
Testing Branch-width

Sang-il Oum∗†

School of Mathematics
Georgia Institute of Technology

Atlanta, Georgia USA

Paul Seymour‡§

Department of Mathematics
Princeton University

Princeton, New Jersey USA

June 8, 2006

Abstract

An integer-valued function f on the set 2V of all subsets of a finite set V is
a connectivity function if it satisfies the following conditions: (1) f(X) + f(Y) ≥
f(X ∩Y)+ f(X ∪Y) for all subsets X, Y of V , (2) f(X) = f(V \X) for all X ⊆ V ,
and (3) f(∅) = 0. Branch-width is defined for graphs, matroids, and more generally,
connectivity functions. We show that for each constant k, there is a polynomial-time
(in |V |) algorithm to decide whether the branch-width of a connectivity function f is
at most k, if f is given by an oracle. This algorithm can be applied to branch-width,
carving-width, and rank-width of graphs. In particular, we can recognize matroids
M of branch-width at most k in polynomial (in |E(M)|) time if the matroid is given
by an independence oracle.

1 Introduction

Branch-width (for graphs) was defined by Robertson and Seymour [5]. We will define
the more general branch-width of connectivity functions later in Section 2. One natural
question is the following.

Let k be a constant and let V be a finite set. Can we decide in polynomial
time whether the branch-width of a connectivity function f : 2V → Z is at
most k?

∗sangil@math.gatech.edu
†The first author was partially supported by NSF grant 0354742.
‡pds@math.princeton.edu
§The second author was supported by ONR grant N00014-04-1-0062 and NSF grant DMS03-54465.

1

(We assume that f is presented by an oracle.)

We answer this question completely. We show that, for fixed k, there is a polynomial-
time (in |V |) algorithm to decide whether the branch-width of a connectivity function f
is at most k. If γ is the time to compute f(X) for any set X, then our algorithm runs in
time O(γn8k+6 log n).

There have been answers for our problem for a few connectivity functions separately.
We summarize them in Table 1. Our result unifies all algorithms listed in Table 1, but
our algorithm is slightly weaker because it is not fixed parameter tractable.

In particular, it was open whether there exists a polynomial-time algorithm that de-
cides whether a matroid (given by an independence oracle) has branch-width at most k
for fixed k. Hliněný [2] showed an O(|E(M)|3)-time algorithm to decide whether branch-
width is at most k for matroids represented over a fixed finite field.

In Section 6, we provide a polynomial-time algorithm to output a branch-decomposition
of width at most k if one exists. We use the above algorithm as a subroutine. We re-
mark that no such algorithms were known for rank-decompositions of graphs or branch-
decompositions of matroids.

Object Results
Branch-width of graphs Linear time [1]
Carving-width of graphs Linear time [7]
Branch-width of matroidsM
represented over a fixed finite
field

O(|E(M)|3)-time1[2]

Rank-width of graphs G O(|V (G)|3)-time [4]

Table 1: Algorithms for deciding branch-width ≤ k for fixed k

2 Definitions

Let us write Z to denote the set of integers. Let V be a finite set. We write 2V to denote
the set of all subsets of V . If a function f : 2V → Z satisfies

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y)

for all X, Y ⊆ V , then f is said to be submodular. If f satisfies f(X) = f(V \ X) for
all X ⊆ V , then f is said to be symmetric. An integer-valued symmetric submodular
function f is called a connectivity function if f(∅) = 0.

1The input is given by the matrix representation of matroids.

2

A subcubic tree is a tree with at least two vertices such that every vertex is incident
with at most three edges. A leaf of a tree is a vertex incident with exactly one edge.
We call (T,L) a branch-decomposition of a symmetric submodular function f if T is a
subcubic tree and L : V → {t : t is a leaf of T} is a bijective function. (If |V | ≤ 1 then f
admits no branch-decomposition.)

For an edge e of T , the connected components of T \e induce a partition (X, Y) of the
set of leaves of T . The width of an edge e of a branch-decomposition (T,L) is f(L−1(X)).
The width of (T,L) is the maximum width of all edges of T . The branch-width of f
is the minimum width of a branch-decomposition of f . (If |V | ≤ 1, we define that the
branch-width of f is f(∅).)

For a connectivity function f on 2V and disjoint subsets A, B of V , we define

fmin(A, B) = min
A⊆Z⊆V \B

f(Z).

