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ABSTRACT

The linear rank-width of a graph is the minimum width over all possible linear layouts (vy, ve, . . .,vy,)
of the vertex set of the graph, where the width of a linear layout is the maximum rank of the (0,1)-
adjacency matrices induced by the vertex partitions ({vi,...,v;}, {vit1,...,vn}). Linear rank-width is
the linearized variant of rank-width, just as path-width is the linearized variant of tree-width. Motivated
by numerous results on path-width, we investigate several properties of linear rank-width of graphs.

In Chapters [0} [7} and [§] we study structural properties of graphs related to linear rank-width. As a
corollary of known theorems by Oum [2008], for each k, there is a finite set of graphs such that a graph
G has linear rank-width at most & if and only if no vertex-minor of G is isomorphic to a graph in the
set. We show that the number of pairwise locally non-equivalent vertex-minor minimal graphs for the
class of graphs of linear rank-width at most k is at least 202(3%),

For a fixed tree T', we ask whether every graph with sufficiently large linear rank-width contains a
vertex-minor isomorphic to 7. We show that this question is true if it is true for prime graphs. Prime
graphs are graphs with no vertex partition (A, B) with |A|, |B|] = 2 such that the set of edges joining A
and B induces a complete bipartite graph.

We also investigate a Ramsey type result for prime graphs. We prove that for each n, there exists
N such that every prime graph on at least N vertices contains a vertex-minor isomorphic to either a
cycle of length n or the line graph of the complete bipartite graph K> ,,.

In Chapters [9] and we develop graph algorithms related to linear rank-width. We first
verify that computing linear rank-width on graphs is NP-hard, using the result on matroid path-width
by Kashyap [2008]. We then ask which graph classes admit a polynomial-time algorithm for computing
linear rank-width. For distance-hereditary graphs, we show that it is possible to compute the linear
rank-width in time O(n?log,n). As a corollary, we can compute the path-width of n-element matroids
of branch-width at most 2 in time O(n?log, n), provided that the matroid is given by an independent
set oracle.

We also discuss graph modification problems related to linear rank-width. We prove that for a
positive integer k and an input graph G with n vertices, we can decide in time 8% - n©1) whether G
contains a vertex subset S of size at most k such that G\S has linear rank-width at most 1. We also
show that this problem admits a polynomial kernel, which means that there exists a polynomial-time
algorithm to transform an input graph G and a positive integer k into another instance G’ and k' such
that (G, k) is a YEs-instance if and only if (G', k') is a YEs-instance, and |V (G’)| is bounded by a
polynomial function in k. Additionally, for a positive integer k and an input graph G with n vertices,
we can decide in time 201082 k) . nO() whether G contains a vertex subset S of size at most k such that
G\S has rank-width at most 1.
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Chapter 1. Introduction

Linear rank-width is a width parameter of graphs that measures how much the given graph has a
path-like structure using the matrix rank function. Linear rank-width is the linearized variant of rank-
width [I50], and it is similar to path-width which is the linearized variant of tree-width [169] [I70]. It is
formulated as a graph layout problem, and is known to be equivalent to linear clique-width [62] [89] and
linear boolean-width [40, [15§].

A linear layout of a graph is an ordering of the vertices of the graph. Graph layout problems are a
class of optimization problems where the goal is to find a linear layout of an input graph in such a way that
a certain objective function is optimized. Several width parameters are defined in terms of graph layout
problems, for instance, band-width [IT1], 122], cut-width [4] [T41], vertex separation number [T40, [139].
For motivations and applications of these parameters, we refer to the survey by Diaz [75].

Among these parameters, much less was known for linear rank-width and its equivalent parameters.
Together with the vertex-minor relation, we investigate several properties of linear rank-width. Our
works are mainly motivated from similar results for path-width [169, 58| [13], [182] 85 23] 137, 67, [157].
We compare properties of linear rank-width and path-width in Table and We introduce linear
rank-width and vertex-minors in Section[I.1and respectively, and define basic notions in Section|1.3

Vertex-minor obstruction sets for bounded linear rank-width

Tree-width and path-width have important roles in the Graph Minor Theorem, proved by Robertson
and Seymour [169, [I71l [I'75, 176, 177]. They proved that for every infinite sequence Gip,Ga,... of
graphs, there exist G; and G; with ¢ < j such that G is isomorphic to a minor of G;. In other words,
graphs are well-quasi-ordered under the minor relation. Surprisingly, this property yields polynomial-
time algorithms for many problems; for instance, testing whether an input graph can be embedded on a
fixed surface [172, [I73], or testing whether an input graph can be embedded in R? so that no two cycles
are linked [146], [8]], or testing, for a fixed k& and any minor-closed class F, whether an input graph G
contains at most k vertices whose removal makes it belong to F [88]. For each problem, the set of all
YES-instances are closed under taking minors, and the Graph Minor Theorem implies that the number
of minor obstructions for each set is finite. Thus, testing whether an instance is a YES-instance can be
done in time O(n?) using the minor testing algorithm by Robertson and Seymour [176] (166}, [167].

Generally, well-quasi-orderings are useful to understand graph classes with forbidden structures. In
graphs, the following relations are usually considered as possible quasi-orderings: induced subgraphs
(vertex deletions), subgraphs (vertex or edge deletions), minors (vertex or edge deletions, and edge
contractions), induced minors (vertex deletions and edge contractions), and topological minors (a graph
H is called a topological minor of a graph G if a subdivision of H is isomorphic to a subgraph of G).
For instance, the class of all graphs with path-width at most k for some fixed k is characterized by a
finite list of minor obstructions because it is closed under taking minors and the minor relation is a
well-quasi-ordering on this graph class. For linear rank-width and its equivalent parameters, they do not
increase when taking induced subgraphs, among the aforementioned five relations. However mostly, a

class of graphs of bounded linear rank-width (or rank-width) is not well-quasi-ordered under the induced



subgraph relation. For instance, all of cycles have linear rank-width at most 2, but the infinite sequence
C3,Cl4, ... of cycles contains no pair C;, C; with ¢ < j such that C; is an induced subgraph of Cj;.

Local complementation [131] is a useful operation when studying rank-width and linear rank-width.
When we apply a local complementation at some vertex in a graph, we swap the adjacency relation
between two vertices in the neighborhood of the chosen vertex. Local complementation was first intro-
duced by Kotzig [I31] and further studied by Bouchet [28] 29} [30, [32]. Bouchet [32] observed that a local
complementation at some vertex preserves the rank of the matrix induced from each vertex partition,
and this implies that the rank-width or the linear rank-width of a graph is preserved when applying a
local complementation.

A graph G is a vertex-minor of a graph H if G can be obtained from H by a sequence of local
complementations and vertex deletions. From above observation, the rank-width or the linear rank-width
of a graph does not increase when taking vertex-minors. Moreover, Oum [I51] showed that every class of
graphs with bounded rank-width is well-quasi-ordered under the vertex-minor relation (Theorem .
It implies that every class of graphs with bounded linear rank-width is also well-quasi-ordered under the
vertex-minor relation, and therefore for each k, the class of all graphs of linear rank-width at most & can

be characterized by a finite list of vertex-minor minimal graphs for the class [I51].

Corollary 1.1. For each positive integer k, there exists a finite set Oy of graphs such that a graph has

linear rank-width at most k if and only if it has no vertex-minor isomorphic to a graph in Oy.

We can use this result to devise an algorithm to test whether an input graph has linear rank-width
at most k, by testing whether it has each graph in the obstruction set as a vertex-minor. Adler, Farley,
and Proskurowski [I] proved that the three graphs in Figure form a vertex-minor obstruction set
for the class of graphs of linear rank-width at most 1. However, the well-quasi-ordered result does not
provide any bound on the size of the obstruction set and there were no known upper bound on the size
of a vertex-minor obstruction set when k > 2.

In Chapter @ we prove that for each integer k > 2, there is a set of at least 296" vertex-minor
minimal graphs for the class of graphs of linear rank-width at most k, where no two graphs in the set
are equivalent up to local complementations. Two graphs G and H are called locally equivalent if G can

be obtained from H by applying a sequence of local complementations.

Theorem Let k = 2 be an integer. There exist at least 20" pairwise locally non-equivalent graphs

that are vertex-minor minimal graphs for the class of graphs of linear rank-width at most k.

There is a technical point in proving that a constructed set of graphs is indeed a minimal set, that is,
any two graphs in the set are not locally equivalent to each other. Bouchet [31] showed that no two locally
equivalent trees are isomorphic to each other. However, our constructions are not trees. For proving
Theorem [6.1] we extend the result on trees [31] into a special type of block graphs in Theorem

We note that there is no general way to construct a vertex-minor obstruction set. If we know an
upper bound on the maximum number of vertices in a vertex-minor minimal graph for the class of graphs
of linear rank-width at most k, then in theory we can enumerate all of the obstructions. We ask an upper
bound on the size of vertex-minor minimal graphs for bounded linear rank-width as an open problem.

For path-width of graphs, the following are known.
Theorem 1.2. Let k be a positive integer.
e (Takahashi, Ueno, and Kajitani [I82]; Ellis, Sudborough, and Turner [85]) The number of minor

obstructions for the class of graphs of path-width at most k is at least (k!)2.
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Figure 1.1: A vertex-minor obstruction set for thread graphs.

e (Lagergren [I37]) The number of edges in a minor obstruction for the class of graphs of path-width
at most k is at most 200", (Since an obstruction is connected, the number of vertices is also

bounded.)

Vertex-minors in graphs of large linear rank-width

In the papers on Graph Minor Theorem, Robertson and Seymour proved that for a fixed r, every
graph of sufficiently large tree-width contains an r x r-grid as a minor [I71], and for a fixed forest F,
every graph of large path-width contains F' as a minor [I69]. These results not only capture the essential
properties of those parameters, but also can be used to devise algorithms for some graph problems such
as the DISJOINT PATHS problem. For a given set of pairs of vertices (s1,t1),..., (Sk,tx) in a graph, the
DisJoINT PATHS problem asks whether there exist k vertex-disjoint paths P, ..., Py where each path P;
links s; to t;. Roughly speaking, if an input graph has sufficiently large tree-width, then it is possible to
find a large grid in the graph, and identify a vertex whose removal does not affect on whether the question
is yes or no [I67]. By recursively removing such vertices until an input graph has tree-width bounded
by some function in k, we can finally obtain a graph of bounded tree-width where the problem can be
solved efficiently on the graph. Based on this argument, Robertson and Seymour [176] [167] showed that
the DISJOINT PATHS problem can be solved in time f(k)-n® for some function f, where n is the number
of vertices in the input graph. Also, this grid theorem has been used to obtain meta-algorithmic results
for parameterized problems [71, [72], 8T, [73] ©3].

Oum [I54] conjectured that for a fixed bipartite circle graph H, every graph with sufficiently large
rank-width contains a vertex-minor (originally, pivot-minor) isomorphic to H. Bipartite circle graphs
naturally appear because every fundamental graph of a planar matroid is bipartite circle [69]. (A planar
matroid is the graphic matroid of a planar graph.) This conjecture is still open, and it is true for bipartite
graphs [150], circle graphs [I54], and line graphs [I54].

Similar to this conjecture, for a fixed tree T', we ask whether every graph of sufficiently large linear
rank-width contains T' as a vertex-minor. We remark that the bipartite version of this question was
already asked in [59]. Note that trees have unbounded linear rank-width [97, 133 [2].

Question 1.3. For any fixed tree T, does every graph of sufficiently large linear rank-width contain a

vertex-minor isomorphic to T ?

In Chapter [7] we prove that it is true if it is true for prime graphs with respect to split decomposi-

tions [64]. We prove the following.

Theorem Let p = 3 be an integer and let T be a tree. Let G be a graph such that every prime
induced subgraph of G has linear rank-width at most p. If G has linear rank-width at least 30(p+4)|V(T)|,

then G contains a vertex-minor isomorphic to T.

Prime graphs are the graphs having no vertex partition (A, B) with |A|, |B| = 2 such that the set

of edges joining A and B induces a complete bipartite graph, in other words, the rank of the matrix

-3 -



A(G)[X,Y] is at most 1 where A(G) is the adjacency matrix of G. Split decompositions and prime graphs
were introduced by Cunningham [65], [64]. Prime graphs play an important role in the study of circle
graphs (intersection graphs of chords in a circle) and their recognition algorithms [29] 145, 96|, (180} 56].
We will discuss basic properties of prime graphs in Chapter [d] We remark that the rank-width of a graph
is equal to the maximum rank-width over all its prime induced subgraphs.

To prove this theorem, we essentially prove that for a fixed tree T, every graph admitting a split
decomposition whose decomposition tree has sufficiently large path-width contains a vertex-minor iso-
morphic to T. The vertex-minor relation is indeed necessary because there is a cograph admitting a
split decomposition whose decomposition tree has sufficiently large path-width [57), [104]. See Section
for split decompositions of cographs. However, cographs have no path of length 3 as an induced sub-
graph [57].

A Ramsey type result for prime graphs

We further study prime graphs. Bouchet [29] proved several theorems for prime graphs from his
work on isotropic systems, which unify the properties of 4-regular graphs and binary matroids. For
instance, he [29] proved that every prime graph with n > 5 vertices contains a prime graph with n — 1
vertices as a vertex-minor (Theorem [£.1]). This is parallel to the Tutte’s wheel and whirl theorem [I86]
for reducing 3-connected matroids. Using this result, Bouchet [29] also proved that every prime graph
contains a cycle of length 5 as a vertex-minor (Corollary , similar to that every 3-connected matroid
contains a wheel or a whirl matroid as a minor. Geelen [I02], Corollary 5.11] developed a splitter theorem
for prime graphs with respect to the vertex-minor relation, which is a variant of the Seymour’s splitter
theorem [I78] for matroids.

Ramsey’s theorem [I61] states that for a fixed n, every sufficiently large graph contains either
a complete graph K, or the complement of K, as an induced subgraph. There are several variants of
Ramsey’s theorem with given some connectivity assumptions; for instance, for a fixed n, every sufficiently
large connected graph contains an induced subgraph isomorphic to either a complete graph K, or a
star graph K, or a path of length n [76]. We list similar Ramsey type theorems in the beginning of
Chapter In particular, Ding, Oporowski, Oxley, and Vertigan [79] [R0] investigated a Ramsey type
result for 3-connected matroids, and we are motivated from their result.

We prove the following in Chapter [§] The graph K, H K, is the graph obtained by joining two
copies of K,, by a matching of size n. See Figure We remark that K, 3K, is the line graph of Ks,,.

Theorem For every n, there exists an integer N such that every prime graph on at least N vertices

has a vertex-minor isomorphic to a cycle of length n or K,, H K,.

To prove Theorem [8.1} we will use the concept of blocking sequences developed by Geelen [102] to
construct certain vertex-minors, and further used by Bouchet, Cunningham, and Geelen [36] in the study
of delta-matroids. For a graph G, a vertex partition (X,Y") of the vertex set of G is called a split if
|X],Y] = 2, and the rank of the matrix A(G)[X,Y] is at most 1 where A(G) is the adjacency matrix
of G. Note that prime graphs have no splits. If a prime graph G has an induced subgraph H which
admits a split (X, Yy), then the blocking sequence is a certificate verifying the fact that this vertex
partition (X g, Yy ) cannot be extended to a split of G. For our purpose, we will develop a way to bound

the length of blocking sequences using local complementations, in Section |8.2



Figure 1.2: The line graph of K 5 (K5H K5).

Algorithms for computing linear rank-width

Tree-decompositions play an important role in many graph algorithms. Arnborg, Proskurowski [7]
and Bern, Lawler, Wong [12] and Bodlaender [I7] independently developed efficient algorithms to solve
NP-complete problems on graphs of bounded tree-width. Later, Courcelle [58] proved a much generalized
theorem that every graph property expressible in a monadic second-order logic formula of the second
type (MSO,) can be decided in linear time on graphs of bounded tree-width. This can be applied to
many problems such as 3-COLORING, HAMILTONIAN CYCLE, DOMINATING SET problems.

Rank-width and linear rank-width have been studied in the context of generalizing these results
into bigger classes. Even for linear rank-width, graphs of bounded linear rank-width may contain dense
graphs such as all complete graphs, or all complete bipartite graphs, which cannot be contained in a
class of graphs of bounded tree-width. Courcelle, Makowsky, and Rotics [61] showed that every graph
property expressible in a monadic second-order logic formula of the first type (MSO;7) can be decided in
cubic time on graphs of bounded rank-width. We remark that every MSO; formula is an MSO, formula,
but not vice versa. For instance, a graph property of having a cycle through all vertices can be written
as an MSO, formula, but it cannot be written as an MSO; formula. We will observe the difference of

two types of the logic formulas in Section [3:3]

We discuss algorithms for computing linear rank-width in Chapter[9] It is known that computing the
path-width of graphs is NP-hard [6]. For various restricted graph classes, computing the exact value of
path-width has been studied: forests [85], graphs of bounded tree-width [20, 23], split graphs [16][109], the
complements of chordal graphs [98], permutation graphs [24], cographs [26], and circular-arc graphs [I81].

We first prove that computing the linear rank-width of a graph is also NP-hard in Section [9.1] by
reducing from matroid path-width. Kashyap [123] proved that computing path-width of representable
matroids is NP-hard. Then we ask which graph classes admit a polynomial-time algorithm for computing
linear rank-width.

Ellis, Sudborough, and Turner [85] showed that the path-width of forests (graphs of tree-width 1)
can be computed in linear time. They used the characterization of path-width on forests, and this allows
to have a natural algorithm to compute it based on dynamic programming. Previously, the only known
polynomial-time algorithm to compute linear rank-width was for forests [2]. This follows from the fact
that the linear rank-width and the path-width of a tree are equal [I33] [2].

In Chapter E[, we investigate a new O(n?log, n)-time algorithm to compute the linear rank-width of
distance-hereditary graphs. Distance-hereditary graphs are the graphs G where every connected induced
subgraph H of G and two vertices v, w in H, the distance between v and w in H is equal to the distance in
G [113, 9], and they include all forests, as well as complete graphs, complete bipartite graphs, threshold
graphs [54] [I05], and cographs [37] that are not forests. Oum [I50] showed that distance-hereditary
graphs are exactly the graphs of rank-width at most 1. We will discuss distance-hereditary graphs in
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Chapter

Theorem The linear rank-width of an n-vertex distance-hereditary graph can be computed in time
O(n? -logyn).

Since computing the path-width of distance-hereditary graphs is NP-hard [129], this class is the first
class which satisfies that it is NP-hard to compute path-width but linear rank-width can be computed in
polynomial time. To prove Theorem [9.1] we present a characterization of linear rank-width on distance-
hereditary graphs in Theorem [5.11] and devise a direct dynamic programming algorithm to compute

linear rank-width. As a corollary of Theorem [9.1] we also prove the following.

Corollary The path-width of an n-element matroid of branch-width at most 2 with a given inde-

pendent set oracle can be computed in time O(n? -log, n).

Motivated from Theorem [9.1] for k£ > 2, we ask whether there is a polynomial-time algorithm to

compute linear rank-width for the class of graphs of rank-width at most k.

Question 1.4. For a fized k > 2, is there a polynomial-time algorithm to compute linear rank-width on

graphs of rank-width at most k?
Bodlaender and Kloks [23] show the following for path-width.

Theorem 1.5 (Bodlaender and Kloks [23]). For fized k, there is a polynomial-time algorithm to compute
path-width on graphs of tree-width at most k.

We discuss parameterized problems related to linear rank-width. For the definitions related to
parameterized algorithms, we refer to the book written by Downey and Fellows [84]. Parameterized
problems deal with an instance (z, k) where k is a secondary measurement, called as the parameter, and
the main goal is to find whether a problem admits an algorithm with running time f(k) - |z|°®") where f
is a function depending on the parameter k alone, and |z| is the input size. As we study parameterized
problems where the unparameterized decision versions are NP-complete, the function f is generally super-
polynomial. A parameterized problem admitting such an algorithm is said to be fized parameter tractable,
or FPT in short. For many natural parameterized problems, the function f is overwhelming [95] or even
non-explicit [I76], especially when the algorithm is indicated by a meta-theorem. Therefore, researchers
focus mainly on designing FPT algorithms with affordable super-exponential part in the running time.
We are particularly interested in solving parameterized problems in single-exponential time, that is, in

time ¥ - |2|°() for some constant c.

