Rank-width and WQO Sang-il Oum

Matrices Chain-grou Deltamatroids Main Theor

Applications

Closing

Rank-width and Well-quasi-ordering of Symmetric or Skew-symmetric Matrices

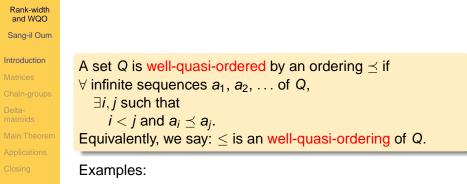
Sang-il Oum

Program in Applied and Computational Mathematics Princeton University

June 16, 2005

Séminaire de Combinatoire Algébrique et Géométrique

Well-quasi-ordering



- {positive integers} is well-quasi-ordered by \leq .
- (integers) is NOT well-quasi-ordered by \leq .

Overview

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications

Closing

common generalization

on {symmetric or skew-symmetric matrices, delta-matroids representable over a finite field.

(1) Robertson and Seymour (1990)

Graphs + minors Tree-width and well-quasi-ordering

(2) Geelen, Gerards, and Whittle (2002)

Matroids representable over a finite field + minors Branch-width and well-quasi-ordering

(3) Oum (2005)

Graphs + Vertex-minors Rank-width (or Clique-width) and well-quasi-ordering

(3) implies (2) for GF(2). (2) or (3) implies (1).

Preview of main tools

Introduction Matrices Chain-groups Deltamatroids Main Theorem Applications Closing

Ph.D. thesis: An Algebraic Theory of Graphs

Develop the theory of Chain-groups (unaware of matroids at that time)

A matroid is representable \Leftrightarrow There is a chain-group representing the matroid.

Delta-matroids: (sort of) relaxation of matroids. A delta-matroid is representable (by def) if

it is equivalent to a delta-matroid represented by some symmetric or skew-symmetric matrices.

We develop the theory of Lagrangian Chain-groups. A delta-matroid is representable ⇔ There is a Lagrangian chain-group representing it.

Preliminaries

Rank-width and WQO Sang-il Oum

Introduction

Matrices

- Chain-groups
- Deltamatroic
- Main Theorer
- Applications
- Closing

- Transpose of a matrix: A^t .
- Symmetric matrices: $A = A^t$.
- Skew-symmetric matrices:

 - 0 on the diagonal entries.
 (We require this for matrices over GF(2).)
- Matrices of symmetric type: either symmetric or skew-symmetric
- Submatrix of A: A[X, Y] (rows in X, columns in Y)
- Principal Submatrix of A: A[X] = A[X, X]

(Principal) Pivoting

Rank-width and WQO Sang-il Oum

Matrices

Let A: $V \times V$ matrix. If A[X] is nonsingular, then

$$A = \begin{array}{ccc} X & Y & X & Y \\ A = \begin{array}{ccc} X & \alpha & \beta \\ \gamma & \delta \end{array} \end{array} \Longrightarrow A * X = \begin{array}{ccc} X & \alpha^{-1} & \alpha^{-1}\beta \\ \gamma & \alpha^{-1} & \delta - \gamma \alpha^{-1}\beta \end{array}$$

If A is skew-symmetric, then A * X is skew-symmetric.

If A is symmetric, we can obtain a symmetric matrix by negating columns of X in A * X.

Pivot-minors of a skew-symmetric matrix A : A * X[Y]**Pivot-minors** of a symmetric matrix A: Symmetric matrices obtained by resigning of columns in A * X[Y].