We present several lemmas on connectivity functions, which will be used later.

Lemma 1. Let A, B, C, D be subsets of V such that A ∩ B = C ∩ D = ∅. For a
connectivity function f on 2V ,

fmin(A, B) + fmin(C, D) ≥ fmin(A ∩ C, B ∪D) + fmin(A ∪ C, B ∩D).

Proof. Let S be a subset of V such that A ⊆ S ⊆ V \B and f(S) = fmin(A, B). Let T be
a subset of V such that C ⊆ T ⊆ V \D and f(T) = fmin(C, D). By the submodularity
of f , we deduce

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T)

and moreover f(S ∩ T) ≥ fmin(A ∩ C, B ∪D) and f(S ∪ T) ≥ fmin(A ∪ C, B ∩D).

Lemma 2. Let g : 2V → Z be a submodular function such that g(∅) = 0 and g(X) ≤ g(Y)
if X ⊆ Y . For all X ⊆ V , there exists a subset A of X such that |A| ≤ g(X) and
g(A) = g(X).

Proof. We proceed by induction on |X|. If X = ∅, then it is trivial.
Suppose |X| = k > 0. We assume that this lemma is true when |X| < k. Let A be

the minimal subset of X such that g(A) = g(X). Since g(∅) = 0, A 6= ∅. Let v be an
element of A maximizing g(A \ {v}). By our assumption, g(A \ {v}) ≤ k − 1.

By the induction hypothesis, there exists a subset B of A \ {v} such that |B| ≤ k− 1
and g(B) = g(A \ {v}). If B = A \ {v}, then |A| ≤ k and therefore we are done. Thus
we may assume that B 6= A \ {v} and thus there exists w ∈ (A \ {v}) \ B. By the
choice of v, we know that g(A \ {w}) ≤ g(A \ {v}). Since B ⊆ A \ {w}, we deduce that
g(A \ {v}) = g(B) ≤ g(A \ {w}). Therefore

g(A \ {v}) = g(A \ {w}).

3

Moreover, g(A \ {v, w}) = g(A \ {v}) because g(B) ≤ g(A \ {v, w}) ≤ g(A \ {v}). Now
let us apply the submodular inequality.

g(A \ {v}) + g(A \ {w}) ≥ g(A \ {v, w}) + g(A) ≥ g(A \ {v}) + k.

We deduce that g(A \ {v}) ≥ k, a contradiction.

Lemma 3. For a connectivity function f on 2V and a subset Z of V , there exist a subset
A of Z and a subset B of V \ Z such that max(|A|, |B|) ≤ fmin(A, B) = f(Z).

Proof. For a subset X of Z, let g1(X) = fmin(X, V \ Z). By Lemma 1, g1(X) + g1(Y) ≥
g1(X ∩ Y) + g1(X ∪ Y) for two subsets X,Y of Z. In addition, 0 ≤ g1(∅) ≤ f(∅) = 0 and
g1(X) ≤ g1(Y) if X ⊆ Y ⊆ Z. By Lemma 2, there exists a subset A of Z such that

|A| ≤ g1(Z) = f(Z) and g1(A) = fmin(A, V \ Z) = f(Z).

For a subset X of V \ Z, let g2(X) = fmin(A, X). It is again routine to show that g2

satisfies all conditions of Lemma 2. Therefore there exists a subset B of V \ Z such that

|B| ≤ g2(V \ Z) = fmin(A, V \ Z) and g2(B) = fmin(A, B) = fmin(A, V \ Z) = f(Z).

Therefore max(|A|, |B|) ≤ fmin(A, B) = f(Z).

3 Loose Tangles

Let f be a connectivity function on 2V . We wish to test whether the branch-width of f
is at most k, but instead of searching for a branch-decomposition of small width directly,
we search for a dual object called a tangle, introduced by Robertson and Seymour [5].

A set T of subsets of V is called an f -tangle of order k + 1 if it satisfies the following
three axioms.

(T1) For all A ⊆ V , if f(A) ≤ k, then either A ∈ T or V \ A ∈ T .

(T2) If A, B, C ∈ T , then A ∪B ∪ C 6= V .

(T3) For all v ∈ V , we have V \ {v} /∈ T .

Robertson and Seymour [5] showed that tangles are related to branch-width.

Theorem 4 (Robertson and Seymour [5]). Let f be a connectivity function on 2V .
There is no f -tangle of order k + 1 if and only if the branch-width of f is at most k.