We consider the problem of determining whether an input graph has linear rank-width at most k for
some fixed k. For k = 1, we can test whether an input graph G has linear rank-width at most 1 in time
O(n + m) using split decompositions [65], 68, B9l B], where n and m are the number of the vertices and
edges in G, respectively. We will see the characterization of graphs of linear rank-width 1 in terms of split
decompositions in Section Combined with the algorithm to compute the split decomposition of a
graph [65] [68], we can decide whether a graph has linear rank-width at most 1. However, for k > 2, there
is no known simple characterization of graphs of linear rank-width at most k, and we need a different
approach.

Nagamochi [I44] investigated testing algorithms for parameters defined in terms of linear layouts

in a general framework. Using his result, we can show that there is an O(n?**%)-time algorithm to

-6 —



determine whether an n-vertex input graph G has linear rank-width at most k. This algorithm is valid for
parameters defined by any submodular function, such as cut-width and vertex separation number [144].
However, this algorithm is not a fixed parameter tractable algorithm.

Currently, the only known fixed parameter tractable algorithm for determining whether an input
graph has linear rank-width at most k is using the finite list of a vertex-minor obstruction set. Using
the obstruction set, we can test whether an input graph G with n vertices has linear rank-width at most
k in time f(k) - n3 for some function f, combined with the vertex-minor testing algorithm by Courcelle
and Oum [63] and an algorithm to find an approximate rank-decomposition by Oum [153], for instance.
In this context, it is interesting to address an upper bound on the size of vertex-minor minimal graphs

for the class of graphs of linear rank-width at most k.

Vertex deletion problems related to linear rank-width

We now discuss graph modification problems related to linear rank-width. Generally, for an input
graph G and a fixed set O of elementary operations and a class II of graphs, the objective is to transform
G into a graph in II by applying at most k operations from O. Graph modification problems formulate a
number of interesting computational problems arising from both theory and its applications. They have
received a significant amount of attention from the perspective of parameterized complexity. We first
give some motivation for graph modification problems.

As an application to the real world, we consider a situation that a bank supervisor wants to place
automated teller machines (ATMs) in a city so that there is at least one ATM on each street, but also
want to place at most & ATMs, as each additional ATM is expensive. For efficiency, we may assume
that an ATM is always placed on the intersections. We can model this real world problem as a graph
modification problem where the streets of the city are edges of the graph, and each intersection is a
vertex of the graph, and ask whether there exists a vertex set S of size at most k such that S meets all
edges in G, that is, the remaining graph after removing the vertices in S has no edges. This problem
is called the VERTEX COVER problem, and it is known to admit a fixed parameter tractable algorithm
when the parameter is the solution size k [83] [42] [8 147, [51], 49, 148, [50]. In the CLUSTER EDITING
problem, we allow k& edge deletions and additions to make an input graph G a disjoint union of complete
graphs. This problem has been studied in different contexts, such as computational biology [111, 179} [189],
and machine learning problems [I0]. This problem is also known to admit an FPT algorithm when the
parameter is the solution size k [106] 107, (15, [14].

The graph class IT with tree-width at most w is of particular interest as many problems become
tractable on graphs of small tree-width (TREE-WIDTH w VERTEX DELETION). When w = 0 and w = 1,
the corresponding graph modification problem with O = {vertex deletion} coincides with the VERTEX
COVER problem and the FEEDBACK VERTEX SET problem, respectively. Since every YES-instance of
the TREE-WIDTH w VERTEX DELETION problem has tree-width at most w + k, using the Courcelle’s
meta-theorem [58] on graphs of bounded tree-width, the TREE-WIDTH w VERTEX DELETION problem
can be solved in f(k) - n for some function f. Since the function f in the meta-theorem is huge, it
is natural to ask whether the exponential function in the running time can be made realistic. Recent
endeavor pursuing this question culminated in establishing that for any fixed w, the TREE-WIDTH w

k

VERTEX DELETION problem admits an FPT algorithm that runs in time ¢* - n®®) for some constant

¢ [92, 127].



We consider the problem to test whether an input graph G has a vertex subset of size at most
k whose removal makes G a graph of linear rank-width at most w (LINEAR RANK-WIDTH w VERTEX
DELETION). In particular, we state the problem when w = 1. Graphs of linear rank-width 1 are called
thread graphs [97], and thus, we call this problem as the THREAD VERTEX DELETION problem for

convenience.

THREAD VERTEX DELETION (LINEAR RANK-WIDTH 1 VERTEX DELETION)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S € V(G) of size at most k such that G\S is a thread graph,
that is, G\\S has linear rank-width at most 1?

We will see that the LINEAR RANK-WIDTH w VERTEX DELETION problem can be formulated as an
MSO; formula [I50} [63] in Section We remark that every YES-instance of LINEAR RANK-WIDTH
w VERTEX DELETION has linear rank-width (or rank-width) at most k& + w as linear rank-width can
decrease by at most one by removing a vertex. From the meta-theorem for graphs of bounded rank-width
by Courcelle, Makowsky and Rotics [61], it is possible to solve the LINEAR RANK-WIDTH w VERTEX
DELETION problem in time f(k)-n®®) for some function f. However, the involved exponential function
is huge and it is not clear whether it can be solved significantly faster. In Chapter we prove that the

THREAD VERTEX DELETION problem can be solved in time 8% - n@).

Theorem For an input graph G with n vertices and a fived k, we can test whether G has a vertex

subset S of size at most k such that G\S has linear rank-width at most 1 in time 8¢ . n©1),

A powerful technique to handle parameterized problems is the kernelization algorithm. A kernel-
ization algorithm takes an instance (x, k) and outputs an instance (2, k") in time polynomial in |z| + k
satisfying that (1) (z,k) is a YES-instance if and only if (2/, k') is a YES-instance, (2) k¥’ < k, and (3)
|#’| < g(k) for some function g. The reduced instance is called a kernel and the function g is called the
size of the kernel. It is folklore that admitting a kernel is equivalent to being fixed-parameter tractable.
See [84, Proposition 4.7.1]. Therefore, most kernelization research is focused on finding an algorithm

that yields a small-sized kernel, ideally of polynomial size.

We prove that the THREAD VERTEX DELETION problem admits a polynomial kernel.

Theorem Let k be a fized integer, and let G be a graph. Then there exists a polynomial-time
algorithm to generate a pair (G', k') such that

1. G has a vertex subset S of size at most k such that G\S has linear rank-width at most 1 if and only

if G’ has a vertex subset S’ of size at most k' such that G'\S’ has linear rank-width at most 1, and
2. kK <k and |[V(G")| < O(K*3).

We remark that a similar deletion problem for graphs of path-width at most 1 has been studied
recently, and we call it the PATH-wWIDTH 1 VERTEX DELETION problem. Philip, Raman, and Vil-
langer [157] showed that PATH-WIDTH 1 VERTEX DELETION can be solved in time O(7k - n?), and it
admits a kernel of size O(k?). Later, Cygan, Pilipczuk, Pilipczuk, and Wojtaszczyk [67] improved the
running time by showing that PATH-wIDTH 1 VERTEX DELETION can be solved in time 4.65% - n@()

and it admits a kernel of size O(k?). Several graph classes with a certain path-like structure have been
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researched for vertex deletion problems. Proper interval graphs [90, [I88], unit interval graphs [I87], and

interval graphs [46] are some such classes.

Additionally, we consider a parameterized deletion problem related to distance-hereditary graphs.

The problem is formulated as followss.

DISTANCE-HEREDITARY VERTEX DELETION (RANK-WIDTH 1 DELETION)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S € V(G) of size at most k such that G\S is distance-hereditary,
that is, G\\S has rank-width at most 17?

Similar to linear rank-width, we ask the following question.

k

Question 1.6. Can DISTANCE-HEREDITARY DELETION be solved in time ¢ - n®® for some constant

c?
We prove that this problem can be solved in time 20 1og2 k) . nO1)

Theorem For an input graph G with n vertices and a fized k, we can test whether G has a vertex
subset S of size at most k such that G\S has rank-width at most 1, in time 20 1082) . ,O(1)

A similar deletion problem for graphs of tree-width at most 1 (forests) is called the FEEDBACK
VERTEX SET problem. This problem is one of the most intensively studied problems in parameterized
complexity. It was proved in the 1990’s that this problem admits an FPT algorithm by Bodlaender [1§],
and by Downey and Fellows [82]. Then by a series of papers [160} 120}, 159}, [108] [70, [48], 44}, [66], the running
time has been subsequently improved, and the current best running time is 3.619% - n®M) | proved by
Kociumaka and Pilipczuk [130]. Thomasse [183] proved that this problem admits a kernel of size 5k2 + k.

1.1 Linear rank-width

Let A(G) be the adjacency matrix of a graph G, which is defined on the binary field. For a graph
G, we define a function pg: V(G) — Z such that pe(X):= rank A(G)[X,V(G)\X] for X € V(G). We
call it the cut-rank function of G.

A linear layout o of a set S is a bijective function from S to {1,...,|S|}, and for convenience, we
denote it as a sequence (o~ 1(1),071(2),...,071(|S])). For a linear layout o of S and a,b € S, we denote
a<sborb>=,aif o(a) < o(b), and we denote a <, b or b >, a if o(a) < o(b).

A linear layout of the vertex set of G is called a linear layout of G. The width of a linear layout L of
G is defined as the maximum over all values pg({w : w <z, v}) for v € V(G). We say that the width of
L is 0if |V(G)| < 1. The linear rank-width of G, denoted by lrw(G), is the minimum width of all linear
layouts of G.

For some classes of graphs, the exact values of linear rank-width are known. Complete graphs have
linear rank-width 1 because for every &5 < S < V(G), pc(S) = 1. Complete bipartite graphs K, ,, also
have linear rank-width 1 because we can put the vertices in one part first, and then put the vertices in
the other part in the ordering.

Graphs of linear rank-width at most 1 are characterized by Ganian [97], and Adler, Farley, and
Proskurowski [I]. Ganian [97] defined thread graphs using a linear layout satisfying a certain condition,

and showed that the class of thread graphs is equal to the class of graphs of linear rank-width at most
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Path-width

Linear rank-width

The number of minor obstructions for

path-width < k is at least (k!)? [182, 8H].

The number of pairwise locally non-equivalent
vertex-minor minimal graphs

for linear rank-width < k is at least 226" (Theorem [6.1))

The number of edges in a minor obstruction

for path-width < k is at most 20**) [137].

For k > 2, an upper bound on the number of
vertices in a vertex-minor minimal graph

for linear rank-width < k is open.

For a fixed tree T,
every graph of sufficiently large path-width

contains a minor isomorphic to 7" [169] [13].

For a fixed tree T and an integer ¢ and a graph G
whose prime induced subgraph has linear rank-width < ¢,

if G has sufficiently large linear rank-width, then
it contains a vertex-minor isomorphic to T'. (Theorem )

Every connected graph with no K , minor

has path-width < n — 1 [13].

Every graph with no K, , vertex-minor

has < 247" 1 vertices. (TheoremlSjI)

Every connected graph with no P,, minor

has path-width < n — 2 [13].

For n < 5, every graph with no P, vertex-minor

has bounded linear rank-width. (Theorems and
For n > 6, an upper bound on the linear rank-width of

a graph with no P,, vertex-minor is open.

Trees have unbounded path-width [182] [85].

Every graph with no K, vertex-minor
has < 24("=D*+1 yertices. (Theorem [8.4)

Table 1.1: Comparing properties of linear rank-width and path-width.

Path-width Linear rank-width
Forests Linear [85] [143] Linear [2]
Graphs of tree-width < ¢ Polynomial [23] Open
Distance-hereditary graphs NP-complete [129] O(n?logy n) (Theorem
Graphs of rank-width < ¢ NP-complete [129] Open
An FPT algorithm for

deciding whether width is < k

A constructive FPT algorithm [23]

Only known FPT algorithm is
using the obstruction set [151]

An FPT algorithm for
k-vertex deletion to width 1

4.65% - n®W [67, [157]

8% . n®W (Theorem [10.1))

A polynomial kernel for

k-vertex deletion to width 1

O(k?) vertices [67, [157]

O(k33) vertices (Theorem [10.2))

Table 1.2: Algorithms for computing linear rank-width or path-width. If a parameterized problem with

an input  and a parameter k admits an algorithm with running time f(k) - |#|°()), then the problem is

called fixed parameter tractable (shortly, FPT).
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Figure 1.3: A thread graph.

1. Adler, Farley, and Proskurowski [I] proposed a new definition of thread graphs. Here, we propose a

convenient form of the definition of thread graphs, motivated by Adler, Farley, and Proskurowski [I].

Thread graphs

A triple B(z,y) = (G, 0,£), where x and y are two vertices of the graph G, ¢ is a linear layout of V(&)
whose first and last vertices are z and y, respectively, and ¢ is a function from V(G) to {{L}, {R},{L, R}},
is a thread block if

L () = {R} and £(y) = {L},
2. for v,w e V(G) with v <, w, vw € E(G) if and only if R € £(v) and L € {(w),
3. Uo7 1(2) # {L}if o7 1(2) £ y.

The aim of the third condition is to guarantee a unique decomposition of thread graphs into thread
blocks.

For a digraph D = (Vp, Ap), a set of thread blocks {B(z,y) = (Gay, Ozy,lay) : vy € Ap} is said
to be mergeable with D if for any two arcs z1y1, T2y of Ap, V(Gayy) N V(Gayy,) = {z1, 01} N {z2, y2}.
For a digraph D = (Vp, Ap) and a mergeable set of thread blocks Bp = {B(z,y) = (Gay, Ozy, lay) :
zy € Ap}, the graph G = D © Bp has the vertex set V(G) = U, eca, V(Gzy) and the edge set
B(G) = Usyen, B(Cay).

A connected graph G is a thread graph if G is either the one vertex graph or G = P ® Bp for some
directed path P, called the underlying directed path, and some set of thread blocks Bp mergeable with
P. A graph is a thread graph if each of its connected components is a thread graph. See Figure for
an example of a thread graph.

We prove the following in Section

Theorem 1.7 (Ganian [97]; Adler, Farley, and Proskurowski [I]). A graph has linear rank-width at most
1 if and only if it is a thread graph.

Trees have unbounded linear rank-width [97], [133], 2]. Kwon proved in [I33] that the rooted complete
binary tree of height n has linear rank-width [%], where the height is the length from the root to any
leaf. Linear rank-width and path-width are equal on trees [133] 2.

Courcelle, Makowsky, and Rotics [61] showed that every graph property expressible in monadic

second order logic (MSO;) can be decided in cubic time on graphs of bounded rank-width, and thus for
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A

Figure 1.4: Local complementation at a.

the class of graphs of bounded linear rank-width as well. Ganian [97] proved that for some problem,
there is a polynomial-time algorithm to solve it for thread graphs even though the problem is NP-hard
on other classes, for instance, there exists a polynomial-time algorithm to compute path-width of thread

graphs while it is NP-hard to compute the path-width of distance-hereditary graphs [129].

1.2 Vertex-minors

The local complementation at a vertex v of a graph is an operation to replace the subgraph induced
by the neighborhood of v with its complement. We write G * v to denote the graph obtained from G by
applying a local complementation at v. See Figure for an example. The graph obtained from G by
pivoting an edge wv is defined by G A wv:= G * u * v * u. To see how we obtain the resulting graph by
pivoting an edge uwv, let V; := Ng(u) n Ng(v), Vo := Ng(u)\Ng(v)\{v}, and V3 := Ng(v)\Ng(uw)\{u}.
One can easily verify that G A wv is identical to the graph obtained from G by complementing the
adjacency relations of vertices between distinct sets V; and V;, and swapping the vertices v and v [150].
See Figure for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence of vertex
deletions and local complementations. A graph H is a pivot-minor of G if H can be obtained from G by
applying a sequence of vertex deletions and pivotings. A graph H is locally equivalent to G if H can be
obtained from G by applying a sequence of local complementations. A graph H is pivot equivalent to G

if H can be obtained from G by applying a sequence of pivotings.

The local complementation was introduced by Kotzig [I31] on the study of 4-regular graphs. It
has been studied by Bouchet [28| 29] 30, 32} [34], in his papers on isotropic systems. Roughly speaking,
isotropic systems are linear algebraic objects that capture all graphs equivalent up to local complemen-
tations. The graphs associated with an isotropic system are called fundamental graphs (parallel with
fundamental graphs of matroids), and a certain minor notion of isotropic systems is related to the vertex-
minor of their fundamental graphs. Moreover, Bouchet [32] observed that a local complementation at a
vertex in a graph preserves the cut-rank function of the graph, and thus it preserves the rank-width and
linear rank-width of the graph as well. Recently, the local complementation has been used in quantum
information theory [190, 142, 117, 163, [38] [43].

Interestingly, for n > 2, the complete graph K, is a vertex-minor of a path of length 2n — 3. We
will see this in Theorem [8.4] This is not the case for graph minors because every minor of a path is the
disjoint union of paths. Since K ,_; is locally equivalent to K, every sufficiently large connected graph
has K, as a vertex-minor (Theorem [3.4).

A vertex-minor or a pivot-minor H of G is elementary if |V (H)| = |V(G)| — 1, and it is proper
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Figure 1.5: Pivoting an edge ab.

0K

Figure 1.6: A vertex-minor obstruction set for circle graphs.

if [V(H)| < |V(G)| — 1. For a class C of graphs closed under taking vertex-minors, a graph G is a
vertex-minor minimal graph for C if G ¢ C and H € C for every elementary vertex-minor H of G. For
a class C of graphs closed under taking pivot-minors, a graph G is a pivot-minor minimal graph for C if
G ¢ C and H € C for every elementary pivot-minor H of G.

The following lemma by Bouchet provides a key tool to investigate vertex-minors.

Lemma 1.8 (Bouchet [30]; see Geelen and Oum [103]). Let H be a vertez-minor of G and let v €
V(G)\V(H). Then H is a vertez-minor of either G\v, G * v\v, or G A vw\v for a neighbor w of v.

The choice of a neighbor w in Lemma [I.8] does not matter, because if z is adjacent to y and z, then

G A zy = (G A zz) A yz by the following lemma.

Lemma 1.9 (Oum [I50]). Let G be a graph and x,y, z € V(G) such that xy,zz € E(G). Then G Anzy =
(G A x2) Ayz.

For a fixed graph H, it is not known if there is a polynomial-time algorithm to decide whether an
input graph G has a vertex-minor isomorphic to H. Courcelle and Oum [63] showed that this testing

can be done in polynomial time when an input graph has bounded rank-width.

Theorem 1.10 (Courcelle and Oum [63]). Let £ be an integer and let H be a fixed graph. For an
input graph G with n vertices and rank-width at most £, we can test whether G contains a verter-minor

isomorphic to H in time O(n?).

We remark that it is possible to test in time O(n?) [33] whether two given graph G' and H with n

vertices are locally equivalent without considering isomorphism.

For a class C of graphs closed under taking vertex-minors, a graph G is called a vertex-minor minimal
graph for C if G ¢ C and H € C for every elementary vertex-minor H of G. We remark that if a graph
G is a vertex-minor minimal graph for a class C and G’ is locally equivalent to G, then G’ is also a
vertex-minor minimal graph for C. Therefore, we distinguish a minimal set of vertex-minor minimal
graphs for C from the set of all vertex-minor minimal graphs for C. For a vertex-minor closed class C, a

set O¢ of vertex-minor minimal graphs for C is called a vertex-minor obstruction set for C if

1. for every graph G, G € C if and only if G has no vertex-minor isomorphic to a graph in O¢, and
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2. there are no two graphs G, G5 in O¢ such that Gy and G5 are locally equivalent.

Oum [I51] proved that for every infinite sequence G1,Gs,... of graphs of bounded rank-width, there
exist G; and G; with ¢ < j such that G; is isomorphic to a vertex-minor of G;. This implies that for
every vertex-minor closed class C of graphs with bounded rank-width, a vertex-minor obstruction set for
C is finite.

Theorem 1.11 (Oum [I51]). For every vertex-minor closed class C of graphs that has bounded rank-
width, there exists a finite set O¢ of graphs such that a graph is in C if and only if it has no vertex-minor

isomorphic to a graph in O¢.