Rank-width

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroid

- Main Theorem
- Applications

Closing

Let M: $V \times V$ matrices of symmetric type

- Rank-decomposition: a pair (T, \mathcal{L}) of
 - a subcubic tree T
 - **2** a bijection $\mathcal{L} : V \to \{ \text{leaves of } T \}.$
- Width of an edge e of T: rank M[L⁻¹(A_e), L⁻¹(B_e)] (A_e, B_e): partition of leaves of T induced by T \ e.
- Width of a rank-decomposition (*T*, *L*): Maximum width of edges of *T*.
- Rank-width of M:

Minimum width of all its rank-decompositions

Our theorem (simplified, matrix version)

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications A × B Matrix over F: a mapping from A × B to F.
Isomorphism

from a $V \times V$ matrix M to a $W \times W$ matrix N: a bijection μ from V to W such that $M(x, y) = N(\mu(x), \mu(y)).$

Let *k*: constant, *F*: finite field. Matrices over *F* of symmetric types having rank-width $\leq k$ are well-quasi-ordered by pivot-minors.

More precisely, if $M_1, M_2, ...$ are matrices of symmetric type over *F* having rank-width $\leq k$, then there exist *i* and *j* such that i < j and M_i is isomorphic to a pivot-minor of M_j .

Chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids Main Theore Applications Let V: finite set, F: field. Let $K = F^2 = \{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in F \}$: 2-dim vector space over F.

- Chain: function from V to K.
- Sum of chains: *f* + *g*
- Scalar product cf when $c \in F$.
- Chain-group: set of chains on *V* to *K* closed under sum and scalar product. (subspace of *K*^{*V*})

Note:

Tutte's chain: function from V to F.

Lagrangian chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids Main Theore Applications We give a bilinear form to chains.

- Let $\langle \binom{a}{b}, \binom{c}{d} \rangle_{\mathcal{K}} = ad + bc$ (symmetric) or $\langle \binom{a}{b}, \binom{c}{d} \rangle_{\mathcal{K}} = ad - bc$. (skew-symmetric)
- For chains f, g on V to K,

$$\langle f, g \rangle = \sum_{\mathbf{v} \in V} \langle f(\mathbf{v}), g(\mathbf{v}) \rangle_{\mathcal{K}}.$$

• A chain-group N on V to K is called isotropic:

$$\forall f,g \in N, \quad \langle f,g \rangle = 0.$$

 A chain-group N on V to K is called Lagrangian: isotropic and dim(N) = |V|.

Idea from both Chain-groups (Tutte) + Isotropic systems (Bouchet)

Minors of chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids Main Theorer Applications Closing For a chain f on V to K, Restriction $f \cdot T$: chain on T to K such that

$$f \cdot T(x) = f(x)$$
 for all $x \in T$.

For a chain-group *N* on *V* to *K*,

• Deletion $N \otimes T$:

 $\{f \cdot (V \setminus T) : f \in N, \langle f(x), \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathcal{K}} = 0 \ \forall x \in T\}.$

• Contraction $N \oslash T$:

 $\{f \cdot (V \setminus T) : f \in N, \langle f(x), {0 \choose 1} \rangle_{\mathcal{K}} = 0 \ \forall x \in T\}.$

Minors of a chain-group N on V to K:

Chain-groups of the form $N \odot X \oslash Y$.

Properties of Minors of chain-groups

Matrices

```
Chain-groups
```

```
Delta-
matroids
Main Theorer
Applications
Closing
```

- A minor of a minor of N is a minor of N.
- A minor of an isotropic chain-group is isotropic.
- A minor of a Lagrangian chain-group is Lagrangian.

Minor-closed classes of chain-groups.

```
Chain-groups
```

Isotropic Chain-groups

Lagrangian Chain-groups

Note: Bouchet 1987 introduced isotropic chain-groups.

