Unavoidable vertex-minors in large prime graphs

Sang-il Oum (엄상일) / KAIST, South Korea

joint work with O-joung Kwon

PRIMA 2013 Shanghai, China June 24, 2013

KAIST

Unavoidable structures ∀n, ∃N s.t.

Ramsey

KAIST

- every graph on $\geq N$ vertices has K_n or its complement as a **subgraph**.
- every connected graph on $\geq N$ vertices has $K_n, K_{1,n}$, or P_n as an induced **subgraph**.
- every **2-connected** graph on $\geq N$ vertices has C_n or $K_{2,n}$ as a **topological minor**.
- every 3-connected graph on ≥N vertices has a k-spoke wheel or K_{3,k} as a minor. (Oporowski, Oxley, Thomas 1993)

Further generalization (Matroids - Ding, Oporowski, Oxley, Vertigan)

Our Theorem

∀n,∃N s.t.

every **prime** graph on $\ge N$ vertices has C_n or $K_n \boxminus K_n$ as a **vertex-minor**

prime (with respect to the split decomposition) = no splits (Cunningham 1982)

split=partition of the vertex-set s.t.

cf. I-join of graphs

two cliques joined by a matching

Local complementation and vertex-minors

H is locally equivalent to G if $H=G^*x_1^*x_2^*x_3...$

vertex-minor=graph obtained by applying a sequence of local complemention and vertex deletions

KΔIST

Why prime graphs & vertexminors come together?

If (A,B) is a split of G, then it is also a split of G^*v .

If G and H are locally equivalent, then G is prime iff H is prime

Bouchet (1987) Every prime graph on ≥ 5 vertices has C₅ as a vertex-minor.

> Our Theorem: ∀n, ∃N s.t. every **prime** graph on ≥N vertices has C_n or K_n⊟K_n as a **vertex-minor**

Why is this "best possible"?

- Both C_n and $K_n \boxminus K_n$ are prime!
- They can be arbitrary big.
- [Thm] Cn cannot have $K_m \boxminus K_m$ vertex-minor and $K_m \boxminus K_m$ cannot have C_n vertex-minor.

Our Theorem: ∀n, ∃N s.t. every **prime** graph on ≥N vertices has C_n or K_n⊟K_n as a **vertex-minor**

This is an exact characterization thm!

Let I be a set of graphs closed under taking vertex-minors. Prime graphs in I have bounded size if and only if $\{Cn:n\geq 3\} \not\subseteq I \text{ and } \{K_n \boxminus K_n:n\geq 3\} \not\subseteq I$

Our Theorem: ∀n, ∃N s.t. every **prime** graph on ≥N vertices has C_n or K_n⊟K_n as a **vertex-minor**

Overview of the proof

Proposition I: $\forall n, \exists N \text{ s.t.}$

N~6.75n⁷

if a prime graph has a induced path of length N, then it has C_n as a vertex-minor.

Proposition 2: ∀n, ∃N s.t.

N~2^2^2^.....^2

every **prime** graph on $\geq N$ vertices has C_n or $K_n \boxminus K_n$ as a **vertex-minor**

Our Theorem: $\forall n, \exists N \text{ s.t.}$ every **prime** graph on $\geq N$ vertices has C_n or $K_n \boxminus K_n$ as a **vertex-minor**

Part I: Making a cycle from a long path

Proof: > 10 pages in the paper "Blocking Sequences"

Proposition I: $\forall n, \exists N \text{ s.t.}$ if a prime graph has a induced path of length N, then it has C_n as a vertex-minor.

KAIST

KΔIST

Example (simplest case) Fan

small number of chords

Every big fan has C_n as a vertex-minor.

large number of chords

Finding a gen. ladder

Very very very long induced path ⇒ very very long "k-patched" path ⇒ very long "fully patched" path ⇒ big generalized ladder

Use the technique "blocking sequences" by J. Geelen (1995)

KAIST

Proposition I: ∀n, ∃N s.t.
if a prime graph has a induced path of length N, then it has C_n as a vertex-minor.

Part 2: Making a bigger broom

proof: ~11 pages "Ramsey"

Proposition 2:
 $\forall n, \exists N \text{ s.t.}$ $N\sim2^22^2....^2$ every prime graph on $\geq N$ vertices
has C_n or $K_n \boxminus K_n$ as a vertex-minor

Handle = induced path Fibers= connected components of BROOM-HANDLE Suppose a prime graph G has no vertex-minor isomorphic to P_c or $K_c \boxminus K_c$.

If G has a (h,N,I)-broom for very big N, then G has a (h,t,2)-broom as a vertex-minor.

If G has a (h,N,k)-broom for very big N, then G has a (h,t,k+1)-broom as a vertex-minor. If G has a (h,N,I)-broom for very big N, then G has a (h,t,2)-broom as a vertex-minor.

Leaves have distinct neighbors; we can find...

KAIST

a clique or a stable set

Most cases reduce to P_c or $K_c \boxminus K_c$

If G has a (h,N,I)-broom for very big N, then G has a (h,t,2)-broom as a vertex-minor.

If G has a (h,N,k)-broom for very big N, then G has a (h,t,k+1)-broom as a vertex-minor.

If G has a (h, I, k)-broom for very big k, then G has a (h+I, t, I)-broom as a vertex-minor.

If G has a (h,N,I)-broom for very big N, then G has a (h,t,2)-broom as a vertex-minor.

If G has a (h,N,k)-broom for very big N, then G has a (h,t,k+1)-broom as a vertex-minor.

If G has a (h, I, k)-broom for very big k, then G has a (h+I, t, I)-broom as a vertex-minor.

Starting from a (I,N,I)-broom for very large N, we can get a broom with very tall handle!

KAIS1

Hidden details

- Blocking sequences
 - how to find a short blocking sequence
 - how to get a (k+1)patched path from a kpatched path by sacrificing a bounded number of edges in the long path

- how to get a long cycle from a gen. ladder
 - max degree 3 case
 - max degree 4 to 3
 - general to max degree 4

Thank you / Questions?

Our Theorem: ∀n, ∃N s.t.

every **prime** graph on $\ge N$ vertices has C_n or $K_n \boxminus K_n$ as a **vertex-minor**

Corollary: ∀n, ∃N s.t. every graph without C_n or K_n⊟K_n as a **vertex-minor** is either a graph on ≤N vertices or the I-join of two such graphs.