Kotzig [132] observed that for a vertex v in a graph G, G is a circle graph if and only if G % v is
a circle graph. Bouchet [35] characterized circle graphs in terms of three vertex-minor minimal graphs.
See Figure [I.6] for the list of obstructions. The pivot-minor obstructions for circle graphs were classified
by Geelen and Oum [101].

1.3 Notation

In this thesis, all graphs have no loops and no parallel edges, and all graphs are undirected if not
stated. For a set A, we denote the power set of A by 24. For a finite set X, we say that a function
f 2% — Nis symmetric if for any S € X, f(S) = f(X\S), and f is submodular if for any S,T < X,
F(SUT)+ f(S A T) < £(8) + £(T).

A binary relation < on a set X is a quasi-ordering if it is reflexive and transitive. A quasi-ordering
< on a set X is a well-quasi-ordering if for any infinite sequence of elements x1, xs, ... in X, there exists
i < j such that x; < =

A graph G is a pair (V(G), E(G)) where V(G) is the vertex set of G and E(G) is the edge set of
G. For S € V(G), G[S] denotes the subgraph of G induced on S and G\S:= G[V(G)\S]. A graph H is
an induced subgraph of G if H = G[S] for some S € V(G). For a vertex x of G, let G\z:= G\{z}. For
F < E(G), let G\F be the graph on the vertex set V(G) with the edge set E(G\F) = E(G)\F. For an
edge e of G, let G\e:= G\{e}. For an edge e of G, we denote G/e to be the graph obtained from G by
contracting e. For a graph G, we denote by G the complement of G, that is, G and G have the same set
of vertices and two vertices in G are adjacent if and only if they are not adjacent in G.

For v € V(G), we let Ng(v) denote the set of the neighbors of v in G. Let degq(v):= |Ng(v)|, and
we call it the degree of v in G. For X < V(G), let d¢(X) be the set of edges having one end in X and the
other end in V(G)\X. For two disjoint subsets S, T of V(G), let G[S,T|= G[SUT\(E(G[S]) vE(G[T])).
Two graphs G and H are isomorphic if there exists a bijection h : V(G) — V(H) such that zy € E(G)
if and only if h(z)h(y) € E(H). For a set F of graphs, a graph G is called F-free if G has no induced
subgraph isomorphic to a graph in F.

A graph G is connected if for each pair of vertices v,w € V(G), there exists a path from v to w in
G. A graph G is 2-connected, if |V(G)| = 3 and G\X is connected for every vertex set X € V(G) with
|X| < 1. A vertex v of a graph G is a cut vertez if the number of components of G\v increases. An edge
e of a graph G is a cut edge if the number of components of G\e increases. A block of a graph G is a
maximal connected subgraph of G without a cut vertex.

A vertex v in G is called a leaf if degy(v) = 1. A vertex v is called a twin of another vertex w in a
graph if no vertex other than v and w is adjacent to exactly one of v and w. A twin w of a vertex v is

called a true twin if v and w are adjacent, and called a false twin otherwise.
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A graph H is a minor of G if H can be obtained from G by a sequence of deleting vertices, deleting
edges and contracting edges. For a class C of graphs closed under taking minors, a graph G is a minor
obstruction for C if G ¢ C and for every minor H of G with |V(H)| < |[V(G)|, H € C.

For an X xY matrix A, if X’ € X and Y’ € Y, then we write A[X’,Y”] to denote the submatrix of A
obtained by taking rows in X’ and columns in Y. If X’ = Y’ then we simply denote A[X']:= A[X', X'].
The adjacency matriz of a graph G, which is a (0, 1)-matrix over the binary field, will be denoted by
A(G).

Graph classes

A tree is a connected acyclic graph, and a forest is a disjoint union of trees. A tree is a path if every
vertex has degree at most 2. The length of a path is the number of its edges. A tree is a caterpillar if it
contains a path P such that every vertex of a tree has distance at most 1 to some vertex of P. A cycle
is a connected graph where every vertex has degree exactly 2. A hole is an induced cycle of length at
least 5. We write P, and C,, to denote a graph that is a path and a cycle on n vertices, respectively.
A complete graph is the graph with all possible edges. We write K, to denote a complete graph on n
vertices. A star is a tree with a distinguished vertex, called its center, adjacent to all other vertices. A
clique is a set of pairwise adjacent vertices. A stable set is a set of pairwise non-adjacent vertices. A
vertex is simplicial if the set of its neighbors is a clique.

A graph G is a bipartite graph with a bipartition (A, B) if V(G) = A u B and G[A] and G[B] has
no edges. We write K, ,, to denote the complete bipartite graph with a bipartition (A, B) such that
|A] = m, |B| = n. For a graph G, the line graph L(G) of G is a graph where V(L(G)) = E(G) and two
vertices in ey, eg € V(L(G)) are adjacent in L(G) if and only if the corresponding edges meet at some
vertex in GG. A graph is a block graph if every its block is a complete graph.

A set @ of chords in a circle are called a chord diagram. A graph G is an intersection graph of chords
in a chord diagram @ if the vertex set of G is ® and two vertices are adjacent in G if and only if the
chords are intersect in the circle. We say that ® is a circle representation of G, and a graph G is a circle
graph if it has a circle representation. Circle graphs were independently introduced by several authors
in the 1970’s [27, 86}, [132].

Matroids

We will use matroids. We refer to the book written by Oxley [156] for our matroid notations and
basic properties.

A pair (E(M),Z(M)) is called a matroid M if E(M), called the ground set of M, is a finite set and
Z(M), called the set of independent sets of M, is a nonempty collection of subsets of F(M) satisfying

the following conditions:
(I1) it I e Z(M) and J < I, then J € Z(M),
(12) if I,J e Z(M) and |I| < |J|, then I U {z} € Z(M) for some z € J\I.

A maximal independent set in M is called a base of M. It is known that, if B; and Bs are bases of M,
then |B;| = | Bs|.

For a matroid M and a subset X of E(M), we let (X,{I € X : I € Z(M)}) be the matroid denoted
by M|x. The size of a base of M|x is called the rank of X in M and the rank function of M is the
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function 7y : 2F(M) — N that maps every X € E(M) to its rank. The rank of E(M) is called the rank
of M.
If M is a matroid, then we define Ay, called the connectivity function of M, such that for every
subset X of E(M),
(X)) =ry(X) +ry(E(MN\X) —ry(E(M)) + 1.

It is known that the function Aj; is symmetric and submodular.

Let A be a binary matrix and let E be the column labels of A. Let Z be the collection of all those
subsets I of E such that the columns of A with index in I are linearly independent. Then M (A) := (E,T)
is a matroid. Any matroid isomorphic to M(A) for some matrix A is called a binary matroid and A is
called a representation of M over the binary field.

Let G be a graph. Let Z be the collection of all subsets I of E(G) such that (V(G),I) is a forest.
Then M(G) := (E(G),Z) is a matroid. Any matroid isomorphic to M (G) for some graph G is called a
graphic matroid.

For n > r > 1, the uniform matroid U, , is the matroid on a ground set E of size n where the

independent sets are all subsets of size at most r in F.

Here, we observe that every matroid of branch-width at most 2 is binary. We will use this fact
in Chapter [0} This can be observed from the known minor characterizations for binary matroids and

matroids of branch-width at most 2. For the definition of matroid minors, we refer to [156].

Theorem 1.12 (Tutte [184] [185]). A matroid is binary if and only if it has no minor isomorphic to
Us 4.

)

Theorem 1.13 (Dharmatilake [74]). A matroid has branch-width at most 2 if and only if it has no

minor isomorphic to Us 4 and M (Ky).
Corollary 1.14. FEvery matroid of branch-width at most 2 is binary.

Proof. This follows from Theorems and O

Note. Chapter@is a joint work with Jisu Jeong and Sang-il Oum, and it is published in [T19]. Chapter
is a joint work with Sang-il Oum, and it is published in [I35]. Chapter@ is a joint work with Isolde Adler
and Mamadou Moustapha Kanté, and its extended abstract appears in [3], and Chapter [7]is based on
the work for distance-hereditary graphs established in the same paper. Chapter [10]is a joint work with
Mamadou Moustapha Kanté, Eun jung Kim, and Christophe Paul [121]. Chapter is a joint work with
Eun jung Kim and Sang-il Oum.
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Chapter 2. Cut-rank function

We discuss the cut-rank function of a graph and its properties. Let G be a graph. For two subsets
X,Y of V(G), we define the function pf (X,Y):= rank A(G)[X,Y] where A(G) is the adjacency matrix
of GG. The cut-rank function pg of a graph G is defined as

pa(X) i= p(X, V(G)\X) = rank A(G)[X, V(G)\X].

It was motivated from the matroid rank function [30, [I50]. Bouchet [30] observed that the connectivity
function of a binary matroid is equal to the cut-rank function of its fundamental graph. We recall this

relation in Section 2.2

The cut-rank function is invariant under taking local complementation, and it satisfies the submod-

ular inequality.

Lemma 2.1 (Bouchet [32]; See Oum [I50]). If two graphs G and H are locally equivalent, then pg(X) =
pu(X) for all X € V(QG).

Lemma 2.2 (Oum and Seymour [I55]). For a graph G and all A,B,A’, B’ € V(QG),
pE(A, B) + pt(A',B") = p&(An A, BUB') + p&(Au A", Bn B').
By Lemma [2.2] we have the submodular inequality:
pc(A) + pa(B) = pa(An B) + pe(A v B)

for all A, B < V(G).

We will use the following lemmas.

Lemma 2.3 (Oum [I50, Lemma 4.4]). Let G be a graph and v e V(G). Let (X1, X2), (Y1,Y2) be vertex
partitions of V(G)\{v}. Then we have

pavw(X1) + pasne (Y1) = pa (X1 0 Y1) + pe(X2 nY2) — 1.
Similarly if w is a neighbor of v, then
Pco(X1) + PG avno(Y1) = pa(X1 0 Y1) + pa(X2 0 Ya) — 1.
Lemma is equivalent to the following lemma, which we will use in Chapter

Lemma 2.4. Let G be a graph and v € V(G). Let X1, X5, Y1, Y3 be subsets of V(G)\{v} such that
XiuXo=YiuYsoand X1 n Xo=Y1nYs = . Then

PG (X1, X2) + Pl (Y1,Y2) 2 pG(X1 0 Y1, X2 U Y2 U {}) + p5(X1 v Y1 U {v}, X2 0 Y2) — 1.
Similarly if w e X1 U Xs is a neighbor of v, then
pe(X1, X2) + pGnvw(Y1:Y2) = pi(Xa n Y1, X U Ya U {v}) + p5(X7 Y1 U {v}, X2 0 Y2) — 1

Proof. Apply Lemma[2.3| with G’ = G[X; U X5 U {v}]. O
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2.1 Blocking sequences

Let A, B be two disjoint subsets of the vertex set of a graph G. By the definition of pf, and pg, it
is clear that
if A< X € V(G)\B, then p(A, B) < pa(X).

What prevents us to achieve the equality for some X7 We present a tool called a blocking sequence, that
is a certificate to guarantee that no such X exists. Blocking sequences were introduced by Geelen [102]
for studying binary even delta-matroids. Oum [I53] used blocking sequences to implement an algorithm
for approximating rank-width. For a similar concept for matroids, we refer to [I56, Section 13.3]. In
Chapter [§ we will widely use this concept to find certain vertex-minors in large prime graphs.

A sequence v1,va,..., vy, (m = 1) is called a blocking sequence of a pair (A, B) of disjoint subsets
A, B of V(G) if

(a) pG(A, Bufu}) > pi(4, B),

(b) p&(Au{vi}, Bu{vig1}) > p&(A,B) foralli=1,2,...,m —1,

(©) p&(Au {vm}, B) > p§(A, B),

(d) no proper subsequence of vy, ..., v, satisfies (a), (b), and (c).
The condition (d) is essential for the following standard lemma.

Lemma 2.5. Let vi,vs,...,0, be a blocking sequence for (A, B) in a graph G. Let X, Y be disjoint
subsets of {v1,va,...,Vm} such that if v, e X and v; €Y, theni < j. Then

PE(AU X, BUY) = ph(A,B)
if and only if v1 ¢ Y, v ¢ X, and for all i € {1,2,...,m — 1}, either v; ¢ X orv,41¢Y.

Proof. The forward direction is trivial. Let us prove the backward implication. Let k = p¥% (A, B). It is
enough to prove pf(Au X, BuY) < k. Suppose that v1 ¢ Y, v, ¢ X, and for all i € {1,2,...,m — 1},
either v; ¢ X or viy1 ¢ Y and yet p&(Au X, BuY) > k. We may assume that |X| + |Y] is chosen
to be minimum. If |X| > 2, then we can partition X into two nonempty sets X; and X,. Then
by the hypothesis, p&(A U X1, BuY) = p&(Au X9, BUY) = k. By Lemma we deduce that
PE(AU X1, BUY)+ ph(Au Xy, BUY) = k+ pi(Au X,BuY) and therefore we deduce that
pE(Au X,BuUY) < k. So we may assume | X| < 1. By symmetry we may also assume |Y| < 1. Then
by the condition (d), this is clear. O

The following proposition states that a blocking sequence is a certificate that pg(X) > p (A, B) for
all A< X € V(G)\B. This appears in almost all applications of blocking sequences. The proof uses the

submodular inequality in Lemma [2.2

Proposition 2.6 (Geelen [102] Lemma 5.1]; see Oum [I53]). Let G be a graph and A, B be two disjoint
subsets of V(G). Then G has a blocking sequence for (A, B) if and only if pg(X) > p&(A, B) for all
Ac X cV(G)\B.
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2.2 Matroid rank function

We discuss the direct relation between the rank function of a binary matroid and the cut-rank
function of its fundamental graph, observed in [30, [I50]. This relation will be used to show that the
computation of linear rank-width is NP-hard in Section Also, we will use the fundamental graph
of a binary matroid in Section [0.3] to provide an algorithm to compute the path-width of a matroid of
branch-width 2, provided that the matroid is given by an independent set oracle.

We define a fundamental graph of a binary matroid. Let G be a bipartite graph with a bipartition
(S,T). We define M(G, S,T) as the binary matroid represented by the S x V(G) matrix

(Is  A(G)[S,T])

where Ig is the |S| x |S| identity matrix. If M = M(G, S,T), then we call G a fundamental graph of M.
We remark that |[E(M)| = |V(G)].

If a binary matroid M is given with an independent set oracle, then we can compute a fundamental
graph of M in time O(|E(M)|?) as follows. We first run a greedy algorithm to find a base B of M
in time O(|E(M)|) [156, Section 1.8]. After choosing one base B, for each e € B and € € E(M)\B,
we test whether (B\{e}) u {¢/} is again a base in time O(|E(M)|?). We create a bipartite graph G
on the bipartition (B, E(M)\B) where for each e € B and €' € E(M)\B), ee’ € E(G ) if and only if
(B\{e}) u {€} is again a base. It is not hard to check that

(Is A(Gum)[B, E(M)\B])

is a representation of the matroid M, and thus G, is a fundamental graph of M.

The following relation is observed by Bouchet [30]; see also Oum [150].

Proposition 2.7 (Bouchet [30]; Oum [150]). Let G be a bipartite graph with a bipartition (S,T) and let
M := M(G,S,T). For every X € V(Q), pa(X) = A (X) — 1.

A binary matroid may have many fundamental graphs, but it is known that two different fundamental
graphs of a binary matroid are pivot-equivalent [30] [150]. Roughly speaking, the new fundamental graph
that corresponds to a new base obtained from a given base by removing an element e and adding an

element €/, can be obtained by pivoting the edge ee’ in the original fundamental graph.
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Chapter 3. Width parameters

We introduce graph width parameters, such as rank-width, tree-width, and path-width.

Rank-width is a graph parameter introduced by Oum and Seymour [I55, [I50] for efficiently ap-
proximating the clique-width [62] of a graph. Linear rank-width can be seen as a linearized variant of
rank-width. We survey known theorems of rank-width in Section [3.1]

Tree-width and path-width are graph parameters introduced by Robertson and Seymour, in their
papers on the Graph Minor Theorem [T69] T°(T], 175 [T76], T77]. We define these parameters in Section
and compare basic properties of them with the properties of rank-width and linear rank-width.

Since the branch-width and the path-width of a matroid are related to rank-width and linear rank-
width of its fundamental graph, we introduce those parameters in the last section. This relation will be
used to obtain a polynomial-time algorithm to compute the path-width of a matroid of branch-width at
most 2 in Section [0.3

3.1 Rank-width and linear rank-width

For the definition of rank-width, we refer to the papers by Oum [I55, 150]. A tree is subcubic if it
has at least two vertices and every inner vertex has degree 3. A rank-decomposition of a graph G is a
pair (T, L), where T is a subcubic tree and L is a bijection from the vertices of G to the leaves of T'. For
an edge e in T, T\e induces a partition (X, Y.) of the leaves of T. The width of an edge e is defined
as pg(L71(X,)). The width of a rank-decomposition (T, L) is the maximum width over all edges of T.
The rank-width of G, denoted by rw(G), is the minimum width over all rank-decompositions of G. If
|[V(G)] < 1, then G admits no rank-decomposition and rw(G) = 0.

Oum [I51] proved that the vertex-minor relation is a well-quasi-ordering on the class of graphs of
bounded rank-width.

Theorem 3.1 (Oum [I51I]). For a positive integer k and an infinite sequence G1,Ga,... of graphs of
rank-width at most k, there exist G; and G; with @ < j such that G; is isomorphic to a vertex-minor of

G;.

We briefly mention how Theorem implies that every vertex-minor closed class of graphs with
bounded rank-width can be characterized by a finite set of vertex-minor minimal graphs (Theorem.
Let C be a vertex-minor closed class of graphs with bounded rank-width, and let O¢ be a vertex-minor
obstruction set for C. If O¢ is infinite, then Theorem implies that there exist two graphs G, G’
in O¢ such that G is a vertex-minor isomorphic to G’, contradicting to the fact that there are no two
locally equivalent graphs in Q¢ and both G and G’ are vertex-minor minimal graphs for C. Therefore,

we conclude that O¢ is finite.
From Theorem [I.17] for a fixed %, the class of graphs with rank-width at most & can be characterized

by a finite list of vertex-minor minimal graphs. Oum [150] establishs an upper bound on the number of

vertices in a vertex-minor minimal graph for the class of graphs of rank-width at most k.
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Theorem 3.2 (Oum [I50]). For k = 1, the number of vertices in a vertex-minor minimal graph for the
6k+1_1

class of graphs of rank-width at most k is at most >—

From Theorem we can enumerate all vertex-minor minimal graphs from graphs up to the bound

on the obstructions.

There are some developments on algorithms for testing whether an input graph has rank-width at
most k and compute a rank-decomposition if it has rank-width at most k. Oum and Seymour [I55] first
provided an algorithm to find a rank-decomposition of width at most 3k + 1 or confirm that the input
n-vertex graph has rank-width larger than k in time O(8% - n%logn). Later, Oum [I53] improved the
running time into O(8% - n*), and in the same paper, he remarked that it is possible to find a rank-
decomposition of width 3k — 1 or confirm that the rank-width is bigger than & in time O(f(k) - n?®) with

some function f.

As a structural result, Oum proved the following.

Theorem 3.3 (Oum [150, [154]). For a fized bipartite circle graph H, every bipartite (or line, or circle)

graph of sufficiently large rank-width contains a pivot-minor isomorphic to H.

Robertson and Seymour [I71] proved that for a fixed planar graph H, every graph of sufficiently
large tree-width contain a minor isomorphic to a planar graph (Thoerem . Later, Geelen, Gerards,
and Whittle [I00] generalize this theorem into representable matroids, which states that for a fixed finite
field F and a fixed planar matroid M, every matroid representable over the finite field F of sufficiently

large branch-width must contain a minor isomorphic to M.

Linear rank-width is a variation of rank-width by restricting its tree to a caterpillar. However, we
mostly use the following alternative definition of linear rank-width for convenience. We will observe that
this definition is equivalent to the definition using rank-decompositions that are caterpillars.