Algebraic Duality

Rank-width and WQO Sang-il Oum

Introductio

Matrices

Chain-groups

Deltamatroids Main Theore Applications

Let N: chain-group.
Let
$$N \cdot T = \{f \cdot T : f \in N\},\$$

 $N \times T = \{f \cdot T : f \in N, f(x) = 0 \ \forall x \notin T\},\$
 $N^{\perp} = \{g : \langle f, g \rangle = 0 \ \forall f \in N\}.$

Theorem (Same proof by Tutte works)

$$(N \cdot T)^{\perp} = N^{\perp} \times T.$$

$$(N \otimes T)^{\perp} = N^{\perp} \otimes T,$$

 $(N \otimes T)^{\perp} = N^{\perp} \otimes T.$

Connectivity

Rank-width and WQO Sang-il Oum

Introduction

Chain-groups

Deltamatroids Main Theoren Applications Closing For a chain-group N on V to K,

$$\lambda_N(U) = \frac{\dim N - \dim(N \times (V \setminus U)) - \dim(N \times U)}{2}$$

- Symmetric: $\lambda_N(X) = \lambda_N(V \setminus X)$.
- Submodular: $\lambda_N(X) + \lambda_N(Y) \ge \lambda_N(X \cap Y) + \lambda_N(X \cup Y)$.

If N is Lagrangian, then

$$\lambda_N(U) = |V| - \dim(N \times U).$$

Branch-width of chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids Main Theor Applications For a chain-group on V to K,

- Branch-decomposition: a pair (T, \mathcal{L}) of
 - a subcubic tree T
 - 2 a bijection $\mathcal{L} : V \to \{ \text{leaves of } T \}.$
- Width of an edge e of T: λ_N(L⁻¹(A_e)).
 (A_e, B_e): partition of leaves of T induced by T \ e.
- Width of a branch-decomposition (*T*, *L*): Maximum width of edges of *T*.
- Branch-width of *M*:

Minimum width of all its branch-decompositions

If M is a minor of N, then

(branch-width of M) \leq (branch-width of N).

Our theorem (simplified)

Rank-width and WQO Sang-il Oum

Chain-groups

Simple Isomorphism

from a chain-group *N* on *V* to *K* to a chain-group *M* on *W* to *K*: a bijection μ from *V* to *W* such that $N = \{f \circ \mu : f \in M\}.$

Let *k*: constant, *F*: finite field. $K = F^2$. Lagrangian chain-groups over *F* having branch-width $\leq k$ are well-quasi-ordered by minors.

More precisely, if $N_1, N_2, ...$ are Lagrangian chain-groups over *F* having branch-width $\leq k$, then there exist *i* and *j* such that i < j and N_i is simply isomorphic to a minor of N_j .

Delta-matroids

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing

Axiom for bases of matroids (E, B)

• for B_1 and $B_2 \in \mathcal{B}$,

if $x \in B_1 \setminus B_2$, then

 $\exists y \in B_2 \setminus B_1$ such that $B_1 \Delta \{x, y\} \in \mathcal{B}$

•
$$\mathcal{B} \neq \emptyset$$
.

Axiom for feasible sets of delta-matroids (V, \mathcal{F})

for *F*₁ and *F*₂ ∈ *F*, if *x* ∈ *F*₁Δ*F*₂, then ∃*y* ∈ *F*₁Δ*F*₂ such that *F*₁Δ{*x*, *y*} ∈ *F F* ≠ Ø.

Twisting, Deletion, and Minors

Rank-width and WQO Sang-il Oum

Introduction Matrices Chain-groups Deltamatroids

Main Theorem Applications Closing If $\mathcal{M} = (V, \mathcal{F})$ is a delta-matroid, then $\mathcal{M}' = (V, \{F\Delta X : F \in \mathcal{F}\})$ is also a delta-matroid. This operation is called a twisting. We write $\mathcal{M}' = \mathcal{M}\Delta X$.

Two delta-matroids are equivalent if one is obtained from another by twisting.

If there is a feasible set Y such that $Y \cap X = \emptyset$, then $\mathcal{M} \setminus X = (V, \{F \in \mathcal{F} : F \cap X = \emptyset\})$ is a delta-matroid. This operation is called a deletion.

A delta-matroid obtained by twisting and deletion from ${\cal M}$ is called a minor of ${\cal M}.$

Representable Delta-matroids

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications For a $V \times V$ matrix *A* of symmetric type, Let $\mathcal{F} = \{X : A[X] \text{ is nonsingular}\}.$

Theorem (Bouchet, 1987)

 $\mathcal{M}(A) = (V, \mathcal{F})$ is a delta-matroid.