4

We introduce a relaxed notion of tangles, which we will call loose tangles. A loose
f -tangle of order k + 1 is a set T of subsets of V satisfying the following three axioms.

(L1) For a subset X of V , if |X| ≤ 1 and f(X) ≤ k, then X ∈ T .

(L2) If A, B ∈ T , C ⊆ A ∪B, and f(C) ≤ k, then C ∈ T .

(L3) V /∈ T .

Even though the definition of loose tangles looks weaker than that of tangles, we show
that a loose tangle exists if and only if a tangle exists. We present a direct proof.

Theorem 5. Let f be a connectivity function on 2V . Then, no loose f -tangle of order
k + 1 exists if and only if the branch-width of f is at most k.

Proof. A set X ⊆ V is called k-branched if the connectivity system obtained from f by
identifying V \X has branch-width at most k. (We assume that V is k-branched if and
only if f has branch-width at most k.) Let B be the set of all k-branched subsets of V
and let B′ = {X : X ⊆ Y, Y ∈ B, f(X) ≤ k}.

We claim that B′ satisfies (L1) and (L2). (L1) is obvious. To see (L2), suppose that
A, B ∈ B and C ⊆ A∪B such that f(C) ≤ k. Pick Z such that A\B ⊆ Z ⊆ A and f(Z)
is minimum. We claim that Z and B \ Z are k-branched. It is enough to show that for
each subset Y of A (or B), if f(Y) ≤ k then f(Y ∩Z) ≤ k (or f(Y \Z) ≤ k respectively).
This follows from the submodular inequalities:

f(Y) + f(Z) ≥ f(Y ∩ Z) + f(Y ∪ Z) ≥ f(Y ∩ Z) + f(Z) if Y ⊆ A, and

f(Y) + f(Z) ≥ f(Y \ Z) + f(Z \ Y) ≥ f(Y \ Z) + f(Z) if Y ⊆ B.

So Z and B \ Z are both k-branched and therefore Z ∪ (B \ Z) = A ∪ B is k-branched
and we deduce C ∈ B′.

Now let us prove our theorem. If the branch-width of f is greater than k, then V /∈ B′

and so B′ is a loose f -tangle.
If the branch-width of f is at most k, then V is k-branched. It is easy to see that

every k-branched set having at least two elements is a union of two proper subsets that
are k-branched. By (L1) and (L2), every loose f -tangle should contain all k-branched
sets. Since V is k-branched, there is no loose f -tangle.

4 Loose Tangle Kits

We introduce loose tangle kits. A pair (P, µ) is called a loose f -tangle kit of order k + 1 if

P = {(A, B) : A, B ⊆ V, A ∩B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}

and µ : P → 2V is a function satisfying the following three axioms.

5

(M1) If |X| ≤ 1 and f(X) ≤ k, then there exists (A, B) ∈ P such that A ⊆ X ⊆ V \ B,
f(X) = fmin(A, B), and X ⊆ µ(A, B).

(M2) If (A, B), (C, D), (E, F) ∈ P , E ⊆ X ⊆ (µ(A, B) ∪ µ(C, D)) \ F , and f(X) =
fmin(E, F), then X ⊆ µ(E, F).

(M3) µ(∅, ∅) 6= V if (∅, ∅) ∈ P .

We will show that a loose f -tangle exists if and only if a loose f -tangle kit exists.

Theorem 6. Let f be a connectivity function on 2V . Then, a loose f -tangle of order
k + 1 exists if and only if a loose f -tangle kit of order k + 1 exists.

Proof. Suppose that T is a loose f -tangle of order k + 1. We construct a loose f -tangle
kit of order k + 1 as follows. Let

P = {(A, B) : A, B ⊆ V, A ∩B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}.

For each (A, B) ∈ P , let

TA,B = {X : A ⊆ X ⊆ V \B, fmin(A, B) = f(X), and X ∈ T },

µ(A, B) =
⋃

X∈TA,B

X. (If TA,B = ∅, then let µ(A, B) = ∅.)

Notice that µ(A, B) may be different from µ(B, A), even though f is symmetric.
First we show that if (A, B) ∈ P , then µ(A, B) ∈ T . Since (A, B) ∈ P , we have

f(∅) = 0 ≤ fmin(A, B) ≤ k and therefore ∅ ∈ T . So we may assume that TA,B 6= ∅.
We claim that if X, Y ∈ TA,B, then X ∪ Y ∈ TA,B. Since 2fmin(A, B) = f(X) + f(Y) ≥
f(X ∩ Y) + f(X ∪ Y) and f(X ∩ Y) ≥ fmin(A, B), f(X ∪ Y) ≥ fmin(A, B), we have
f(X ∪ Y) = fmin(A, B). By (L2), X ∪ Y ∈ TA,B. We conclude that µ(A, B) ∈ TA,B ⊆ T .