A linear layout o of a set S is a bijective function from S to {1,...,|S|}, and for convenience,
we denote it as a sequence (¢71(1),071(2),...,07(|S|)). For a linear layout o of S and a,b € S, we
denote by a <, bor b =, a if o(a) < o(b), and we denote by a <, b or b >, a if o0(a) < o(b). For
two linear layouts o7 : S1 — {1,...,]51]} and o3 : Sz — {1,...,]S2|}, we define the sum o1 @ o2 as
a bijective mapping from S; U Sy to {1,...,]S1| + |S2|} such that (o1 @ 02)(x) = o1(x) if x € S; and
(01 @ o2)(z) = o(x) + |S1] if © € Ss.

A linear layout of the vertex set of G is called a linear layout of G. The width of a linear layout L
of G is defined as

Tw < .
Ugf%)(m({w w < v})

We say that the width of L is 0 if |[V(G)| < 1. The linear rank-width of G, denoted by lrw(G), is the
minimum width over all linear layouts of G.

We clarify that this definition is the same as defining with caterpillar subcubic trees.

Lemma 3.4. For a graph G, the minimum width over all rank-decompositions (T, L) of G where T is a

caterpillar tree, is equal to the linear rank-width of G.

Proof. Let t be the minimum width over all rank-decompositions (T, L) of G where T is a caterpillar

tree. If G has no edges, then clearly, t = lrw(G) = 0. We may assume that G has at least one edge.
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Suppose G has a linear layout L of G of width k. From the assumption k > 1. Let T be a caterpillar
subcubic tree with |V (G)| leaves and let P be the longest path in T. Clearly, |V(P)| = |V(G)|, and for
each internal vertex p of P, there is one leaf p’ in V/(G)\V (P) that is adjacent to p. Let P = pip2 -+ pjv ()|
and we define the function Lg from V(G) to the leaves of T such that

L La(L7Y(1) = p1, La(L7H(IV(G))) = ppv(a)|> and
2. for each 2 < j < |V(G)|, La(L7'(j)) = p))-
For each edge p;p;+1 in the path P, the width of it is the same as
PEULTI(G) 1< < ALTI() i+ 1< < VO

Since G has at least one edge, there exists ¢ such that p;p;+1 has width at least one. Since every edge in
P incident with a leaf has width at most 1, we conclude that t < k.

The other direction is trivial because we can just take a linear layout from the caterpillar subcubic
tree. O

If two graphs G and H are locally equivalent, then rw(G) = rw(H) and Irw(G) = Irw(H) by
Lemma It follows that if H is a vertex-minor or a pivot-minor of G, then rw(H) < rw(G) and
Irw(H) < lrw(G). Clearly, rw(G) < Irw(G) for any graph G.

We prove an upper bound on the linear rank-width of a graph. The following bound will be used to
obtain an O(n?logn)-time algorithm to compute the linear rank-width of n-vertex distance-hereditary
graphs in Chapter@ Bodlaender, Gilbert, Hafsteinsson and Kloks [22] proved a similar relation between
tree-width and path-width (Lemma [3.8).

Lemma 3.5. Let k be a positive integer and let G be a graph of rank-width k such that |V (G)| = 2.
Then Irw(G) < k|log,|V(GQ)|].

Proof. Let (T, L) be a rank-decomposition of G having width k. For convenience, we choose an edge e
of T' and subdivide it with introducing a new vertex z, and regard x as the root of T'. For each internal
vertex ¢ of T with two subtrees T} and T of T\t not containing x, let £(t) := Ty and r(t) := T3 if the
number of leaves of T in 77 is at least the number of leaves of T in T5. Let S be a linear layout of G

satisfying that

e for each vy,v2 € V(G) with the first common ancestor w of v; and ve in T, L(vy) <g L(vq) if
L(vy) € V(£(w)).

We can construct such a linear layout inductively.

We show that S has width at most k|log,|V(G)|]. Let w be a vertex of G that is not the first vertex
of S and let Sy, := {v: v <g w}. Let P, be the path from L(w) to the root z in T'. Note that for each
t € V(P,)\{L(w)} and the subtree T of T\t not containing = and L(w),

e if r(t) =T, then all leaves of T in T are not contained in S,,, and
o if {(t) =T, then all leaves of T'in T” are contained in .S,

Let @ be the set of all vertices ¢ in P, except w such that the subtree ¢(¢) does not contain x and L(w).
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rank-width tree-width
tree 1 1
cycle of length > 5 2 2
n x n grid n —1 (Jelinek [II8]) n (Robertson, Seymour [175])
complete graphs K, 1 n — 1 (Robertson, Seymour [I75])
complete bipartite Ky, 1 min{m,n} (Bodlaender, Mohring [26])

Table 3.1: Rank-width and tree-width.

Let q1,q2,...,qm be the sequence of all vertices in ) such that for each 1 < 7 <m —1, ¢g; is a
descendant of ¢;41 in T, and let Q; be the set of all leaves of T' contained in #(g;). Clearly, S, =
QruQau- U Qy and V(G)\S, # . Therefore, we have

V(G =@+ - + [Qum| + [V(G)\Su
>1+2+4+---2m1 41

=2".

Thus, m < |logy|V(G)]].
Note that for each 1 < j < m, p&(Qs, V(G)\Sw) < k. Therefore, we have that

pc(Sw) = (@10 -+ U Qum, V(G)\Sw) < km < k[logy|V(G)]]-

Since w was arbitrarily chosen, it implies that lrw(G) < k|log,|V (G)]]. O

3.2 Tree-width and path-width

For the definitions of tree-width and path-width, we refer to the book by Diestel [76]. A tree-
decomposition of a graph G is a pair (T, B) of a tree T' and a family B = {B;},cy (1) of vertex sets
B; € V(@), called bags, satisfying the following three conditions:

(Tl) V(G) = U'UEV(T) B.
(T2) For every edge uv of G, there exists a vertex ¢ of T such that u, v € B;.
(T3) For ty, te and t3 € V(T'), By, n By, < By, whenever t is on the path from t; to ts.

The width of a tree-decomposition (T, B) is max{|B;| —1:t € V(T)}. The tree-width of G, denoted
by tw(G), is the minimum width over all tree-decompositions of G. A path-decomposition of a graph G is
a tree-decomposition (T, B) where T is a path. The path-width of G, denoted by pw(G), is the minimum
width over all path-decompositions of G. It is known that tree-width and path-width do not increase

when taking minors.

We compare values of the rank-width and the tree-width of some graphs in Table[3.1] As we discussed
before, the big difference appear at dense graphs, such as complete graphs and complete bipartite graphs.
A rooted binary tree is a tree with a root vertex such that the root has degree 2 and all other internal
vertices have degree 3. For a positive integer n, the complete rooted binary tree of height n is denoted by
T,. We also compare values of the linear rank-width and the path-width of some graphs in Table An
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linear rank-width path-width
path 1 1
complete binary trees T, [5] (Kwon [I33]) [5] (Ellis et al. [85]; Takahashi et al. [182])
cycle of length > 5 2 2
n X n grid n —1 or n (Jelinek [118]) n (Robertson, Seymour [175])
complete graphs K, 1 n — 1 (Robertson, Seymour [175])
complete bipartite K., , 1 min{m,n} (Bodlaender, Méhring [26])

Table 3.2: Linear rank-width and path-width.

interesting fact is that path-width and linear rank-width are the same on trees [2| [I33]. This is because

the exactly same lemmas hold for both parameters.

Lemma 3.6 (Kwon [I33]). Let T be a tree and let k = 1. Then T has linear rank-width at most k if
and only if for all vertices x in T at most two of the subtrees of T\x have linear rank-width k and all

other subtrees have linear rank-width at most k — 1.

Lemma 3.7 (Ellis, Sudborough, and Turner [85]; Takahashi, Ueno and Kajitani [I82]). Let T be a tree
and let k = 1. Then T has path-width at most k if and only if for all vertices x in T at most two of the
subtrees of T\x have path-width k and all other subtrees have path-width at most k — 1.

We generalize Lemma [3.6] to distance-hereditary graphs in Section [5.3]

Similar to Lemma [3.5] the following relation is known.

Lemma 3.8 (Bodlaender, Gilbert, Hafsteinsson and Kloks [22]). Let k be a positive integer and let G
be a graph of tree-width k. Then pw(G) < (k + 1)log,|V(G)].

Oum [I52] proved the following relation between rank-width and tree-width.
Theorem 3.9 (Oum [152]). For a graph G, rw(G) < tw(G) + 1.

Adler and Kanté [2] announced the following relation between linear rank-width and path-width.
For completeness, we add a proof for it. It is easy to show this using the fact that the vertex separation
number is equal to the path-width of a graph [I128]. Let G be a graph and let L be a linear layout of G.
For each v € V(G), we define

Vi (v) := {ue V(G) : u <r, v, and there is a vertex w where u <z, w and uw € E(G)}.

The vs-width of the linear layout L is the maximum over all Vi, (v) for v € V(G). The vertex separation

number is the minimum vs-width over all linear layouts of G, and we denote it by vs(G).
Theorem 3.10 (Kinnersley [128]). For a graph G, vs(G) = pw(G).
Theorem 3.11 (Adler and Kanté [2]). For a graph G, Irw(G) < pw(G).

Proof. Let k = pw(G). By Theorem vs(G) = k. Let L be a linear layout of G with vs-width k.
It is easy to see that L also has width at most k& with respect to linear rank-width. By the definition
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of vs-width, for each v € V(G), {u € V(G) : v <1, v} has at most k vertices that has a neighbor on
{ue V(G) : u>r v}. Thus the matrix

A@)[{ue V(@) :u <y v}, {ue V(G) : u>r v}]
has rank at most k. Since v is arbitrary, L has width at most k, and thus Irw(G) < k. O

We cannot hope to bound tree-width or path-width in terms of a function of rank-width or linear
rank-width because of complete graphs. However, as a reverse direction, Kwon and Oum [I34] proved

the following relationship.

Theorem 3.12 (Kwon and Oum [134)). 1. Bvery graph of rank-width k is a pivot-minor of a graph
of tree-width at most 2k.

2. Every graph of linear rank-width k is a pivot-minor of a graph of path-width at most k + 1.

The following two theorems give obstructions for graphs of large tree-width or path-width. For
r = 1, the 7 x r-grid is the graph with the vertex set {v; ; : 1 < ¢, < r} such that v; ; and vy ;» are
adjacent if |¢ — | + |7 — j'| = 1. Note that the r x r-grid has tree-width r [I75].

Theorem 3.13 (Robertson and Seymour [169]; Bienstock, Robertson, Seymour and Thomas [13]). For
a fized forest T, every graph of path-width at least |V (T)| — 1 contains a minor isomorphic to T.

Note that for every forest T, the bound |V (T')| — 1 is best possible, because the complete graph
Ky (ry -1 has path-width [V(T')| — 2 but it does not contain a minor isomorphic to 7. We will use
Theorem [3.13] in Chapter [7] for finding a tree as a vertex-minor.

Theorem 3.14 (Robertson and Seymour [I71]; Robertson, Seymour, Thomas [I68]). For every r > 1,

every graph of tree-width at least 202" contains a minor isomorphic to the r x r-grid.

Diestel, Jensen, Gorbunov, and Thomassen [77] discovered a simpler proof of Theorem Also,
there have been many attempts to improve this theorem. This bound was improved into 20(r* log; 1)
by Kawarabayashi and Kobayashi [124], and into 2°("1°827) by Leaf and Seymour [I38]. Chekuri and
Chuzhoy [47] proved that the function can be taken to be O(r¢) for some constant ¢, which is polynomial
in 7.

Theorem [3.14) has many applications on graph algorithms. One of the remarkable applications is for
the DISJOINT PATHS problem, which was studied by Robertson and Seymour [I76]. Given a graph G and
pairs of vertices (x1,v1),.-., (g, yx), the DISJOINT PATHS problem asks whether there exist pairwise
vertex-disjoint paths P, ..., P, such that for each 1 < 7 < k, the first and last vertices of P; are x; and
y;. In the contexts of VLSI layout design and virtual circuit routing in high-speed internet, the DISJOINT
PATHS problem has been focused as a central problem [04, [I74]. Based on Theorem Robertson and
Seymour [176] showed that the Disjoint Paths problem can be solved in time O(n?). Kawarabayashi,
Kobayashi, Reed [125] improved this running time into O(n?).

There have been several works on developing algorithms that either outputs that the tree-width of
an input graph has tree-width larger than k or gave an approximate tree-decomposition [6] 176}, 136,
1651 201 23], Bl 87, 21]. Arnborg, Corneil, Proskurowski [6] first gives an algorithm to compute tree-

k+2)

decomposition of width &k in time O(n if exists. Bodlaender [20] improved this running time into
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O(ko(’“3)) -n. Later, Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk [2I] proved that there
exists an algorithm that in time 2°) . either outputs that the tree-width of an input graph G is larger

than k, or gives a tree-decomposition of G of width at most 5k + 4.

We will review meta-algorithmic results for graphs of bounded tree-width in the next subsection.

For further algorithmic applications, we refer to papers [7, [12] 17, 25].

3.3 Meta-theorems for graphs of bounded width

We describe known meta-algorithmic results for the class of graphs of bounded tree-width and
bounded rank-width. For clear description, we define monadic second-order logic formulas. We refer
to the book [60] written by Courcelle and Engelfriet for intensive study on logic formulas and graph

decompositions.

Let D be a finite set. A function F : D™ — {true, false} is a relation symbol on D with arity m. A
function F : (2P)™ — {true, false} is a set predicate on D with arity m. A pair S = (D, {F,..., Fy}) is

called a relational structure if
1. D is a finite set, and
2. for each i, Fj is either a relation symbol or a set predicate on D.

For instance, we can give an adjacency relation adj on the vertex set of a graph G, where for v, w € V(G),
adj(v, w) is true if and only if v and w are adjacent in G. Also, we can give an incidency relation inc on
V(G) u E(G) in G, where for v,e € V(G) u E(G), inc(v, e) is true if and only if v € V(G), e € E(G) and
v is incident with e in G.

Now, we define logic formulas. Let (D, {F},..., Fx}) be a relational structure. A variable is a first-
order variable if it denotes an element of D, and is a set variable if it denotes a set of elements of D. A
logic formula on the relational structure is called a monadic second-order logic formula if it is written by
using 3,V, A, —, v, €, true and F;, with first-order variables and set variables.

Let G be a graph and we denote by adj the adjacency relation on V(G) (or V(G) u E(G)), and
we denote by inc the incidency relation on V(G) u E(G). A monadic second-order logic formula on
(V(G),{adj}) is called a monadic second-order logic formula of the first type (MSO;), and a monadic
second-order logic formula on (V(G) u E(G), {inc,adj}) is called a monadic second-order logic formula
of the second type (MSO,).

We give some examples of logic formulas for some properties of graphs.

1. (G has a 3-coloring on the vertices such that adjacent vertices have different colors. (3-coloring))

IX,)Y[X cV(G) AY € V(G) A Vu,v{—adj(u,v)v
(mueX)v-weXN)A(~weY)v—-(veY)A(ueXvueY)vweX vveY)))}
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2. (G has a cycle containing all vertices. (Hamiltonian cycle))

IX[X € E(G)

AV{=(v e V(G)) v Iei3es(er € X A ene X A —(e1 = ea) Ainc(v,e1) A inc(u, e2)) A
Ve(—(inc(v,e) nee X) v (e=e1 ve=e))}

AVY{=(Y S V(G) A Fz(zeY) A Tr'—(2' €Y))
vie(ee X AFv(veY ainc(v,e)) AJw(—(weY) Ainc(w,e)))}]

We remark that the property of 3-colorability is represented by the MSO; formula, and the property of
having a cycle containing all vertices is represented by the MSO, formula. It is known that the property
of having a cycle containing all vertices cannot be written in an MSO; formula [60]. Note that every

MSO; formula for a graph property is also an MSO, formula, but not vice versa.

Courcelle [58] provided the following algorithmic meta-theorem.

Theorem 3.15 (Courcelle [58]). Fvery graph property expressible in a monadic second-order logic for-

mula of the second type (MSOy) can be decided in linear time on graphs of bounded tree-width.

As we can observe from the relation of rank-width and tree-width, graphs of bounded rank-width is
bigger than graphs of bounded tree-width. Courcelle, Makowsky and Rotics [61] proved a meta-theorem

on graphs of bounded rank-width as well.

Theorem 3.16 (Courcelle, Makowsky and Rotics [61]). Every graph property expressible in a monadic
second-order logic formula of the first type (MSO1) can be decided in cubic time on graphs of bounded
rank-width.

3.4 Matroid branch-width and path-width

We define the notion of the branch-width of a matroid and the path-width of a matroid using the
connectivity function of a matroid. Let M be a matroid, and let A\p; be the connectivity function of M.
We remind that for every subset X of E(M),

/\M(X) = T]\/[(X) + TM(E(M)\X) — T]VI(E(M)) + 1.

A branch-decomposition of M is a pair (T, L), where T is a subcubic tree and L is a bijection from
E(M) to the leaves of T. For an edge e in T, T\e induces a partition (X.,Y.) of the leaves of T.
The width of an edge e is defined as A\ps(L~1(X,)). The width of a branch-decomposition (T, L) is the
maximum width over all edges of T. The branch-width of M, denoted by bw(M), is the minimum width
of all branch-decompositions of M. If |E(M)| < 1, then bw(M) = 0.

An ordering ey, ..., e, of the ground set E(M) is called a linear layout of M. The width of a linear
layout eq,...,e, of M is

1<I211<a§71{/\1\/[({61, ek

The path-width of M, denoted by pw (M), is defined as the minimum width over all linear layouts of M.

The following relation is obtained from Proposition 2.7}

Proposition 3.17 (Oum [I50]). Let G be a bipartite graph with a bipartition (A, B) and let M =
M(G,A,B). Then rw(G) =bw(M) — 1 and rw(G) = pw(M) — 1.

_97 —



Similar to the case of linear rank-width, there is no known polynomial-time algorithm to compute
the path-width of a matroid of bounded branch-width. Using Proposition we prove in Section
that we can compute in polynomial time the path-width of a matroid of branch-width at most 2, provided

that the matroid is given with an independent set oracle.
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Chapter 4. Split decompositions

Split decompositions are graph decompositions, introduced by Cunningham [65] [64]. A split of a
graph G is a vertex partition (X,Y) of G such that |X|,|Y| > 2 and pg(X) < 1. In other words, (X,Y)
is a split in G if |X|,|Y] = 2 and there exist X’ € X and Y’ € Y such that {zy € E(G) : x € X,y €
Y} ={zy:xze X' yeY'}. Splits are also called as 1-joins, or joins [96]. A connected graph is called a
prime graph if it has no split.

Roughly speaking, split decompositions of a graph G can be obtained by successively decomposing
a graph along splits. Split decompositions have been used to design efficient algorithms to solve graph
problems. A usual approach to design an algorithm with a certain decomposition is to recursively
decompose an input graph into smaller graphs, until there are no decomposable graphs. Then we solve
for these small graphs, and recursively combine the solutions to find a solution for the original graph.
In this direction, there are several results which show that a problem can be solved in polynomial-time
for each bag of the split decomposition, then the solution for whole graph can be merged in polynomial-
time. For instance, such relations were established for INDEPENDENT SET [64) 162], CLIQUE NUMBER,
DOMINATING NUMBER [162] problems. Using those relations, Rao [I62] showed that above problems
can be solved in polynomial time on graphs whose prime induced subgraphs have bounded size, and the

INDEPENDENT SET problem can be solved in polynomial time on parity graphs [411 [55].

Circle graphs are deeply related to split decompositions. One circle graph may have different circle
representations, but Bouchet [29], Naji [145], and Gabor, Hsu, and Supowit [96] independently showed
that every prime circle graph has a unique chord diagram. Based on this, they gave a polynomial-time
algorithm to recognize circle graphs. Later Spinrad [180] developed an O(n?) time algorithm to recognize
circle graphs, and Corneil, Gioan, Paul, and Tedder [56] developed an O(n +m)a(n +m) time algorithm
for the same problem, where « is the inverse Ackermann function, and n, m are the number of vertices
and edges in an input graph.