Representable delta-matroids:

Delta-Matroids of the form $\mathcal{M}(A)\Delta X$

His proof:

Matrices of symmetric type

- ⇒ Isotropic chain-groups
- \Rightarrow Delta-matroids

Matrices to Chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Let $A = (a_{ij})_{i,j \in V}$ be a matrix of symmetric type over F. Two chains a, b on V are called supplementary if $\langle a(v), b(v) \rangle_{\mathcal{K}} = \langle a(v), a(v) \rangle_{\mathcal{K}} = \langle b(v), b(v) \rangle_{\mathcal{K}} = 0.$

 $\langle , \rangle_{\mathcal{K}} = \begin{cases} \text{symmetric} & \text{if } A \text{ is skew-symmetric,} \\ \text{skew-symmetric} & \text{if } A \text{ is symmetric.} \end{cases}$ Let *f_i*: a chain on *V* to *K* such that

$$f_{i}(j) = \begin{cases} a_{ij} {\binom{1}{0}} & \text{if } i \neq j, \\ a_{ij} {\binom{1}{0}} + {\binom{0}{1}} & \text{if } i = j. \end{cases}$$

Let *N*: a chain-group spanned by $\{f_i : i \in V\}$.

If $i \neq j$, then $\langle f_i, f_j \rangle = a_{ij} \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\mathcal{K}} + a_{ji} \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathcal{K}} = 0$. If i = j, then $\langle f_i, f_i \rangle = 0$. *N* is isotropic. Since dim(*N*) = |*V*|, *N* is Lagrangian.

Matrices to Chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Chain-groups

Deltamatroids

Main Theorem Applications Closing Let $A = (a_{ij})_{i,j \in V}$ be a matrix of symmetric type over F. Two chains a, b on V are called supplementary if $\langle a(v), b(v) \rangle_{\mathcal{K}} = \langle a(v), a(v) \rangle_{\mathcal{K}} = \langle b(v), b(v) \rangle_{\mathcal{K}} = 0.$

 $\langle , \rangle_{K} = \begin{cases} \text{symmetric} & \text{if } A \text{ is skew-symmetric,} \\ \text{skew-symmetric} & \text{if } A \text{ is symmetric.} \end{cases}$ Let *f_i*: a chain on *V* to *K* such that

$$f_i(j) = \begin{cases} a_{ij} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{if } i \neq j, \\ a_{ij} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \text{if } i = j. \end{cases}$$

Let *N*: a chain-group spanned by $\{f_i : i \in V\}$.

If $i \neq j$, then $\langle f_i, f_j \rangle = a_{ij} \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\mathcal{K}} + a_{ji} \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathcal{K}} = 0$. If i = j, then $\langle f_i, f_i \rangle = 0$. *N* is isotropic. Since dim(*N*) = |*V*|, *N* is Lagrangian.

Matrices to Chain-groups

Rank-width and WQO Sang-il Oum

Introduction Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Let $A = (a_{ij})_{i,j \in V}$ be a matrix of symmetric type over F. Two chains a, b on V are called supplementary if $\langle a(v), b(v) \rangle_{\mathcal{K}} = \langle a(v), a(v) \rangle_{\mathcal{K}} = \langle b(v), b(v) \rangle_{\mathcal{K}} = 0.$

 $\langle , \rangle_{K} = \begin{cases} \text{symmetric} & \text{if } A \text{ is skew-symmetric,} \\ \text{skew-symmetric} & \text{if } A \text{ is symmetric.} \end{cases}$ Let *f_i*: a chain on *V* to *K* such that

$$f_i(j) = \begin{cases} a_{ij} \mathbf{a}(\mathbf{v}) & \text{if } i \neq j, \\ a_{ij} \mathbf{a}(\mathbf{v}) + \mathbf{b}(\mathbf{v}) & \text{if } i = j. \end{cases}$$

Let *N*: a chain-group spanned by $\{f_i : i \in V\}$.

