kn)). This proves
that Theorem 3 and Corollary 5 are tight.

It remains to prove that Corollary 6 is tight. Let P (G) be a graph obtained from G
by attaching a pendant vertex to each vertex of G. (So, |V (P (G))| = 2|V (G)|, G is an
induced subgraph of P (G), and all vertices of P (G) not in the subgraph G have degree 1
and have distinct neighbors in the subgraph G.) Oum [6] showed that rw(P (G)) = rw(G)
if G has at least one edge. We observe that if we apply local complementations to vertices
of L(P (Kn)) corresponding to edges of P (G) incident with pendant vertices, then we obtain
I(Kn). Therefore rw(L(P (Kn))) = rw(I(Kn)). It is routine to prove that bw(P (Kn)) =
bw(Kn) if n ≥ 3. So if n ≥ 3 and n ≡ 0, 1 (mod 3), then rw(L(P (Kn))) = bw(P (Kn)).
Therefore Corollary 6 is tight.
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