The class of distance-hereditary graphs is equal to the class of graphs totally decomposable with
respect to the split decomposition [9) 31, I10]. We approach many problems based on this structure.
Bouchet [31] developed the concept of local complementations in split decompositions. We further develop
local complementations and vertex-minors in split decompositions, and investigate the characterization of
linear rank-width on distance-hereditary graphs in Chapter |5} Bouchet [31] proved that any two locally
equivalent trees are isomorphic, and we extend this result in Chapter [5| into a certain type of block
graphs. We also use split decompositions of distance-hereditary graphs for THREAD VERTEX DELETION
and DISTANCE-HEREDITARY VERTEX DELETION in Chapter [10] and

4.1 Prime graphs

We recall that a prime graph is a connected graph having no split. Since every connected graph G
with at most 3 vertices cannot have vertex partitions (A, B) with |A|,|B| = 2, it is prime. We remark
that every connected graph with 4 vertices has a split; see Figure Note that every cycle of length at

least 5 is prime. If a connected graph G has a cut vertex 2 such that G\« has components Gy, Gs, ..., Gn,
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Figure 4.1: Connected 4-vertex graphs. Dashed edges represent splits.

then (V(G1) u {x}, V(G)\(V(G1) u {z})) is a split. Therefore, every prime graph of at least 5 vertices
is 2-connected.
Bouchet showed useful properties of prime graphs. From the definition of prime graphs, every graph

locally equivalent to a prime graph is prime.

Theorem 4.1 (Bouchet [29]). Let G be a prime graph with |V(G)| = 6. Then there exist a vertex v and

a neighbor w of v such that one of G\v, G = v\v and G A vw\v is prime.

We remark that every prime graph of 5 vertices is locally equivalent to C5. As a corollary of
Theorem we obtain the following.

Corollary 4.2 (Bouchet [29]). Every prime graph on at least 5 vertices must contain a vertez-minor

isomorphic to Cs.
The following lemma is natural, and will be used in Chapter [8]

Lemma 4.3. If a prime graph H on at least 5 vertices is a vertex-minor of a graph G, then G has a

prime induced subgraph Go such that Gy has a vertex-minor isomorphic to H.

Proof. We may assume that G is connected. It is enough to prove the following claim: if G' has a split
(A, B), then there exists a vertex v such that H is isomorphic to a vertex-minor of G\v. Let G’ be a
graph locally equivalent to G such that H is an induced subgraph of G’. We have pg(V(H) n A) =
pe(V(H)n A, V(H) n B) < pti (A, B) <1 and therefore [V(H) n A <1 or |V(H)n B| <1 because H
is prime. By symmetry, let us assume |V (H) n B| < 1. Let us choose x € B such that = has a neighbor
in Aand z € V(H) if V(H) n B is nonempty.

Let H' be a vertex-minor of G on A U {z} such that H is isomorphic to a vertex-minor of H’. Then
H' = G * vy % vg--- = v,\(B\{z}) for some sequence vy, va,...,v, of vertices. We may choose H' and n
so that n is minimized.

Suppose n > 0. Then v, € B\{z}. Let Hy = G #* vy # vg - * v,_1\(B\{z,v,}). Since (A, {z,v,}) is
a split of Hy, one of the following holds.

1. The two vertices v,, and = have the same set of neighbors in A.
2. The vertex v, has no neighbors in A.
3. The vertex x has no neighbors in A.

If we have the case (i), then (Ho\v,)*2x = H' and therefore H is isomorphic to a vertex-minor of Hy\v,,
contradicting our assumption that H is chosen to minimize n. If we have the case (ii), then Ho\v,, = H’,
contradicting the assumption too. Finally if we have the case (iii), then z is adjacent to v, in G because
G is connected. Then Hy * v, \v,, is isomorphic to Hy # v,\x. Then Hp\z has a vertex-minor isomorphic

to H, contradicting our assumption that n is minimized. O

— 30 —



(=) Replacing a bag with its simple decomposition

(«<=) Recomposing along a marked edge ab

Figure 4.2: Two operations on a split decomposition.

4.2 Split decompositions

For the definitions related to split decompositions, we will follow the notations used by Bouchet [31].
A marked graph D is a connected graph D with a distinguished set of edges M (D), called marked edges,
that form a matching such that every edge in M (D) is a cut edge. The ends of the marked edges
are called marked vertices, and the components of D\M (D) are called bags of D. Edges and vertices
that are not marked are called unmarked. If (X,Y) is a split in G, then we construct a marked graph
D with the vertex set V(G) u {z/,y'} for two distinct new vertices z’,y’ ¢ V(G) and the edge set
E(G[X]) v E(G[Y]) u{z'y'} U E’ where we define z'y’ as marked and

E' = {2’z : 2 € X and there exists y € Y such that zy € E(G)}u
{y/y : y € Y and there exists z € X such that zy € E(G)}.

The marked graph D is called a simple decomposition of G. We remark that (D A 2'y")\{2/,y'} = G.

A split decomposition of a connected graph G is a marked graph D defined inductively to be either G
or a marked graph defined from a split decomposition D’ of G by replacing a component H of D'\M (D)
by a simple decomposition of H. For a marked edge xy in a split decomposition D, the recomposition of D
along zy is the split decomposition D' := (D A zy)\{z, y}. See Figurefor an example of decomposing
or recomposing a split decomposition. For a split decomposition D, let D denote the connected graph
obtained from D by recomposing all marked edges. Note that if D is a split decomposition of G, then
D = G. Since marked edges of a split decomposition D are cut edges and form a matching, if we contract
all the unmarked edges in D, then we obtain a tree and we call it the decomposition tree of D and denote
it by Tp. Obviously, the vertices of Tp are in bijection with the bags of D. To distinguish the vertices
of a split decomposition tree from the vertices of the original graph, we call a vertex of Tp as a node of
it.

We can observe that a complete graph or a star has many different ways to decompose it because
every non-trivial vertex partition of it is a split. Cunningham and Edmonds [65] developed a canonical
way to decompose a graph into a split decomposition. A split decomposition D of G is called a canonical
split decomposition if each bag of D is either a prime graph, a star graph, or a complete graph, and D is
not the refinement of a split decomposition with the same property. The following is due to Cunningham
and Edmonds [65], and Dahlhaus [65].
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Theorem 4.4 (Cunningham and Edmonds [65]; Dahlhaus [68]). Every connected graph G has a unique

canonical split decomposition, up to isomorphism, and it can be computed in time O(|V(G)| + |E(G)]).

For convenience, a tree T is called a decomposition tree of G if it is a split decomposition tree of
D where D is the canonical split decomposition of G. Note that all split decomposition trees of G are
isomorphic by Theorem [£.4]

Canonical split decompositions can be characterized as follows. Let D be a split decomposition of
G with bags that are either primes, or complete graphs or stars (it is not necessarily a canonical split
decomposition). The type of a bag of D is either P, K, or S depending on whether it is a prime, a
complete graph, or a star, respectively. The type of a marked edge uv is AB where A and B are the
types of the bags containing u and v respectively. If A = S or B = §, then we can replace S by S, or
S. depending on whether the end of the marked edge is a leaf or the center of the star.

Theorem 4.5 (Bouchet [31]). Let D be a split decomposition of a connected graph with bags of types P,
K, or S. Then D is a canonical split decomposition if and only if it has no marked edge of type KK or
SpSe.

We now relate two vertices in different bags of in a split decomposition D. A vertex v of D represents
an unmarked vertex x (or is a representative of z) if either v = x or there is a path of even length from v
to x in D starting with a marked edge such that marked edges and unmarked edges appear alternately
in the path. Two unmarked vertices x and y are linked in D if there is a path from x to y in D such that
marked edges and unmarked edges appear alternatively in the path.

The following lemma characterizes when two unmarked vertices of D are adjacent in the original

graph G.

Lemma 4.6. Let D be a split decomposition of a connected graph G. Let v' and w' be two vertices in
a same bag of D, and let v and w be two unmarked vertices of D represented by v' and w', respectively.

The following are equivalent.
1. v and w are linked in D.
2. vw e E(G).

3. v'w' € E(D).

Proof. Tt is not hard to show that v' and w’ are adjacent in D if and only if there is an alternating path

from v to w in D. Now the proof follows from this and the definition of representativity. O

We sometimes remove vertices from a given split decomposition and obtain several components. The
following notations are useful to call marked vertices, and especially, we will use them when characterizing
the linear rank-width of distance-hereditary graphs in Chapter ol For a bag B of a split decomposition
D and a component T of D\V(B),

1. let (D, B, T), ¢:(D, B,T) be the marked vertices of D such that (,(D, B,T) € V(B), (D, B,T) €
V(T) and (D, B,T)((D, B, T) is the marked edge connecting B and T in D.
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G vy Vs v7 D Vs v7 D x vq

Figure 4.3: From a split decomposition D of a graph GG, we obtain a split decomposition D % vy of G * vs.

Note that vy is represented by wvo, a, f in D.

The subscript ‘b’ means the marked vertex that is in the removed bag, and the subscript ‘t’ means the
marked vertex that is in a component after removing the bag.

A subgraph of a split decomposition is called a subdecomposition. We consider T' as a subdecom-
position of D. Note that (,(D, B, T) is not incident with any marked edge in T. When we take a
subdecomposition T from D, we regard (;(D, B,T) as an unmarked vertex of 7. It can be viewed as
choosing one unmarked vertex which is represented by (;(D, B,T) in D. If the split decomposition D is
clear from the context, then we remove D from the notation (,(D, B,T') or {;(D, B, T).

The following is an easy lemma.

Lemma 4.7. Let D be a split decomposition of a connected graph G. If B is a bag of D, then G has an

induced subgraph isomorphic to B.

Proof. For each vertex in the bag B, we can choose one unmarked vertex represented by it. Then the

set of unmarked vertices induces a subgraph isomorphic to B in G. O

4.3 Local complementations in split decompositions

We now discuss how split decompositions change when we apply a local complementation at a vertex
in the original graph.

Let D be a split decomposition of a connected graph G. A local complementation at an unmarked
vertex v in a split decomposition D, denoted by D#*wv, is the operation that replaces each bag B containing
a representative w of v with B # w. See Figure [£.3] for an example of applying a local complementation
in a split decomposition. We observe that if D is a split decomposition of G, then D * v is a split
decomposition of G = v, and therefore M (D) = M(D = v) [3I]. Two split decompositions D and D’
are locally equivalent if D can be obtained from D’ by applying a sequence of local complementations.

Moreover, we obtain a relation for canonical split decompositions.

Lemma 4.8 (Bouchet [31]). Let D be the canonical split decomposition of a connected graph G. If v is

an unmarked vertex of D, then D * v is the canonical split decomposition of G = v.

From Lemma if D is a split decomposition and D’ = D * x, then Tp, and Tp are isomorphic
because M (D) = M(D'). For every node v of T associated with the bag B in D, its corresponding node
v’ in T, is associated in D’ either with the bag B if z has no representative in B or with the bag B * w
where w is the representative of x in B. Hence for each X < V(D), D[X] induces a bag in D if and only
if D’[X] induces a bag in D’. To avoid tracking bags as graphs when we apply local complementations,

for each node v of a split decomposition tree T and each canonical split decomposition D with T as a
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Figure 4.4: The split decomposition D * v * w * v, which is the same as D A vw.

split decomposition tree we write bagp 7y (v) to denote the bag of D with which it is in correspondence.

If the split decomposition tree T is clear, then we remove it from the notation.

Let v and w be linked unmarked vertices in a split decomposition D, and let B, and B,, be the bags
containing v and w, respectively. Note that if B is a bag of type S in the path from B, to B,, in T, then
the center of B is a representative of either v or w. Pivoting vw of D, denoted by D A vw, is the split
decomposition obtained as follows: for each bag B on the path from B, to B, in Tp, if v, w’ € V(B)
represent v and w in D, respectively, then we replace B with B A v'w’. (Note that by Lemma we

have v'w’ € E(B), hence B A v'w’ is well-defined.)

Lemma 4.9. Let D be a split decomposition of a connected graph G. If xy € E(G), then D A xy =
Dsxsxysx=Dsy=x*y.

Proof. Since zy € E(G), by Lemma x and y are linked in D. It is easy to see that by the operation
D % x +y=x, only the bags in the path from x to y are modified, and they are modified according to the
definition of D A zy. See Figure [£.4] O

As a corollary of Lemmas [£.8 and we get the following.

Corollary 4.10. Let D be the canonical split decomposition of a graph G. If xy € E(G), then D A xy

is the canonical split decomposition of G A xy.

We introduce some useful lemmas on local complementations and their canonical split decomposition

versions.

Lemma 4.11. Let G be a graph and x,y € V(G) such that xy ¢ E(G). Then Gxx+y =G =y * x.
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Proof. We define vertex sets Wy := Ng(z) n Ng(y), Wa := Ng(z)\N¢(y), and W5 := Ng(y)\Na(z).
The graph G *z *y is obtained from G by flipping the adjacency between two vertices in Wy and in Wi,
respectively, and flipping the adjacency between W; and W5 U W3. From the symmetry, the resulting
graph is the same as G * y = x. O

Lemma 4.12. Let G be a graph and x,y,z € V(G) such that zy,xz ¢ E(G) and yz € E(G). Then

GrxAyz=G Ayz=*x.

Proof. By the definition of pivoting, G *x A yz = G * x =y * z = y. Note that zy ¢ F(G), zz ¢ E(G = y),
and zy ¢ F(G#y=*z). Therefore, by Lemma|d. 11} Gz xyxzxy = (Gxy)sxxxzsy = (Gryxz)sxxy =
(Gryxzsy)xx =G Ayz=*m. O

The followings can be easily verified using the proofs of Lemmas and

Lemma 4.13. Let D be the canonical split decomposition of a connected graph. The following are
satisfied.

1. If x,y are unmarked vertices of D that are not linked, then D« x «y = D % y % x.

2. If x,y, z are unmarked vertices of D such that x is linked to neither y nor z, and y and z are linked,

then Dxx Ayz=D Ayz=x.

3. Ifx,y, z are unmarked vertices of D such that y is linked to both x and z, then D nxyanxz = D Ayz.
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Chapter 5. Distance-hereditary graphs

We discuss structures of distance-hereditary graphs. A graph G is distance-hereditary if for every
connected induced subgraph H of G and v,w € V(H), the distance between v and w in H is equal
to the distance in G. Distance-hereditary graphs were first introduced by Howorka [113]. Bandelt and
Mulder [9] provided several characterizations of distance-hereditary graphs. Oum [I50] showed that
distance-hereditary graphs are exactly the graphs of rank-width at most 1, and thus, these characteriza-
tions of distance-hereditary graphs are useful when discussing graphs of rank-width at most 1.

We characterize the linear rank-width of distance-hereditary graphs in Section This char-
acterization will be used to devise a polynomial-time algorithm to compute the linear rank-width of
distance-hereditary graphs in Chapter [9} We present an extension of Bouchet’s theorem about locally
equivalent trees in Section [5.5) which will be used to obtain a lower bound on the number of graphs in a
vertex-minor obstruction set for the class of graphs of linear rank-width at most k. In the last section,
we survey characterizations of thread graphs, which will be used to obtain an FPT algorithm for the

THREAD VERTEX DELETION problem in Chapter

5.1 Characterizations of distance-hereditary graphs

We summarize useful characterizations of distance-hereditary graphs. The induced subgraph ob-

structions for distance-hereditary graphs are depicted in Figure [5.1

Theorem 5.1 (Howorka [113]; Bandelt and Mulder [9]; Bouchet [31]; Oum [150]; Kwon and Oum [134]).
Let G be a graph. The following are equivalent.

1. G is distance-hereditary.

2. G has rank-width at most 1.

3. G is {house, gem, domino, hole}-free.

4. G has no vertex-minor isomorphic to Cs.

5. G has no pivot-minor isomorphic to Cs and Cg.

D

. Bvery bag of the canonical split decomposition of each connected component of G is either a complete

bag or a star bag.

house gem domino hole

Figure 5.1: The induced subgraph obstructions for distance-hereditary graphs.
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Figure 5.2: A canonical split decomposition of a tree.

Figure 5.3: A canonical split decomposition of a cograph.

7. G can be constructed from a vertex by a sequence of adding a false twin, a true twin, or a pendant

vertez.
8. G is a vertex-minor of a tree.

The structure of canonical split decompositions of distance-hereditary graphs is widely used in this
thesis. To help understanding the structure of distance-hereditary graphs, we provide some examples

here. Bouchet [31] provided a characterization of trees in terms of canonical split decompositions.

Theorem 5.2 (Bouchet [31]). A connected graph is a tree if and only if each bag of its canonical split

decomposition is a star bag whose center is an unmarked vertex.

See Figure for an example of the canonical split decomposition of a tree. Using this character-
ization, Bouchet [3I] proved that two locally equivalent trees must be isomorphic. We will extend this
result in Section [£.5l

Cographs [57, [37] are one of the interesting subclasses of distance-hereditary graphs. Cographs are
exactly P,-free graphs. See Figure for an example of the canonical split decomposition of a cograph.
Roughly speaking, the star bags of a canonical split decomposition of a connected cograph are directed
towards one bag, if we regard the center vertex as the direction of each star bag [57, [104]. We remark
that for every vertex v in a distance-hereditary graph, the neighborhood of v induces a cograph because

a distance-hereditary graph is {gem}-free.
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A graph is a block graph [126], 114}, [9] if all of its blocks are complete graphs. A diamond graph is the
graph obtained from K, by removing one edge. Bandelt and Mulder [9] showed that a graph is a block
graph if and only if it has no induced subgraph isomorphic to a diamond graph or C} for k > 4. We can
regard them as {diamond, C4}-free distance-hereditary graphs. We characterize block graphs from their

canonical split decompositions.

Lemma 5.3. Let D be the canonical split decomposition of a connected graph G. Then G is a block
graph if and only if every bag of D is either a star or a complete bag, and the center of each star bag of

D is unmarked.

Proof. We may assume that G is distance-hereditary because otherwise D has a bag that is neither star
nor complete, and G is not a block graph.

We first suppose that D has a star bag B having a marked center w. There exists a marked edge
ww' joining B with a bag B’. Since D is a canonical split decomposition, B’ is either complete or star
with the center w’. If B’ is complete, then by recomposing ww’ we obtain a bag which has an induced
subgraph isomorphic to a diamond graph. Thus G has an induced subgraph isomorphic to a diamond
graph by Lemma [4.7] Since a diamond graph is not a block graph, we deduce that G is not a block
graph. If B’ is a star bag with the center w’, then by recomposing ww’, we obtain a bag which has an
induced subgraph isomorphic to Cy. By Lemma [4.7] G should have an induced subgraph isomorphic to
Cjy, and therefore G is not a block graph.

To prove the converse, we claim a stronger statement: if D is a split decomposition of a connected
graph G whose bags are star or complete and no center of a star bag in D is marked, then G is a block
graph. We proceed by induction on |V (D)|. We may assume that D has a star bag B because otherwise
G is a complete graph. Let v be the center of B. If B has another unmarked vertex w, then let G’ be
a graph obtained by recomposing all marked edges in D\w. Here G is obtained from G’ by adding a
pendant vertex w to v. By the induction hypothesis, G’ is a block graph and so is G. We may now assume
that every vertex in B other than v is marked. Let B = {v,v1,va,...,v,} and let viwy, vawa, ..., vowy,
be the marked edges incident with B. Let D; be the component of D\V(B) containing w;. By the
induction hypothesis, the graph G; obtained by recomposing all marked edges in D; is a block graph.
The graph G is obtained from G1,Ga, ..., G, by identifying wy, ws, ..., w, with a new vertex v. Since
each block of G is a block of G; for some i, we deduce that G is a block graph. O

Parity graphs [41], 58] are graphs G where for every u,v € V(G) and two induced paths from u to
v in G, the parity of the length of paths are the same. Cicerone and Stefano [55] show that a graph G
is a parity graph if and only if every bag of its canonical split decomposition is bipartite or complete.
Ptolemaic graphs [1206], 115, 9] are exactly {gem, C4, hole}-free graphs, and we can regard ptolemaic graphs
as Cy-free distance-hereditary graphs. We provide a hierarchy of related graph classes in Figure

The incremental characterization of distance-hereditary graphs

Lastly, we introduce the incremental characterization of distance-hereditary graphs, given by Gioan
and Paul [T04]. For a vertex subset S of a graph G and z ¢ V(G), we denote by G + (z,S) the graph
obtained from G by adding a vertex x and adding edges between = and the vertices in S. Given a canonical
split decomposition of a connected distance-hereditary graph G, Gioan and Paul [104] characterize when
G + (z,9) is again distance-hereditary, and they describe how to put the new vertex to make a canonical

split decomposition of G + (x,S). Since the definition of canonical split decompositions used by Gioan
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Figure 5.4: A hierarchy of graph classes.

and Paul is slightly different, we rephrase their result into our notation. We will use this incremental
characterization in Section [6.4] to generate vertex-minor minimal graphs for the class of graphs of linear
rank-width at most k, and in Section to analyze necklace graphs which extend thread graphs.