If $i \neq j$, then $\langle f_i, f_j \rangle = a_{ij} \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\mathcal{K}} + a_{ji} \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathcal{K}} = 0$. If i = j, then $\langle f_i, f_i \rangle = 0$. *N* is isotropic. Since dim(*N*) = |*V*|, *N* is Lagrangian.

Rank-width and WQO Sang-il Oum

ng-il Oum

Introductior

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Let N: isotropic chain-groups on V to K.

Theorem (Bouchet)

Say $F\in \mathcal{F}$ if $f\equiv 0$ is the only chain in N satisfying

• $\langle f(x), \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathcal{K}} = 0$ for all $x \notin F$,

•
$$\langle f(x), {0 \choose 1} \rangle_{\mathcal{K}} = 0$$
 for all $x \in \mathcal{F}$.

 (V, \mathcal{F}) is a delta-matroid.

Moreover, if N is from a matrix A of symmetric type, F is feasible if and only if A[X] is nonsingular.

Matrices of symmetric type

- \Rightarrow Lagrangian chain-groups
- ⇒ Isotropic chain-groups

Delta-matroids

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Let N: isotropic chain-groups on V to K.

Theorem (Bouchet)

Say $F\in \mathcal{F}$ if $f\equiv 0$ is the only chain in N satisfying

- $\langle f(x), a(v) \rangle_{K} = 0$ for all $x \notin F$,
- $\langle f(x), b(v) \rangle_{\mathcal{K}} = 0$ for all $x \in \mathcal{F}$.
- (V, \mathcal{F}) is a delta-matroid.

Moreover, if *N* is from a matrix *A* of symmetric type, *F* is feasible if and only if A[X] is nonsingular.

Matrices of symmetric type

- \Rightarrow Lagrangian chain-groups
- \Rightarrow Isotropic chain-groups
- ⇒ Delta-matroids

Rank-width and WQO Sang-il Oum Let *N*: isotropic chain-groups on *V* to *K*.

Theorem (Bouchet)

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Say $F \in \mathcal{F}$ if $f \equiv 0$ is the only chain in N satisfying

• $\langle f(x), a(v) \rangle_{\mathcal{K}} = 0$ for all $x \notin F$,

•
$$\langle f(x), b(v) \rangle_{\mathcal{K}} = 0$$
 for all $x \in \mathcal{F}$.

 (V, \mathcal{F}) is a delta-matroid.

Moreover, if *N* is from a matrix *A* of symmetric type, *F* is feasible if and only if A[X] is nonsingular.

Matrices of symmetric type

- \Rightarrow Lagrangian chain-groups
- \Rightarrow Isotropic chain-groups
 - ⇒ Delta-matroids

Rank-width and WQO Sang-il Oum Let *N*: isotropic chain-groups on *V* to *K*. Theorem (Bouchet)

ntroduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing Say $F \in \mathcal{F}$ if $f \equiv 0$ is the only chain in N satisfying

- $\langle f(x), a(v) \rangle_{\mathcal{K}} = 0$ for all $x \notin F$,
- $\langle f(x), b(v) \rangle_{\mathcal{K}} = 0$ for all $x \in \mathcal{F}$.

 (V, \mathcal{F}) is a delta-matroid.

Moreover, if *N* is from a matrix *A* of symmetric type, *F* is feasible if and only if A[X] is nonsingular.

Matrices of symmetric type

- ⇒ Lagrangian chain-groups
- ⇒ Isotropic chain-groups
- ⇒ Delta-matroids

Twisting in Isotropic Chain-groups

Rank-width and WQO Sang-il Oum

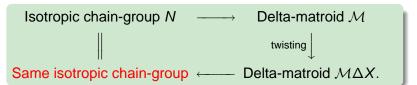
Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications



If \mathcal{M} : represented by *N* with supplementary chains *a* and *b*, then $\mathcal{M}\Delta X$ is represented by *N* with *a'*, *b'*.