We claim that (P, µ) is a loose f -tangle kit of order k + 1. (M3) is trivial by (L3). To
show (M2), suppose that (A, B), (C, D), (E, F) ∈ P , E ⊆ X ⊆ (µ(A, B) ∪ µ(C, D)) \ F ,
and f(X) = fmin(E, F) ≤ k. By (L2), X ∈ T and therefore X ∈ TE,F . So X ⊆ µ(E, F).
Finally, to show (M1), let us assume that |X| ≤ 1 and f(X) ≤ k. By Lemma 3, there
exists (A, B) ∈ P such that fmin(A, B) = f(X) and A ⊆ X ⊆ V \ B. By (L1), X ∈ T
and therefore X ∈ TA,B. Thus, X ⊆ µ(A, B). We conclude that (P, µ) is a loose f -tangle
kit of order k + 1.

Conversely, suppose that (P, µ) is a loose f -tangle kit of order k + 1. We define

T = {X : there exists (A, B) ∈ P such that

A ⊆ X ⊆ V \B, fmin(A, B) = f(X), and X ⊆ µ(A, B)}.

6

We claim that T is a loose f -tangle of order k + 1. (L3) is trivial by (M3). To show
(L2), suppose that X, Y ∈ T , Z ⊆ X ∪ Y , and f(Z) ≤ k. By Lemma 3, there exists
(E, F) ∈ P such that E ⊆ Z ⊆ V \ F and f(Z) = fmin(E, F). By the construction
of T , there are (A, B), (C, D) ∈ P such that X ⊆ µ(A, B) and Y ⊆ µ(C, D). Then
E ⊆ Z ⊆ (µ(A, B) ∪ µ(C, D)) \ F and therefore Z ⊆ µ(E, F). We conclude that Z ∈ T .
Now it remains to show (L1). Suppose that |X| ≤ 1 and f(X) ≤ k. By (M1), there
exists (A, B) ∈ P such that A ⊆ X ⊆ V \ B, f(X) = fmin(A, B), and X ⊆ µ(A, B). By
the construction of T , X ∈ T . We conclude that T is indeed a loose f -tangle of order
k + 1.

5 Algorithms

Let f be a connectivity function on 2V . We want to find a polynomial-time (in |V |)
algorithm to decide whether the branch-width of f is at most k for fixed k, when f is
given by an oracle. Instead of searching directly for a branch-decomposition of width at
most k, we will search for a loose f -tangle kit of order k + 1.

Algorithm 1. Decide whether branch-width of f is at most k.

(A1) Construct P = {(A, B) : A, B ⊆ V, A ∩B = ∅, max(|A|, |B|) ≤ fmin(A, B) ≤ k}.

(A2) Let µ(∅, ∅) = {v ∈ V : f({v}) = 0} if (∅, ∅) ∈ P .

For each v ∈ V , if 0 < f({v}) ≤ k, then find a subset B of V \ {v} such that
|B| ≤ fmin({v}, B) = f({v}). Let µ({v}, B) = {v}.
For all other (A, B) ∈ P , let µ(A, B) = ∅.

(A3) Test (M3).

If it fails, then there is no loose f -tangle kit of order k + 1. Stop.

(A4) Test (M2).

If it fails, then we have (A, B), (C, D), (E, F) ∈ P and X such that E ⊆ X ⊆
(µ(A, B) ∪ µ(C, D)) \ F , f(X) = fmin(E, F), and X 6⊆ µ(E, F). We make µ(E, F)
to be µ(E, F) ∪X, thus increasing |µ(E, F)| at least by 1. Go back to (A3).

(A5) (P, µ) is a loose f -tangle kit of order k + 1. Stop.