Let D be the canonical split decomposition of a connected distance-hereditary graph G. For S <
V(G) and a vertex v in D with a bag B containing v, v is accessible with respect to S if either v € S, or
the component of D\V(B) having a neighbor of v contains a vertex in S. For S € V(G) and a bag B of
D,

1. B is fully accessible with respect to S if all vertices in B are accessible with respect to S,

2. B is singly accessible with respect to S if B is a star bag of D, and exactly two vertices of B

including the center of B are accessible with respect to .S, and
3. B is partially accessible with respect to S if otherwise.

A star bag B of D is oriented towards a bag B’ (or a marked edge e) in D if the path from the center
of B to a vertex of B’ (or to end vertices of e) contain the marked edge incident with the center of B.
For S < V(G), we define D(S) as the minimal connected subdecomposition of D such that

1. D(S) is induced by a union of bags of D, and
2. D(S) contains all vertices of S.

Theorem 5.4 (Gioan and Paul [104]). Let D be the canonical split decomposition of a connected distance-
hereditary graph G, and let S € V(G) with |S| = 2. Then G + (x,S) is distance-hereditary if and only
if
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1. at most one bag of D(S) is partially accessible in D,
2. every complete bag of D(S) is either fully accessible or partially accessible in D, and

3. (a) if there is a partially accessible bag B in D(S), then each star bag B’ # B in D(S) is oriented
towards B if and only if it is fully accessible,

(b) otherwise, there exists a marked edge e of D(S) such that each star bag B in D(S) is oriented

towards e if and only if it is fully accessible.

Now we describe how we update canonical split decompositions when adding a vertex. Let S € V(G)
with |S| = 2 and x ¢ V(G) such that = and S satisfy the condition of Theorem and thus, G + (z,5)
is distance-hereditary. Let D(S) be the minimal connected subdecomposition of D induced by a union
of bags of D that contains all vertices of S. From Condition 3 in Theorem the subdecomposition
D(S) contains a bag or a marked edge which has a special role. To identify this bag or edge, we define
an orientation among bags in D(S).

We define an orientation g on D(S) which maps a bag of D(S) to itself or its adjacent bag in D,
such that

1. g(B) = B implies g(B’) = B for every adjacent bag B’ of B, and
2. g(B) = B’ implies g(B”) = B for every adjacent bag B” # B’ of B.
It is not hard to check that one of the following is satisfied:
1. There exists a unique bag B with g(B) = B. We call it the root bag with respect to g.

2. There exists a unique marked edge connecting two bags B and B’ with g(B) = B’ and ¢g(B’) = B.
We call it the root edge with respect to g.

We define an orientation g on the bags of D(S) as follows:

1. Let B be a star bag of D(S). If B is partially accessible in D, then ¢g(B) := B. If B is singly
accessible in D, then let g(B) be the unique adjacent bag B’ of B such that a leaf of B is adjacent
to B’. If B is fully accessible in D, then let g(B) be the adjacent bag B’ of B such that the center
of B is adjacent to B’.

2. Let B be a complete bag of D(S). If B is partially accessible in D, then g(B) := B. Otherwise, B
is fully accessible and its adjacent bags are star bags. If g(B’) = B for every adjacent bag B’ of B
then g(B) := B. If g(B’) = B for every adjacent bag B’ of B but one, say B”, then g(B) := B".

We first preprocess a partially accessible bag with respect to S if exists, and analyze three cases.

Note that we take an orientation after preprocessing.

Preprocessing. There is a partially accessible bag B with the set Ag of all accessible vertices in B such
that |Ag| = 2, |[V(B)\Ag| = 2.
We replace B with a simple decomposition obtained by decomposing B along the split (A, V(B)\Ap)

of B. Now the new bag containing Ap consists of exactly Ap with one more marked vertex.

Case 1. The root bag B of D(S) with respect to g is partially accessible.
Let B’ be its adjacent bag in D that does not belong to D(S). Then we put a new star bag of size
3 on the marked edge linking B and B’, whose center is adjacent to the root bag. The unmarked vertex

in the new bag is x.
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Case 2. The root bag B of D(S) with respect to g is not partially accessible.
By the definition of the orientation g, the bag B is a complete bag, and we add a new unmarked

vertex x in B so that the new bag becomes a complete bag.

Case 3. The root edge of D(S) with respect to g is a marked edge linking B and B’.
In this case, we put a new complete bag of size 3 on the marked edge linking B and B’. The

unmarked vertex in the new bag is z.

5.2 Limbs in canonical split decompositions

We define the notion of limb, which is a key ingredient in the characterization of the linear rank-width
of canonical split decompositions of distance-hereditary graphs.

Let D be the canonical split decomposition of a connected distance-hereditary graph G. We recall
from Theoremthat marked edges of types KK or S,S. do not occur in D. For an unmarked vertex y
in D and a bag B of D containing a marked vertex that represents y, let T be the component of D\V(B)
containing y, and let w be the marked vertex of B adjacent to a vertex of T', and let v be the neighbor
of win T. We define the limb £ :=Lp[B,y] with respect to B and y as follows:

1. if B is of type K, then £ := T = v\v,
2. if B is of type S and w is a leaf, then £ := T\v,
3. if B is of type S and w is the center, then £ :=T A vy\v.

Since v becomes an unmarked vertex in 7T, the limb is well-defined and it is a split decomposition.
While T is a canonical split decomposition, £ may not be a canonical split decomposition at all, because
deleting v may create a bag of size 2. We analyze the cases when such a bag appears, and describe how
to transform it into a canonical split decomposition.

Suppose that a bag B’ of size 2 appears in £ by deleting v. If B’ has no adjacent bags in £, then

B’ itself is a canonical split decomposition. Otherwise we have two cases.

1. (B’ has one adjacent bag By)
If v; € V(By) is the marked vertex adjacent to a vertex of B’ and r is the unmarked vertex of B’
in £, then we can transform the limb into a canonical split decomposition by removing the bag B’

and replacing v; with r.

2. (B’ has two adjacent bags By, Bs)
If v1 € V(B;) and vy € V(Bg) are the two marked vertices that are adjacent to the two marked
vertices of B’ respectively, then we can first transform the limb into another split decomposition by
removing B’ and adding a marked edge v1vs. If the new marked edge v1vs is of type KK or S,S,

then by recomposing along vivs, we finally transform the limb into a canonical split decomposition.

Let £ :=Lp [B,y] be the canonical split decomposition obtained from Lp[B,y] and we call it the
canonical limb. Let £ :=Lp[B, y] be the graph obtained from £ p[B, y] by recomposing all marked edges.
See Figure for an example of a canonical limb. If the original canonical split decomposition D is clear

from the context, then we remove the subscript D in the notations £p[B,y], Lp[B,y] and Lp[B, y].

Lemma 5.5. Let B be a bag of D. If an unmarked vertex y of D is represented by a marked vertex of
B, then L][B,y] is connected.
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Figure 5.5: In (a), we have a canonical split decomposition D of a distance-hereditary graph and a bag B
of D. The dashed edges are marked edges of D. In (b), we have limbs L associated with the components
of D\V(B). The canonical limbs £ associated with limbs £ are shown in (c).

Proof. Let T be the component of D\V(B) containing y, and v := (;(B,T), and B’ be the bag of D
containing v. Since local complementations maintain connectedness, it suffices to verify that V(B')\v

induces a connected subgraph in £[B,y]. This is not hard to see for each of the three cases. O

Lemma 5.6. Let B be a bag of D. If two unmarked vertices x and y are represented by a marked vertex
w € V(B), then L|B,x] is locally equivalent to L[B,y].

Proof. Since x and y are represented by the same vertex w of B in D, they are contained in the same
component of D\V(B), say T. Let v := ((B,T).

If B is a complete bag or a star bag having w as a leaf, then by the definition of limbs, £L[B,z] =
L[B,y]. So, we may assume that w is the center of the star bag B. Since v is linked to both x and y in
T, by Lemma[d.13) T Avz azy = T Avy. So, we obtain that (T'Ava\v) Azy = T Avz Azy\v =T Avy\v.
Therefore L[B, z] is locally equivalent to L[B,y]. O

For a bag B of D and a component T of D\V(B), we define fp(B,T) as the linear rank-width of
Lo [B,y] for some unmarked vertex y € V(7). In fact, by Lemma fp(B,T) does not depend on
the choice of y. As in the notation Lp[B,z], if the canonical split decomposition D is clear from the

context, then we remove the subscript D in the notation fp(B,T).

Proposition 5.7. Let B be a bag of D and y be an unmarked vertex represented in D by w € V(B).
Let v € V(lA)) If an unmarked vertez y' is represented by w in D =z, then Lp [B,y] is locally equivalent
to ED*I[(D x*x)[V(B)],y']. Therefore, fp(B,T) = fps((D = x)[V(B)],T.) where T and T, are the
components of D\V(B) and (D = x)\V(B) containing y, respectively.

Before proving it, let us recall the following by Geelen and Oum.

Lemma 5.8 (Geelen and Oum [103]). Let G be a graph and x,y be two distinct vertices in G. Let
2w € E(G xy) and 2z € E(G).

1. If zy ¢ E(G), then (G = y)\x, (G =y = z)\z, and (G * y) A zw\z are locally equivalent to G\z,

G = 2\z, and G A x2\z, respectively.

2. If vy € E(G), then (G = y)\x, (G *y = x)\x, and (G = y) A zw\zx are locally equivalent to G\x,
G A z2\z, and (G = x)\z, respectively.
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Proof of Proposition|5.7. By Lemma [5.6] it is enough to show the first statement because a local com-
plementation preserves the linear rank-width of a graph. Let v := (;(D, B,T) and B’ := (D = x)[V(B)].
Let T and T, be the components of D\V(B) and (D = x)\V (B) containing y, respectively. Note that
V(T) = V(Ty,).

We claim that £p, [B, y] is locally equivalent to C Dxz|B’,y'] for some unmarked vertex y’ represented

by w in D = z. We divide into cases depending on the type of the bag B and whether x € V(7).

Case 1. x € V(T) and x is not linked to v in T.

Since x is not linked to v in T, B’ = B and v is still linked to y in 7' * z. In this case, let ¢’ := y.
Case 1.1. B is of type S and w is a leaf of B.

Since v is not linked to z in T, by Lemma f\v is locally equivalent to T = z\v.
Case 1.2. B is of type S and w is the center of B.

Since v is linked to y in T = z, by Lemma T A vy\v is locally equivalent to Txx A vy\v.
Case 1.53. B is of type K.

Since v is not linked to z in T, by Lemma T« v\v is locally equivalent to T s 2 % v\v.

Case 2. x € V(T) and x is linked to v in T.

Note that x is linked to v in T * x. Let 3 := x for this case.
Case 2.1. B is of type S and w is a leaf of B.

Applying local complementation at = does not change the type of the bag B. Since v is linked to x
in T, by Lemma f\v is locally equivalent to 7' * z\v.
Case 2.2. B is of type S and w is the center of B.

Applying local complementation at x changes the bag B into a bag of type K, and the component
T into T = x. Since v is linked to x in T, by Lemma T A vy\v is locally equivalent to Tz v\v.
Case 2.3. B is of type K.

Applying local complementation at = changes the bag B into a bag of type S such that the center
of B is w. Since v is linked to x in T', by Lemma T v\w is locally equivalent to Txz A v\,

Case 3. x ¢ V(T).

If x has no representative in the bag B, then applying local complementation at z does not change
the bag B and the component T'. Therefore, we may assume that x is represented by some vertex in B,
necessarily adjacent to w. In this case, v is still a representative of i in D * x, and we let y' := v.

Case 3.1. B is of type S and w is a leaf of B.

Applying local complementation at x changes B into a bag of type K, and T into T * v. We have
Lpsz[B,y] = (T *v)xv\v=T\v=Lp|B,y]

Case 3.2. B is of type S and w is the center of B.

Since w is the center of B, x is represented by a leaf of the bag B. Applying local complementation
at = does not change the bag B, but it changes T into T * v. We have Lpy.[B’,y'] = (T *v) A vy\v.
Since ((T' xv) nvy\w) =y =Ty xv+y\v =T Avy\v, Lp[B,y] and Lpx.[B’,y'] are locally equivalent.
Case 3.3. B is of type K.

After applying local complementation at x in D, B becomes a star such that w is a leaf of B, and
T becomes T *v. Therefore, we have Lpy,[B',y'] =T = v\v = Lp[B,y]. O

The following lemma will be used widely to reduce cases in several proofs.
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Lemma 5.9. Let By and By be two distinct bags of D and for each i € {1,2}, let T; be the components
of D\V(B;) such that T contains the bag Bs and Ty contains the bag By. Then there exists a canonical
split decomposition D’ locally equivalent to D such that for each i € {1,2}, D'[V(B;)] is a star whose

leaf is adjacent to a verter in T;.

Proof. Let v; := (p(D, B;,T;) for i = 1,2. Tt is easy to make Bj into a star bag having v, as a leaf by
applying local complementations. We can assume without loss of generality that vy is a leaf of By in D.
If vs is a leaf of By, then we are done. If By is a complete bag, then choose an unmarked vertex wsy of
D that is represented by a vertex of By other than vs. Then applying a local complementation at ws
makes Bs into a star bag having vs as a leaf without changing B;. Therefore, we may assume that vy is
the center of the star bag By. If By and By are adjacent bags in D, then the marked edge connecting
B, and Bs is of type 5,5, contradicting to the assumption that D is a canonical split decomposition.
Thus, B; and B> are not adjacent bags in D.

Let T := D[V (T1) n V(T3)] and wy := (D, B, T3). By the definition of a canonical split decom-
position, wy is not a leaf of a star bag in D. Therefore, there exists an unmarked vertex y € V/(T') of D
such that y is linked to ws in T. Choose an unmarked vertex 3’ of D represented by ws in D. Since y
is linked to ¥’ and the alternating path from ¥ to 3’ in D pass through By but not Bj, pivoting yy' in
D makes Bs into a star bag having vs as a leaf without changing B;. Thus, each v; is a leaf of B; in

D A yy', as required. O

We conclude the section with the following.

Proposition 5.10. Let By and Bs be two distinct bags of D and Ty be a component of D\V (B1) such
that Ty does not contain the bag Bo, and Ty be the component of D\V (Bs) such that Ty contains the bag
By. If y1 and yo are two unmarked vertices in Ty and Ty that are represented by some vertices in B
and Ba, respectively, then EAD [B1,y1] is a vertex-minor of ED [Bs,y2]. Therefore f(B1,T1) < f(Bg,Ts).

Proof. Let ug := (4(B2,T) and vy := ((B2,T3). By Lemma there exists a canonical split decompo-
sition D’ locally equivalent to D such that Bs is a star bag in D" and vy is a leaf of By. For each i € {1, 2},
let T} := D'[V(T})], B} := D'[V(B;)] and let y; be an unmarked vertex in T} that is represented by some
vertex in Bj.

Since vy is a leaf of B} in D', we have Lp/[Bh, y4] = Th\va. Because Tj is a subgraph of Ty\va, we
can easily observe that £ p [B1,v}] is a vertex-minor of Lo [B%,y5]. Since for each i, Lp[B;, ;] is locally
equivalent to Lp/[B},y.], ED [B1,y1] is a vertex-minor of ED[BQ,yQ]. We conclude that f(Bq,7T1) <
(B2, Ty). O

5.3 Linear rank-width of distance-hereditary graphs

Now, we present the main result of this chapter characterizing the linear rank-width of distance-

hereditary graphs using limbs.

Theorem 5.11. Let k be a positive integer and let D be the canonical split decomposition of a connected
distance-hereditary graph G. Then lrw(G) < k if and only if for each bag B of D, at most two components
T of D\V(B) induce limbs L where L has linear rank-width ezactly k, and all other component T' of
D\V/(B) induce limbs L' where L' has linear rank-width at most k — 1.

Let k be a positive integer and let D be the canonical split decomposition of a connected distance-

hereditary graph GG. We first prove the forward direction.

— 44 —



u1 Uy

I\‘\ Ty B T3 o
I\ 'V’"\I eSS -
/\! T2 U3 'AW‘TQ us

’,
D % uy

Figure 5.6: We realize a limb without removing the bag in Theorem Since B is a complete bag,
the limb ED[B,’U,Q] = (D * ’u,1>[V(T2)\w2]

Proof of the forward direction of Theorem[5.11] Suppose that there exists a bag B of D such that D\V (B)
has at least three components 1" which induce limbs L where T has linear rank-width k.

We claim that Irw(G) = k + 1. We may assume that D\V(B) has exactly three components T3, T
and T5, where each component T; satisfies fp(B,T;) = k. For each 1 <7 < 3, let w; := Q(B T;), and N;
be the set of the unmarked vertices in T; linked to w;. Choose a vertex u; in IV; and let D; := ,CD[B ;).
We remark that NV; is exactly the set of the vertices in V( ;) that have a neighbor in V(D )\V( i)

Since removing a vertex from a graph does not increase the linear rank-width, we assume that B
consists of exactly three marked vertices that are adjacent to one of T}, T» and T5. Now, every unmarked
vertex of D is contained in one of T}, T» and T3.

Note that by Proposition and Lemmas and for any canonical split decomposition D’
locally equivalent to D, we have lrw(ﬁ) = lrw(ﬁ’ ) and fp(B,T;) does not change. So, we may assume
that B is a complete bag of D.

We first claim that Dy = (D # up)[V(T2)\wz]. Since the bag B is complete, by definition, Dy =
Ty * wo\ws. Since wy is linked to w; in T} and there is an alternating path from w; to we in D, by
concatenating alternating paths it is easy to see that (D = u1)[V (T2)\ws] = T * wo\wy = Do, as claimed.
See Figure [5.6]

Towards a contradiction, suppose that D has a linear layout L of width k. Let a and b be the
first vertex and the last vertex of L, respectively. Since B has no unmarked vertices, without loss of
generality, we may assume that a,b € V(ﬁl) V) V(b\g) With this assumption, we will prove that 52 has
linear rank-width at most k — 1.

Let v € V(l/)\g) and S, := {z € V(D) : & < v} and T, := V(D)\S,. Since v is arbitrary, it is
sufficient to show that p5-(S, N V(@)) <k-—1

We divide into three cases. We first check two cases that are either (N1 n S, # & and NsnT, # &)

r (N1 nT, # & and N3 n S, # ). If both of them are not satisfied, then we can easily deduce that
NiuNs< S, or NyuN3cT,.

Case 1. Ny n S, # & and N3 n'T, # (.
Let 21 € N1 n S, and 23 € N3 nT,,. We claim that

P55(Se O V(D2)) = Pp1y Bayotan sy (S0 0 V(D2)) U {z1})

Because p 51y (52)0 iy 2511 (S0 AV (D2))ufri}) < Pp(Sy) < k, the claim implies that p5- (S, AV(Dy)) <
k—1.

Note that 27 and z3 have the same neighbors in ZA)[V([/)\Q) U {x1,z3}] because they are in Ny and
N3, respectively. Since x; is adjacent to z3 in ﬁ[V(Z/)\g) v {x1,23}], 3 becomes a leaf in ﬁ[V(B\g) U
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{x1,z3}] * x1 having exactly one neighbor, x;. Since (D = x1)[V (T2)\wz] = D2, we have

DIV(D2) U {a1, 23}] # 21 \v1\w3 = (D # 21)[V(D3)] = D

Therefore,
pﬁ[V(b\z)u{mh;pS}]((S'U N V(D2)) v {z1})
= pﬁ[V(B\z)u{zl,Z3}]*x1((S” NV (D2)) v {z1})
zs T, V(Dy)
= rank T /1 * \
S, nV(Dy) \ 0 )
x3s T, n V(l/)\g)
= rank 1 N (1 0 \
Sy M V(D2) \0 % /
= pﬁ[V(B\z)u{zl,a:g,}]*;z:l\g;l\xg(SU NV (D)) +1
= pp;(Se N V(D2)) +1,
as claimed.