Representable delta-matroids \Rightarrow Lagrangian chain-groups

Lagrangian Chain-groups to Matrices

Lagrangian chain-groups to Representable delta-matroids

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications For a Lagrangian chain-group N,

- Choose supplementary chains a, b so that
 Ø is feasible in the delta-matroid of N (by twisting).
- For each v ∈ V, there exists a unique chain f_v ∈ N such that

$$\langle a(v), f_v(w)
angle_{\mathcal{K}} = egin{cases} 0 & ext{if } v
eq w \ 1 & ext{if } v = w. \end{cases}$$

• Construct a $V \times V$ matrix $A = (\langle f_i(j), b(j) \rangle_{\kappa} : i, j \in V)$. Then the matrix with a, b represents N.

Matrices of symmetric type

- ⇔ Lagrangian chain-groups
- ⇔ Representable Delta-matroids

Connectivity

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications If *N*: Lagrangian chain-group from a matrix *A*, then rank $A[X, V \setminus X] = \lambda_N(X)$.

Reminder: $\lambda_N(X) = |X| - \dim(N \times X)$ for Lagrangian chain-group *N*.

Corollary

Rank-width of a matrix of symmetric type = Branch-width of a Lagrangian chain-group from the matrix

Minors

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing

Theorem

For an isotropic chain-group N on V to K and $v \in V$, if

• a, b: supplementary chains s.t. $a(v) \in \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \}$,

• \mathcal{M} : delta-matroid represented by N with a, b,

then $N \otimes \{v\}$ with $a \cdot (V \setminus \{v\})$, $b \cdot (V \setminus \{v\})$ represents one of the following delta-matroids.

- $\mathcal{M} \setminus \{v\}$ if there is a feasible set not containing v,
- $\mathcal{M}\Delta\{v\} \setminus \{v\}$ otherwise.

 $N \oslash \{v\}$ with $a \cdot (V \setminus \{v\})$, $b \cdot (V \setminus \{v\})$ represents one of the following delta-matroids.

- $\mathcal{M}\Delta\{v\} \setminus \{v\}$ if there is a feasible set containing v,
- $\mathcal{M} \setminus \{v\}$ otherwise.

Delta-matroid minors \Leftrightarrow Isotropic Chain-group minors

Pivoting and Twisting

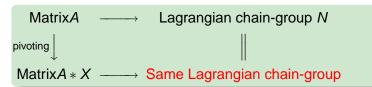
Rank-width and WQO Sang-il Oum

Introduction Matrices

Chain-groups

Deltamatroids

Main Theorem Applications Closing



If *N*: represented by *A* with supplementary chains *a* and *b*, then *N* is represented by A * X with a', b'.

	$x \notin X$	$\pmb{x}\in\pmb{X}$	$+b(x)$ if $\langle , \rangle_{\mathcal{K}}$ is symmetric,
a'(x)	a(x)	$\pm b(x)$	$-b(x)$ if $\langle , \rangle_{\kappa}$ is skew-symmetric.
b'(x)	b(x)	a(x)	

Pivot-minors Minors of Lagrangian Chain-groups

Our theorem

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroids

Main Theorem

Applications

Closing

For a well-quasi-ordered set Q with an ordering \leq ,

- Q-labeling: a function from an element set to Q.
- Q-labeled chain-group on V: a chain-group with a Q-labeling.
- Q-minor of a Q-labeled chain-group N is a minor on V' such that (Q-labeling of minor)(x) ≤ (Q-labeling of N)(x) for all x ∈ V'.

If $N_1, N_2, ...$ are Q-labeled Lagrangian chain-groups over F having branch-width $\leq k$, then there exist i and j such that i < j and N_i is simply isomorphic to a Q-minor of N_i .