Let n = |V |. We claim that the running time of this algorithm is polynomial in n.
We first note that |P | ≤ (

∑k
i=0

(
n
i

)
)2 = O(n2k). (A1) can be done in polynomial (in

|V |) time because we can evaluate fmin in polynomial time by using submodular function

7

minimization algorithms [3, 6]. For (A2), for each v, we may enumerate all subsets B of
V \ {v} having at most f({v}) elements such that fmin({v}, B) = f({v}). There are at
most O(nk) subsets of V of size at most k and therefore (A2) can be done in polynomial
time. There always exists a set B as in (A2) because of Lemma 3. (A3) is easy.

(A4) is more difficult than the others. For every possible triple (A, B), (C, D), (E, F) ∈
P , we try to find X such that

E ⊆ X ⊆ (µ(A, B) ∪ µ(C, D)) \ F, f(X) = fmin(E, F), and X 6⊆ µ(E, F). (1)

Let U = (µ(A, B)∪µ(C, D))\F to simply notation. There is no X satisfying (1) if and only
if for every v ∈ U \µ(E, F), fmin(E∪{v}, V \U) > fmin(E, F). Therefore, to test (M2), we
evaluate fmin for each triple (A, B), (C, D), (E, F) ∈ P and for all v ∈ U \ µ(E, F). If the
test fails, the submodular function minimization algorithm outputs X such that f(X) =
fmin(E, F) and E ∪{v} ⊆ X ⊆ U . Then we increase |µ(E, F)| by at least 1. The number
of iterations of the loop between (A3) and (A4) is at most O(n2k)×O(n) = O(n2k+1). In
the (A4) step of each iteration, we test O(n6k+1) choices of triples and elements. Let γ
be the time to compute f(X) for any set X. To calculate fmin, we use the submodular
function minimization algorithm [3], whose running time is O(n5γ log M) where M is the
maximum value of f and n = |V |. We may assume that f({v}) ≤ k for all v ∈ V , because
otherwise the branch-width of f is larger than k. Then M ≤ nk. Thus, for each choice
of E, U , and v in (A4), we can evaluate fmin(E ∪ {v}, V \U) in O(n5γ log n) time. Thus,
our algorithm runs in time O(n2k+1n6k+1n5γ log n) = O(γn8k+6 log n).

Let us prove that Algorithm 1 is correct. We need a lemma.

Lemma 7. Let f be a connectivity function on 2V and (P, µ) be a loose f -tangle kit of
order k + 1. Suppose that X is a subset of V such that |X| ≤ 1 and f(X) ≤ k. For all
(A, B) ∈ P , if A ⊆ X ⊆ V \B and fmin(A, B) = f(X), then X ⊆ µ(A, B).

Proof. By (M1), there exists (A′, B′) ∈ P such that A′ ⊆ X ⊆ V \B′ and X ⊆ µ(A′, B′).
Then

A ⊆ X ⊆ µ(A′, B′) \B and fmin(A, B) = f(X).

By (M2), X ⊆ µ(A, B).

Theorem 8. Algorithm 1 is correct.

Proof. If the algorithm stops at (A5), then (P, µ) is clearly a loose f -tangle kit of order
k + 1, because it satisfies (M1)—(M3).

Now let us assume that the algorithm stops at (A3). We will show that there is no
loose f -tangle kit of order k + 1. Let µi be the function µ after i iterations of (A3).

We claim that if there exists a loose f -tangle kit (P, µ′) of order k + 1, then for all i,
µi satisfies (M1) and µi(A, B) ⊆ µ′(A, B) for all (A, B) ∈ P . If this claim is true, then

8

there exist (A, B), (C, D) ∈ P such that µ(A, B)∪µ(C, D) = V , and therefore there is no
loose f -tangle kit of order k + 1 because of (M3).

We proceed by induction on i. Right after (A2) is done (when i = 0), (M1) is true.
Moreover by Lemma 7, µ0(A, B) ⊆ µ′(A, B) for all (A, B) ∈ P if (A, B) 6= (∅, ∅). If
(∅, ∅) ∈ P , then by (M1) µ0(∅, ∅) ⊆ µ′(∅, ∅).

Suppose the induction hypothesis is true when i = m. When i = m + 1, we update
µm+1(E, F) = µm(E, F)∪X. (M2) implies that X ⊆ µ′(E, F) and therefore µm+1(E, F) ⊆
µ′(E, F). It is easy to see that (M1) is again true for µm+1.