Case 2. NynT, # & and N3 n S, # .

We can prove pp-(Sy N V(D3)) < k — 1 in the same way as for Case 1.
Case 3. NyuN3;< S, or Nyu N3 € T,.

We can assume without loss of generality that Ny U N3 < S, because Ny u N3 € T, is similar.
Since a,b € V(l/)\l) v V(B\?,) and the graph f)[V(ﬁl) v V(l/)\g)] is connected, there exists a vertex
teT, n (V(l/)\l) v V(B\g)) such that ¢ is adjacent to a vertex of N1 u N3. Let x € Np(t) n (N1 U N3).

Since ¢ cannot have a neighbor in Na, we have

t T, V(D)

5(S,) = rank v {1 ‘ * \
oD Sy A V(D) \0 | )

— p5:(Sy A V(D2)) + 1.

Therefore, we conclude pg- (S, N V(Dy)) <k—1.

Thus, 52 has linear rank-width at most k& — 1, which yields a contradiction. O]
To prove the converse direction, we use the following lemmas.

Lemma 5.12. Let B be a bag of D of type S having two unmarked vertices x and y such that x is the
center and y is a leaf of B. If f(B,T) < k—1 for every component T of D\V(B), then the graph D has

a linear layout of width at most k whose first and last vertices are x and y, respectively.

Proof. Let Ty, T3, ..., T; be the components of D\V(B) and for each 1 < i < ¢, let w; := (B, T;) and
let y; be a vertex in T; represented by a vertex of B. Since each w; is adjacent to a leaf of B, T;\w; is

the limb of D with respect to B and y;.
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Suppose that f(B,T) < k — 1 for every component T" of D\V (B). We may assume without loss of
generality that B has only two unmarked vertices z and y. For each 1 < i < £, let L; be a linear layout
of T;\w; of width at most k — 1. We claim that

L=(z)®L1®L® - DL D (y)

is a linear layout of D of width at most k. It is sufficient to prove that for every w € V(ﬁ)\{x,y},
pp({v:v <p w}) <k

Let w € V(D)\{z,y}, and let Sy, := {v: v <, w} and Ty, := V(D)\S,. Then w € L; for some
1<j</fand

T, nV(T) TNy (D)

Yy
x 1 % *
pp(Sw) = rank S, N V(ﬁ) 0 N 0
Su\Ma\V(T)) \0 0 0
y TonV(I) TNy V()
x /1 0 0 \
= rank S V(j“;) | 0 N 0 l
S\ PV (T5) \0 0 o/

(S " V(T))+1<(k=1)+1=k

= Prw;
Therefore, L is a linear layout of D of width k whose first and last vertices are = and 1y, respectively. [

Proposition 5.13. Let B be a bag of D with two unmarked vertices x and y. If f(B,T) < k—1 for
every component T of D\V(B), then the graph D has a linear layout of width at most k whose first and

last vertice are x and y, respectively.

Proof. Suppose that f(B,T) < k — 1 for every component T of D\V(B). If B is a complete graph, then
let D' := D % x, and if B is a star such that x is the center, then let D’ := D, and if x is not the center
then let D' := D A xy if y is the center, otherwise let D’ := D A xz where z is an unmarked vertex
represented by the center of B. It is clear that D[V (B)] is a star with = the center. By Proposition
for each component T of D\V(B), fp(B,T) = fp/(D'[V(B)],D'[V(T)]). Since D' is locally equivalent
to 15, by Lemma we conclude that D has a linear layout of width at most k& whose first and last

vertice are x and y, respectively. O
Lemma 5.14. If
1. for each bag B of D, there are at most two components T of D\V(B) satisfying f(B,T) =k, and
2. for every other component T' of D\V(B), f(B,T") <k —1, and

3. P is the set of nodes v in Tp such that exactly two components T of D\V (bagp(v)) satisfy
f(bagp(v),T) =k,

then either P = ¢ or Tp[P] is a path.

Proof. Suppose that P # . If v; and vy are in P, then there exists a component T} of D\V (bagp(v1))
not containing V (bagp (v2)) such that f(bagp(vi),T1) = k, and there exists a component Ty of D\V (bagp(v2))
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not containing V'(bagp(v1)) such that f(bagp(v2),T2) = k. By Proposition for every node v on

the path from vy to v in Tp, v must be contained in P. Thus P forms a connected subtree in Tp.
Suppose now that P contains a node v having three neighbors v, v, and vz in P. Then, again

by Proposition |5.10, D must have three components T of D\V (bagy(v)) such that f(bagpy(v),T) = k,

which contradicts the assumption. Therefore, P forms a path in Tp. O
Lemma 5.15. If
1. for each bag B of D, there are at most two components T of D\V(B) satisfying f(B,T) =k, and
2. f(B,T") < k—1 for all the other components T' of D\V(B),

then Tp has a path P such that for each node v in P and each component T of D\V (bagp(v)) not
containing a bag bagp(w) with we V(P), f(B,T) <k —1.

Proof. Let P’ be the set of nodes v in T such that exactly two components T of D\V (bagy(v)) satisfy
f(bagp(v),T) = k. By Lemma [5.14] either P’ = & or Tp[P'] is a path.

We first assume that P’ # . Let Tp[P’] = viva - - v,, and let B; := bagy(v;). By the definition,
there exists a component T; of D\V(Bj) such that T does not contain a bag of P’ and f(By,T1) = k. Let
vg be the node of Tp such that bag,(vp) is the bag of T7 that is the adjacent bag of By in D. Similarly,
there exists a component T;, of D\V(B,,) such that T}, does not contain a bag of P’ and f(B,,T,) = k.
Let v, 41 be the node of Tp such that bagy,(v,11) is the bag of T,, that is the adjacent bag of B,, in D.
Then P = vgv1vs - - - UV, 41 is the required path.

Now we assume that P’ = . We choose a node vy in Tp and let By := bagp(vg). If D has no
component T' of D\V'(By) such that f(Bg,T) = k, then P := vy satisfies the condition. If not, we take

a maximal path P := vgvy -+ vp41 in T such that (with B; := bagp(v;))

e for each 0 < i < n, D\V(B;) has one component T; such that f(B;,T;) = k, and B, is the bag
of T; that is the adjacent bag of B; in D.

By the maximality of P, P is a path in Tp such that for each bag B in P and a component T' of
D\V(B) not containing a bag of P, f(B,T) <k — 1. O

We are now ready to prove the converse direction of the proof of Theorem [5.11

Proof of the backward direction of Theorem[5.11 Suppose that for each bag B of D, at most two com-
ponents T' of D\V(B) induce limbs L where L has linear rank-width exactly k, and all other component
T’ of D\V(B) induce limbs L’ where L’ has linear rank-width at most k — 1. We claim that Irw(G) < k.

Let P = vgvy -+ - vpvpe1 be a path in Tp such that for each node v in P and a component T of
D\V (bagp(v)) not containing a bag bagy,(w) with w € V(P), f(bagp(v),T) < k — 1 (such a path exists
by Lemma [5.15). For each 0 < i < n+ 1, let B; := bagp(v;). If P consists of one vertex, then by
Proposition Irw(G) = lrw(ﬁ) < k. Thus, we may assume that n > 0.

By adding unmarked vertices on By and B,.; if necessary, we assume that By and B, have
unmarked vertices ag and b, 41 in D, respectively.

For each 0 < i < n, let b; be a marked vertex of B; and let a;,1 be a marked vertex B;;1 such that
b;a;y1 is the marked edge connecting B; and B;, 1.

Let Dy be the component of D\V(B;) containing the bag By. Let D, .1 be the component of
D\V(B,,) containing the bag B, 1. For each 1 < i < n, let D; be the component of D\(V(B;_1) u

V(B;+1)) containing the bag B;. Notice that the vertices a; and b; are unmarked vertices in D;.
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Since every component T of D;\V(B;) satisfies that fp,(B;,T) < k —1, by Proposition 51 has
a linear layout L} of width k whose first and last vertices are a; and b;, respectively. For each 1 <14 < n,
let L; be the linear layout obtained from L} by removing a; and b;. Let Lo and L,4+1 be obtained from
Ly and L}, | by removing by and a,1, respectively, and also ag and b, if they were added. Then we

can easily check that L = L@ L1 ®---® Ly, 41 is a linear layout of D having width at most k. Therefore

Irw(G) = lIrw(D) < k. O

5.4 Canonical limbs

We now prove two statements on canonical limbs which will be useful to design the algorithm for
computing the linear rank-width of distance-hereditary graphs. Let D be the canonical split decompo-

sition of a connected distance-hereditary graph G.

Proposition 5.16. Let By and By be two distinct bags of D and Ty, Ty be the component of D\V (B1),
D\V (By) respectively, such that Ty contains the bag Ba and Ty contains the bag By, and V(T1) n V(T2)
has at least two unmarked vertices of D. For each i = 1,2, let w; := ((D, By, T;) and y; be an unmarked

vertez in D represented by w;. We define that
1. B} = Lp[Ba, 1] [V(B1)],
2. By = Lp[By,y1][V(Ba)],
3.y} is an unmarked vertex in ZD [Ba, y2] represented by wi, and
4. yh is an unmarked vertex in Lo [B1,y1] represented by wa.
Then L[Lp[B1, 1], By, 1) is locally equivalent to L[Lp[Ba, 2], B}, y}].

Proof. For each i = 1,2, let v; := ((D, B;,T;). By Lemma there exists a canonical split decomposi-
tion D’ locally equivalent to D such that for each ¢ € {1,2}, w; is a leaf of D'[V(B;)] in D’.

For each i = 1,2, let P, := D'[V(B;)], T/ := D'[V(T})], and z be an unmarked vertex represented
in D' by w;. Let T' := D'[V(T}) n V(T3)], and we define

L. P{:= Lp[Py, »][V(P)],
2. Py:=Lp/[Pr,z1][V(P)],
3. let 2} be an unmarked vertex in Lo [P, z2] represented by w,
4. let z, be an unmarked vertex in Lo [P, z1] represented by ws.

Since D is locally equivalent to D', by Proposition Lo [B1, y1] is locally equivalent to Lo [P1, 1]
Again, since £p [B1,y1] is locally equivalent to Lo [P1, z1], by Proposition

~

EplBran] [B5, y5] is locally equivalent to Lz 1pra] [Py, 25].

Similarly, we obtain that

[ Ba.ys) [ B1 1] is locally equivalent to ZED/[P%ZQ] [Py, 21]-

Since each v; is a leaf of P; in D/,
LED/ [P1,z1][P2/7 Zé] = T/\vl\v2 = ﬁLD/[Pz,zz][Pllv Zl1]7
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and it implies that

~

ﬁzD/[Pl,zl][PQI7Z/2] = ZD/[P21Z2] [P1/7 le].

Therefore, £z [Bhyl][Bé, y5] is locally equivalent to £ [Bzm][Bi, yi]- O

Proposition 5.17. Let By and By be two distinct bags of D. Let Ty be a component of D\V (By) that
does not contain By and Ty be the component of D\V(Bs) containing the bag By. For i = 1,2, let
w; := (D, B;, T;), and y; be an unmarked vertez in D represented by w;. If V(By) induces a bag By of

~

Lp[Bs,ya), then Lp[By, 1] is locally equivalent to L;, B, yz][Bi,y/l], where y| s an unmarked vertex

in Lp [Ba, y2] represented by w;.

Proof. Suppose V(B;) induces a bag Bj of Lp [Ba,y2] and ¥ is an unmarked vertex in Lo [Ba, y2]
represented by wi. By Lemma there exists a canonical split decomposition D’ locally equivalent to
D such that wq is a leaf of a star bag P, = D'[V(B2)] in D’. We define

o P :=D'[V(B1)],

e z; is an unmarked vertex in D’ represented by w;,

o P|:=L[D', Py, 2][V(Bi)], and

e 2} is an unmarked vertex in £[D’, Py, z5] represented by w;.

Since D is locally equivalent to D', by Proposition Lo [B1,y1] is locally equivalent to L [P, 21].
Similarly, we obtain that ED[Bg,yg] is locally equivalent to Lp [P2,22]. Since Lo [Ba,y2] is locally
equivalent to £ [P, 23], by Proposition

~

Zp[Bays] D1, ¥1] I8 locally equivalent to Lz 1p 1 [P, 21].

Since wy is ajeaf of P, in D/, Lp/[Py, 2] = NED,[Pz,zQ][Pllvzll]’ and therefore, £p[By,y1] is locally
equivalent to Lz 5 yQ][Bi, y1], as required. O
We conclude this section with the following which more or less says that when taking limbs succes-

sively, the chosen order is not matter since they are all locally equivalent.

Proposition 5.18. Let B be a bag of D, let T be a component of D\V (B) and let y be an unmarked vertex
in V(T) represented by a marked vertex of B. A canonical split decomposition L' is locally equivalent to
ED[B7y] if and only if there exists D' locally equivalent to D and y' € V(T') represented by a marked
vertex in V(B) such that £' = Lp/[D'[V(B)],y].

Proof. If £' = Lp/[D'[V(B)],'] for some canonical split decomposition D’ locally equivalent to D with
y' € V(T) represented by some vertex in V(B), then by Lemma [4.§]and Proposition [5.7 we can conclude
that £’ is locally equivalent to Lo [B,y].

Let us now prove the other direction. It is enough to show it when £’ := L p[B,y] *  for some
unmarked vertex  of £p[B,y]. Observe that x is necessarily in V(7). From the definition of canonical
limb, Lo [B,y] is obtained from D; := Lp[B,y], and then L’ is obtained in the same way from Do :=
Dy = x. So, it is sufficient to prove that Dy = Lp/[D'[V(B)],y'] where D’ is locally equivalent to
D and ¢y € V(T) is represented in D’ by some marked vertex of V(B). Let v := ((D,B,T) and
w:= (D, B,T). We divide into cases depending on the type of B.

Case 1. B is of type S and w is a leaf of B.
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In this case, D1 = T\v and Dy = (T\v) # . Now, Lps.[B,y] = (T = x)\v = (T\v) = & = Ds.

Case 2. B is of type K.
Note that Dy = (T = v)\v and Dy = (T % v)\v * x.
Case 2.1. x is linked to v in T.
Now Lpsz[(D*x)[V(B)],z] = (T *x)*x* v z\v= (T *v)\v*x = Da.
Case 2.2. x is not linked tov inT.
Since z is not linked to v in T, by Lemma Txvsxx =Tx*x=xv. So, we have Lpy,[(D #
)[V(B)],y] = (T #x) *v\v = (T *v)\v*x = Da.
Case 3. B is of type S and w is the center of D[B].

In this case, D1 = (T A vy)\v and Dy = (T A vy)\v = 2. Let v’ be an unmarked vertex represented
by v in D. Note that v’ ¢ V(T).

Case 3.1. x 1is linked to neither v nor y.

Since z is linked to neither v nor y, by Lemma TsxxAnvy =T Avy=x. Thus, we have
Lpsz[(D=x)[V(B)],y] = (T *x) A vy\v = (T A vy\v) * z = Ds.

Case 3.2. x is not linked to y, but linked to v.

The vertex set V(B) induces a complete bag in D v’ xy* 2z, and x and v are not linked in D # v’ xy.
Thus by Lemma Lpsvsysa (D * v sy« 2)[V(B)],y] = (T xv*y=z)*v\v= (T Avy\v) *x = Ds.
Case 3.3. x is not linked to v, but linked to y.

The vertex set V(B) induces a star with a leaf w in D # y * v' # y * 2. Thus, Lpsysvseysa[ (D * y *
Vryxz)[V(B),yl= Txy*xvsyxz)\v= (T Avy\v)*z = Ds.

Case 3.4. x is linked to both v and y.

The vertex set V(B) induces a star having the center at w in D v« y % . Thus, Lpuyy sysa[(D *
o xy ) [V(B),a] = (Txvwysa) vz wvsa\o = (T Avy\v) +a = Dy. O

5.5 Locally equivalent block graphs

In this section, we extend the following theorem.
Theorem 5.19 (Bouchet [31]). If two trees are locally equivalent, then they are isomorphic.

We recall that a vertex of a graph is a simplicial vertex if its neighborhood induces a clique in the

graph. We prove the following.

Theorem 5.20. If two block graphs without simplicial vertices of degree at least 2 are locally equivalent,

then they are isomorphic.

To prove Theorem we use the characterization of block graphs in terms of their canonical split

decompositions in Lemma [5.3]

Proposition 5.21. Let G be a connected block graph with at least 3 vertices, and let D be the canonical
split decomposition of G. Then G has a simplicial vertex of degree at least 2 if and only if D has a

complete bag B containing at least one unmarked vertex.

Proof. Suppose that v € V(G) is a simplicial vertex of degree at least 2 in G. Clearly v is not a center of
a star bag of D by Lemma [£.7] Because the center of a star bag is unmarked by Lemma and v has

degree at least 2, v cannot belong to a star bag. So v is in a complete bag of D.
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Conversely suppose that D has a complete bag B having at least 1 unmarked vertex v. Since
|[V(G)| = 3, the bag B contains at least 3 vertices. By Lemma the degree of v is at least 2. Since all
adjacent bags of B are star bags whose centers are unmarked by Lemma v is a simplicial vertex of
G. O

Now we are ready to prove Theorem [5.20] This theorem is best possible for block graphs, because

if v is a simplicial vertex of a block graph G, then G * v is also a block graph.

Proof of Theorem[5.20. Let G and H be two locally equivalent graphs. Suppose that G and H have no
simplicial vertices of degree at least 2. Let Dg and Dy be the canonical split decompositions of G and
H, respectively. We may assume that |V(G)| = |V (H)| = 3 and therefore each bag of D¢ or Dy has at
least 3 vertices.

Since G and H are locally equivalent, by Lemma [4.8] we assume that Dy is obtained from Dg by a
sequence of local complementations. Note that applying a local complementation in a split decomposition
does not change the number of marked vertices and unmarked vertices in each bag.

Suppose that a bag B of D¢g corresponds to a bag B’ = Dy[V(B)] of Dy. If B is a complete bag
in D¢, then by Proposition [5.21) B has no unmarked vertex in D¢ and therefore B’ has no unmarked
vertex in Dg. Since every star bag of Dy should have at least one unmarked vertex by Lemma [5.3] B’
is a complete bag in Dg. Similarly, if B’ is a complete bag in Dy, then B is a complete bag in Dg.

Thus B is a star bag of D¢ if and only if B’ is a star bag of Dy. By Lemmal5.3] the center of a star
bag in D¢ or Dy is an unmarked vertex. Since a bag B in Dg and B’ in Dy have the same number of
adjacent bags and unmarked vertices in each canonical split decomposition, the unmarked vertices of B
in Dg must be mapped to the unmarked vertices of B’ in Dy. Therefore, D¢ is isomorphic to Dy and

so G is isomorphic to H. O

5.6 Thread graphs

We survey known characterizations of thread graphs, and prove Theorem A characterization
of thread graphs using canonical split decompositions was first announced by Bui-Xuan, Kanté and
Limouzy [39]. Adler, Farley and Proskurowski [I] characterize the complete set of induced subgraph,
vertex-minor, pivot-minor obstructions for thread graphs. The induced subgraph obstructions consist
of the induced subgraph obstructions for distance-hereditary graphs [9] in Figure and 14 additional
induced subgraph obstructions for thread graphs that are distance-hereditary, depicted in Figure

Based on the characterization of linear rank-width on distance-hereditary graphs, we obtain an
alternative proof of the characterization in terms of canonical split decompositions. We add the proof of
it.

Theorem 5.22 (Bui-Xuan, Kanté and Limouzy [39]; Adler, Farley and Proskurowski [I]; Kwon and
Oum [134]). Let G be a connected graph and let D be the canonical split decomposition of G. The

following are equivalent.
1. G has linear rank-width at most 1.
2. G is distance-hereditary and Tp is a path.
3. G is distance-hereditary and G is {a1, as, as, aq, as, ag, b1, B2, B3, Ba, Y1, V2, V3, Y4} -free.