Proof Sketch (Vaguely)

Rank-width and WQO Sang-il Oum

- Introduction
- Matrices
- Chain-groups
- Deltamatroid
- Main Theorem
- Applications
- Closing

- Tutte's linking theorem for Lagrangian chain-groups
- Existence of linked branch-decompositions Thomas (tree-decomposition), Geelen et al. (branch-decomposition).
- Boundary of an isotropic chain-group *N*: an ordered basis of *N*[⊥]/*N*.
- Boundaried isotropic chain-group: An isotropic chain-group with a boundary.
- Sum of two boundaried isotropic chain-group.
- Connection types: describe the sum of two boundaried isotropic chain-group uniquely.
- Lemma on Trees by Robertson and Seymour.

(Vaguely) If branch-width is bounded, number of distinct connection types is finite. Using that, show that there is no "minimal" antichain.

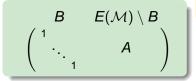
Matroids Representable over a Finite Field

Rank-width and WQO Sang-il Oum

Introduction Matrices Chain-groups Deltamatroids Main Theorem Applications

Closing

If \mathcal{M} is a representable matroid, let B be a basis. There is a standard representation:



Take the following skew-symmetric matrix.

$$egin{array}{ccc} B & E(\mathcal{M}) \setminus B \ S = & igg(egin{array}{ccc} 0 & A \ -A^t & 0 \ \end{array} igg) \end{array}$$

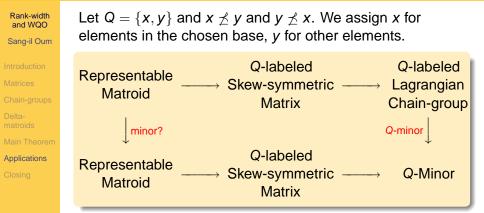
Theorem (Bouchet)

 $\mathcal{M}(S)\Delta B$ is a delta-matroid whose feasible sets are bases of \mathcal{M} .

Moreover, Matroid Branch-width = (Rank-width of S) +1.

Matroid Minors ⇒ Pivot-minors ⇔ Delta-matroid minors

Representable Matroids of Bounded Branch-width



As a corollary, we conclude that:

Matroids representable over a fixed finite field having bounded branch-width are well-quasi-ordered by matroid minors.

Implications

Rank-width and WQO Sang-il Oum

Introduction Matrices Chain-groups Deltamatroids Main Theorem

Applications

Closing

• Matroids (Geelen, Gerards, and Whittle. 2002)

Matroids representable over a fixed finite field having bounded branch-width are well-quasi-ordered by matroid minors.

• Graphs (Robertson and Seymour. 1990)

Graphs representable over a fixed finite field having bounded branch-width are well-quasi-ordered by matroid minors.

 Graphs with Rank-width. (Oum. 2005) Rank-width of a graph: Rank-width of its adjacency matrix over GF(2). Pivot-minor of a graph: Pivot-minor of the adjacency matrix.

Open problems — Branch-width, Well-quasi-ordering

Rank-width and WQO Sang-il Oum

Introduction Matrices Chain-groups Deltamatroids Main Theorem Applications Closing • Suitable Connectivity functions for Representable Delta-matroids.

My definition of branch-width of delta-matroids representable over *F*:

Minimum branch-width of Lagrangian chain-groups over F representing the delta-matroid.

Then, *F*-representable delta-matroids of bounded branch-width are well-quasi-ordered.

 Are delta-matroids representable over a finite field well-quasi-ordered?

This will imply the Graph Minor Theorem.

Open problems — isotropic chain-groups

Rank-width and WQO Sang-il Oum

Introduction

Matrices

Chain-groups

Deltamatroid

Main Theorem Applications

Closing

• Characterization of Delta-matroids obtained from isotropic chain-groups?

- They are minor-closed.
- They are either representable delta-matroids or something else(?).
- Are isotropic chain-groups of bounded branch-width well-quasi-ordered?
- Is Tutte's linking theorem true for isotropic chain-groups?

Thank you for your attention!