6 Obtaining a Branch-Decomposition

Algorithm 1 decides whether a connectivity function f has branch-width at most k for
fixed k by searching for a loose f -tangle kit. But this does not necessarily mean that
we can find a branch-decomposition of width at most k when the algorithm outputs that
such branch-decompositions exist. The following idea to find a branch-decomposition was
suggested by Jim Geelen [personal communication, 2005].

We will use Algorithm 1 as a black box. Let V be a finite set with at least three
elements. Let f be a connectivity function on 2V . For distinct u, v ∈ V , let V/uv =
W \ {u, v} ∪ {uv} and let f/uv be a connectivity function on 2V/uv defined as follows:
(f/uv)(X) = f(X) if uv /∈ X and (f/uv)(X) = f((X \ {uv}) ∪ {u, v}) if uv ∈ X.

Suppose that (T,L) is a branch-decomposition of f having width at most k. We may
assume that no vertex of T has degree two, otherwise we may contract one of the two
incident edges. Then T must have two leaves uT , vT of T sharing a common neighbor wT

of degree three. Let u = L−1(uT), v = L−1(vT). We claim that f/uv has branch-width
at most k. To see this, let T ′ = T \ vT \ uT and let L′ : V/uv → {t : t is a leaf of T ′} be
a function such that L′(uv) = wT and L′(x) = L(x) if x ∈ W \ {uv}. Then it is obvious
that (T ′,L′) is a branch-decomposition of f/uv having width at most k.

Conversely if we have a branch-decomposition (T ′,L′) of f/uv of width at most k,
then it is trivial to extend (T ′,L′) to the branch-decomposition (T,L) of f as long as
f({u}) ≤ k and f({v}) ≤ k: we can attach two leaves uT and vT to the leaf L′(uv) of T ′

corresponding to uv and then let L(u) = uT and L(v) = vT .
So the algorithm is as follows. The correctness follows easily from the above argument.

Algorithm 2. Output the branch-decomposition of width at most k if there exists.

(B1) If |V | < 1, then no branch-decomposition exists. If |V | = 2, then there is a unique
branch-decomposition. Its width is determined by f . If f({v}) > k for v ∈ V , then
branch-width is larger than k. Stop.

(B2) Find a pair {u, v} of V such that branch-width f/uv is at most k by Algorithm 1.

9

(B3) If no such pair exists, then the branch-width of f is larger than k. Stop.

(B4) Obtain the branch-decomposition (T ′,L′) of f/uv of width at most k by calling this
algorithm recursively.

(B5) Extend (T ′,L′) to a branch-decomposition (T,L) of f by attaching two leaves uT

and vT to the leaf L′(uv) of T ′ corresponding to uv and then letting L(u) = uT and
L(v) = vT .

It is easy to compute the running time of the above algorithm. If A is the running
time of Algorithm 1, then Algorithm 2 runs in time O(n3A).

Acknowledgment. The authors would like to thank the anonymous referees for their
careful reading and constructive suggestions for better presentation. In particular the
direct proof of Theorem 5 is a modified version of the proof suggested by one of the
referees. We also thank Jim Geelen for suggesting the idea of Section 6.

References

[1] H. L. Bodlaender and D. M. Thilikos, Constructive linear time algorithms for
branchwidth, in Automata, languages and programming (Bologna, 1997), vol. 1256 of
Lecture Notes in Comput. Sci., Springer, Berlin, 1997, pp. 627–637.

[2] P. Hliněný, A parametrized algorithm for matroid branch-width, SIAM J. Comput.,
35 (2005), pp. 259–277.

[3] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial
algorithm for minimizing submodular functions, Journal of the ACM (JACM), 48
(2001), pp. 761–777.

[4] S. Oum, Graphs of bounded rank-width, PhD thesis, Princeton University, 2005.

[5] N. Robertson and P. Seymour, Graph minors. X. Obstructions to tree-
decomposition, J. Combin. Theory Ser. B, 52 (1991), pp. 153–190.

[6] A. Schrijver, A combinatorial algorithm minimizing submodular functions in
strongly polynomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355.

[7] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender, Constructive linear
time algorithms for small cutwidth and carving-width, in Algorithms and computation
(Taipei, 2000), vol. 1969 of Lecture Notes in Comput. Sci., Springer, Berlin, 2000,
pp. 192–203.

10

	Introduction
	Definitions
	Loose Tangles
	Loose Tangle Kits
	Algorithms
	Obtaining a Branch-Decomposition