4. G has no piwot-minor isomorphic to Cs, Cg, a1, as, aq, ag, 71, and vs.
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Figure 5.7: The induced subgraph obstructions for thread graphs that are distance-hereditary.

5. G has no vertex-minor isomorphic to Cs, aq and 1.
6. G is a vertex-minor of a path.

7. G is locally equivalent to a caterpillar tree.

Proof. The proofs of ((1) < (6)) and ((1) < (7)) are given by Kwon and Oum [I34], and Bui-Xuan,
Kanté and Limouzy [39], respectively. By Lemma ((1) — (5)) is clear as C5, a; and ~y; have linear
rank-width 2. ((5) — (4) — (3)) is proved by Adler, Farley and Proskurowski [IJ.

We add proofs for the remaining parts.

((3) — (2)) We may assume that G is distance-hereditary. Suppose Tp is not a path. Then there
exists a bag B of D such that D\V(B) has at least three components Ty, T», T5. For each i € {1,2, 3},
let v; := (B, T;) and w; := ((B,T;). We have three cases; B is a complete bag, or B is a star bag with
the center at one of vy, va,v3, or B is a star bag with the center at a vertex of V(B)\{v1,v2,vs}.

If B is a complete bag, then G has an induced subgraph isomorphic to one of oy, o, as, ay depending
on the types of the marked edges v;,w;. If B is a star bag with the center at one of vy, vs,v3, then G
has an induced subgraph isomorphic to one of 81, 3s,..., 8¢. Finally, if B is a star bag with the center
at a vertex of V(B)\{v1,vs2,v3}, then G has an induced subgraph isomorphic to one of 1,72, v3, 74. We
summarize all cases in Table Bl

((2) — (1)) Suppose G has linear rank-width at least 2, and we assume that G is distance-hereditary.
By Theorem there exists a bag B of D such that B has at least three adjacent bags in D. Thus,
Tp is not a path. O

Bui-Xuan, Kanté, and Limouzy [39] announced that we can test whether an input graph has linear
rank-width at most 1 in polynomial time using the characterization in terms of split decompositions. For

completeness, we add its proof.

Theorem 5.23 (Bui-Xuan, Kanté, and Limouzy [39]). For a given graph G, we can test whether G has
linear rank-width at most 1 in time O(|V(G)| + |E(G)]).
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type of B type of vyw; | type of vows | type of v3ws | induced subgraph
A complete bag KS, KS, KS, a
KS, KS, KS, Qs
KS, KS, KS, Qs
KS. KS. KS, Qy
A star bag SeSe SpSp SpSp B
with center at vy SeSe SpSp SpK B2
SeSe SpK SpK Bs
S K SpSp SpSp Ba
S.K SpSp SpK Bs
S.K SpK SpK Bs
A star bag SpSp SpSp SpSp 7
with center at SpK SpSp SpSp Yo
a vertex SpK SpK SpSp 3
other than v; SpK SpK SpK Y4

Table 5.1: Summary of cases in Corollary

try {L,R} {L} try  {L,R} {L}

B ety S

{ry  {LR} (R}

Figure 5.8: The canonical split decomposition of a connected thread graph. The unmarked vertices in

each box form a thread block.

Proof. We first compute the canonical split decomposition D of each connected component of G using
the algorithm from Theorem [4.4]in time O(|V(G)| + |E(G)]). This also gives the information that each
bag is either prime or a complete bag or a star bag. Then we check whether T is a path, and whether
each bag is star or complete. By Theorem if Tp is a path and each bag is star or complete, then
we conclude that G has linear rank-width at most 1, and otherwise, G has linear rank-width at least 2.

Because the total number of bags in all split decompositions is O(|V(G)|), it takes O(|V(G)]) time. O

Now we discuss a proof of Theorem [I.7] We recall the definition of thread graphs and Theorem [I.7]

A triple B(z,y) = (G, 0,£), where x and y are two vertices of the graph G, o is a linear layout of V (G)
whose first and last vertices are x and y respectively, and £ is a function from V(G) to {{L}, {R},{L, R}},
is a thread block if

L. #(x) = {R} and €(y) = {L},
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2. for v,w e V(G) with v <, w, vw € E(G) if and only if R € {(v) and L € {(w),
3. Uo7 1(2) # {L}if o7 1(2) £ 9.

For a digraph D = (Vp, Ap), a set of thread blocks {B(z,y) = (Gay, Ozy,ley) : vy € Ap} is said
to be mergeable with D if for any two arcs z1y1, 2y of Ap, V(Gayy) N V(Gayy,) = {z1, 91} N {z2, y2}.
For a digraph D = (Vp, Ap) and a mergeable set of thread blocks Bp = {B(z,y) = (Gay, Ozy, lay) :
zy € Ap}, the graph G = D © Bp has the vertex set V(G) = U, eca, V(Gzy) and the edge set
B(G) = Uyyen, E(Cy).

A connected graph G is a thread graph if G is either an one vertex graph or G = P ® Bp for some
directed path P, called the underlying path, and some set of thread blocks Bp mergeable with P. A

graph is a thread graph if each of its connected components is a thread graph.

Theorem [1.7] (Ganian [97]; Adler, Farley, Proskurowski [1I]). A graph has linear rank-width at most 1
if and only if it is a thread graph.

We first prove it for connected graphs. If this is true, then Theorem is true because a graph is a
thread graph if each component is a thread graph, and a graph has linear rank-width at most 1 if each

component has linear rank-width at most 1.

Proof of Theorem[1.7] We first show the case when G is connected. We use the characterization of
graphs of linear rank-width 1 in terms of canonical split decompositions in Theorem [5.22

Suppose G is a connected graph of linear rank-width at most 1, and let D be the canonical split
decomposition of G. Since every graph of linear rank-width 1 is distance-hereditary, by Theorem [5.1]
every bag of D is either a complete bag or a star bag. We may assume that |V(G)| = 2. From
Theorem the split decomposition tree of D is a path. Let B;Bs--- B,, be the sequence of bags
representing D. Note that for each bag B; of D, for 1 < i < m, exactly one of the following is satisfied.

1. (Type 1) B; is a complete bag.

2. (Type 2) B; is a star bag whose center is an unmarked vertex.

3. (Type 3) B is a star bag whose center is a marked vertex adjacent to a vertex of B;_1.
4. (Type 4) B; is a star bag whose center is a marked vertex adjacent to a vertex of B;1.

The center of every bag of Type 2 is a cut vertex in G, and thus, two vertices in different parts of
D\V(B;) are not adjacent. It will be the point where we divide a thread graph into thread blocks.

Let B,,,Bi,,...,B;, be the set of all star bags whose centers are unmarked vertices such that
1 <ip <ig <---<ig <m. Foreach 1 <j<t,let v; be the center of the bag B;,, and let vy # v;, and
U # v;, be respectively unmarked vertices in By and B,,. Let Ry be the set of unmarked vertices in
the bags on the path from B; to B;,, and for each 1 < j < ¢ let R; be the set of unmarked vertices in
the bags on the path from B;, 1 to B, .

We claim that G is a thread graph whose underlying directed path is vgvivs ... v:v,,. Suppose that
0 <7 < j <t. Then the vertex v;41 is a cut vertex of G’ and it separates R; from R;, and it is easy to
observe that there are no edges between the vertex sets R;\{v;, v;41} and R;\{v;,v;41}. Thus, to prove
the claim, it is enough to show that for each 0 < ¢ < t, G[R; U {v;}] is a thread block whose linear layout
starts at v; and ends at v;yq.

Let o; be a linear layout of R; u {v;} satisfying that for two vertices z,y € R; U {v;}, © <o, y if the

bag containing x appears before the bag containing y in the decomposition path, and for all vertices in
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the same bag, we give any linear layout among them. We define a labelling ¢; of the vertices in R; U {v;}
such that for v € R; U {v;} in a bag B,

1. ¢;(v) :={L, R} if B is of Type 1,
2. £;(v) ;= {L} if B is of Type 3,
3. ¢;(v) :== {R} if B is of Type 4,
4. Li(vi) = {R}, li(vigr) := {L}.

Note that v; and the second vertex of ¢; are contained in different bags, except when i; = 1, and since
D is a canonical split decomposition, the bag containing the second vertex cannot be of Type 3. Thus,
Li(o;71(2)) # {L} unless 0;*(2) = v;r1. Thus, it is sufficient to check that for v,w € V(G[R; U {v;}])
with v <,, w, vw € BE(G[R; u {v;}]) if and only if R € ¢;(v) and L € ¢;(w).

When v, w are contained in the same bag, they are adjacent if and only if both have labels {L, R} or
w = v;11 and v is a pendant vertex in the bag containing v; 1. Thus, it satisfies the condition because
v, w should have same labels, or v is labeled {R} and w is labeled {L}. Suppose v € B, and w € B,, with
B, # B,. If vw € E(G[R; v {v;}]), then by Lemma v and w are linked. Therefore, R € ¢;(v) and
L € ¢;(w). Conversely, if R € ¢;(v) and L € ¢;(w), then v and w are linked because there are no bags of
Type 2 between the bags B, and B, in D. Therefore, vw € E(G[R; u {v;}]). It proves the claim.

For the converse direction, suppose that G = P ® Bp for some directed path P = pyps - - - py, from
p1 t0 pm, and some set of thread blocks Bp, and for each 1 < i < m — 1, let B(p;,pi+1) := (Gi, 04, 4;).
For each 1 <7 < m — 1, we take a canonical split decomposition D; of G;. Since each p; is a cut-vertex

of the graph, it is not hard to see that
o1®D0o2 - Dom—1

is a linear layout of width at most 1, which implies that G has linear rank-width at most 1.
Now we consider the case when G is disconnected. From the definition of thread graphs, we have

the following.

G has linear rank-width at most 1.
< Each component of G has linear rank-width at most 1.
< Each component of G is a thread graph.

< @ is a thread graph. O
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Chapter 6. Vertex-minor obstruction sets for

graphs of bounded linear rank-width

We provide a lower bound on the number of graphs in a vertex-minor obstruction set for the class of
graphs of linear rank-width at most k. From Corollary[L.T] for each k, there exists a finite set Oy, of graphs
such that a graph has linear rank-width at most k if and only if it has no vetex-minor isomorphic to a
graph in O. Adler, Farley, Proskurowski [I] prove that three graphs in Figure form a vertex-minor
obstruction set for the class of graphs of linear rank-width at most 1.

We show that for each k > 2, there are at least 203" pairwise locally non-equivalent vertex-
minor minimal graphs for the class of graphs of linear rank-width at most k, thus proving that every
vertex-minor obstruction set for the class of graphs of linear rank-width at most k has at least 206"

vertex-minor minimal graphs.

Theorem 6.1. Let k > 2 be an integer. There exist at least 293" pairwise locally non-equivalent graphs
that are vertex-minor minimal with the property that they have linear rank-width larger than k. In other

words, if Oy is a vertex-minor obstruction set for the class of graphs of linear rank-width at most k, then
04| = 296,

To prove Theorem [6.1] we construct a set Ay of graphs that are vertex-minor minimal with the
property that the linear rank-width is larger than k.
Constructions of graphs in Ay

A delta composition G of graphs G1, G2, and G3 is a graph obtained from the disjoint union of G,
Go, and G3 by adding a triangle vivovs where v; € V(G;) for i = 1, 2, 3. We call vyvqvz the central

triangle of G. For a non-negative integer k, we define Ay as follows:
1. Ay = {({z,y},{zy})}. (It is isomorphic to K5.)
2. For i = 1, A; is the set of all delta compositions of three graphs in A; ;.

All non-isomorphic graphs in Ay are depicted in Figure [6.1

Figure 6.1: All non-isomorphic graphs in As.
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We use Theorem to prove that if two graphs in Ay are locally equivalent, then they are
isomorphic. Generally, by Theorem if two block graphs without simplicial vertices of degree at
least 2 are locally equivalent, then they are isomorphic. We verify that for an integer k, every graph in

Ay is a block graph and has no simplicial vertices of degree at least two.
Lemma 6.2. Every graph in Ay is a block graph without simplicial vertices of degree at least 2.

Proof. Let G be a graph in Ay. From the construction of Ay, every vertex of G has odd degree and
each block of G is isomorphic to Ky or K3. Therefore G is a block graph and has no simplicial vertex of

degree at least 2. O

In other words, two non-isomorphic graphs in A cannot be equivalent up to locally equivalence,
and it is sufficient to count the number of graphs in Ay for providing a lower bound on the number of
graphs in a vertex-minor obstruction set for the class of graphs of linear rank-width at most k. We count

the number of graphs in Ay in Section [6.2

We note that it is not clear whether every vertex-minor minimal graph for the class of graphs of
linear rank-width at most & that is distance-hereditary, is locally equivalent to one of the graph in Ay.
In Section[6.4] we generalize the constructions of Ay, and generate a set of canonical split decompositions

U} that has the following property.

e Every distance-hereditary graph of linear rank-width at least k£ + 1 contains a vertex-minor isomor-

phic to a graph whose canonical split decomposition is isomorphic to a split decomposition in \IJ,JCr

(Theorem [6.20)).

Using Theorem [6.20 we can generate all vertex-minor minimal distance-hereditary graphs for the class

of graphs of linear rank-width at most k.

6.1 Linear rank-width of a graph in A; and its vertex-minor

In this section, we prove the following.

Proposition 6.3. Let k be a non-negative integer. Every graph in Ay is a vertex-minor minimal graph

for the class of graphs of linear rank-width at most k.

First, we prove that every graph in A has linear rank-width k + 1. We remark that using the
canonical split decompositions of graphs in Ay presented in Section [6.3] and Theorem [5.11] we can
obtain the following lemma as a corollary. However, we give a direct proof without using canonical split

decompositions.
Lemma 6.4. The linear rank-width of a graph in Ay is at least k + 1.

Proof. We use induction on k. We may assume that k > 1. Since G € Ay, G is a delta composition of
G1,G4,G3 € Ag_1 with the central triangle vivovs such that v; € V(G;) for i = 1, 2, 3.

Suppose that G has linear rank-width at most k. By the induction hypothesis, G; has linear rank-
width at least k and therefore G has linear rank-width exactly k. Let L be a linear layout of G having
width k. For v € V(G), we define S, = {z € V(G) :  <g v} and T, = V(G)\S,. Let a and b be the first
and the last vertices in L such that pg(Ss) = pa(Sy) = k. Without loss of generality, we may assume
that {a,b} € V(G2) u V(G3). Let Ly be the subsequence of L whose elements are the vertices of Gy.
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For contradiction, we claim that L, is a linear layout of G; having width at most £ — 1. Let
v e V(Gy). Tt is sufficient to show that pg, (S, N V(G1)) < k—1. Note that v # e and v # b. If v <p a
or v =, b, then
PG, (So N V(G1)) < pa(Sy) <k — 1.

So we may assume that a <p v <y b. Note that one of S, n V(G;) and T, n V(G;) does not
have a neighbor in G[V(G)\V(G1)] because v; is the unique vertex in G; which has a neighbor in
G[V(G)\V(G1)]. And since G[V(G)\V(G1)] is connected and a € S,\V(G1) and b € T,,\V(G1), there is
an edge ujug in G[V(G)\V(G1)] such that u; € S,\V(G1) and uy € T,\V(G;). So

A(G)[S\V(G1), T,\V(G1)]

is a non-zero matrix. Depending on whether v, € S, " V(Gy) or v € T, n V(Gy),

p(S,) = rank <A<G>[Sv AV(G), Ty A V(GY)] 0 )

AG)[SN\V(G1), Ty nV(G1)]  A(G)[So\V(G1), T,\V(G1)]
> rank (A(G)[Sy, " V(G1), Ty, n V(G1)]) + rank (A(G)[S,\V(G1), T,\V(G1)]) ,

or

pc(S,) = rank (A(G)[Sv NV (G1), T, nV(G1)] A(G)[S, N V(Gl),Tv\V(Gl)]>

> rank (A(G)[Sy, N V(G1), Ty, n V(G1)]) + rank (A(G)[S,\V(G1), T,\V (G1)]) ,

respectively. Thus, we have

06, (S, N V(G1)) = rank (A(G)[S, " V(G1),T, n V(G1)])
< pa(Sy) — rank (A(G)[S\V(G1), T\V(G1)])
< pe(Sy) —1<k—1.

So L; is a linear layout of Gy having width at most k& — 1, which is contradiction. Hence, Irw(G) >
k+ 1. O

If w is a twin of v in a graph G and G\w has linear rank-width k + 1 with a linear layout of width
k + 1 starting with v, then clearly G also admits a linear layout of width k + 1 starting with v because
we can easily put w in the second place. But the following lemma claims that we can place w at the end
if G\w € Aj. This lemma implies that every graph in Ay has linear rank-width k. Moreover, it will be

mainly used to show that every elementary vertex-minor of a graph in Ay has linear rank-width k.

Lemma 6.5. Let v be a vertex of a graph G and let w be a twin of v. If G\w € Ay, then G has a linear
layout L of width k + 1 such that the first vertex of L is v and the last vertex of L is w.

Before proving the lemma, we first show that Lemma implies the following proposition deter-

mining the exact linear rank-width of a graph in Ag.

Proposition 6.6. Fvery graph in Ay has linear rank-width k + 1. Moreover, for every vertex v of

G € Ay, there exists a linear layout of G having width k + 1 whose first vertex is v.

Proof. By Lemma the linear rank-width of a graph G in Ay is at least k + 1. Let v € V(G) and let
G’ be a graph obtained by adding a twin w of v to G. Then Lemma implies that G’ has a linear
layout L of width k + 1 starting at v and ending at w. We discard w from L to obtain a linear layout of
G starting with v having width & + 1. O
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Proof of Lemma[6.5. We prove by induction on k. If k = 0, then G is a connected graph on three vertices
and therefore every linear layout of G' has width 1. Thus we may assume that k > 1. Let G\w be a delta
composition of Gy, Gz, G3 € Ag_1 with the central triangle vivovs such that v; € V(G;) for i = 1, 2, 3.
We may assume that v € V(Ga).

We first claim that G has a linear layout L; of width k£ ending at v;, and GG3 has a linear layout
L3 of width k starting at vs. For i € {1,3}, let G} is a graph obtained from G; by adding a twin w; of
v;. Since Gj\w; € Ag_1, by the induction hypothesis, G} has a linear layout L of width k starting at
w; and ending at v;, and by discarding w; from each L}, we obtain a linear layout L of G; ending at
v;. So, Ly = LY and the reverse layout Ls of L} are the linear layouts of G and G5 having width &,
respectively, such that the last vertex of Ly is v; and the first vertex of L3 is vs.

Let

G\(V(G1) uV(Gs)) if v # vy,
H=<{G\(V(G1) uV(G3))\vw  if v =vq, and v, w are adjacent in G,
G\(V(G1) vV(Gs)) + vw otherwise.

By the induction hypothesis, H has a linear layout (v) ® Ly @ (w) of width k.
(1) Clearly, pa(V(G1) u{v}) <2< k+1and pg(V(G3) u{w}) <2< k+1.
(2) We claim that for X € V(G1)\{v1}, if pg,(X) < k, then pe(X u {v}) < k + 1. This is because no
vertex in X has a neighbor in V(G)\V(G1) and therefore pg, (X) = pa(X) = pa(X U {v}) — 1 by the
submodular inequality.
(3) Similar to (2), we deduce that for X < V(G3)\{vs}, if pg,(X) <k, then pa(X u {v}) <k + 1.
(4) We claim that if v # vy, X € V(H), and pgy(X) < k, then pg(V(G1) u X) < k + 1. By symmetry
between G; and G3, we may assume that vy ¢ X. By the submodular inequality, pg(V(G1) u X) <
pa(X) +pe(V(G1)) =pu(X)+1<k+1.
(5) We claim that if v = vy, ve X € V(H), w¢ X, and py(X) <k, then pg(V(G1) u X) <k +1. By
adding the row of v; to that of vy in A(G)[X UV (G1), (V(H)\X)UV(G3)], we see that pa(X UV (G1)) <
p(X)+1<k+1.

By combining (1), (2), (3), (4), and (5), we conclude that (v)® L1 @® Ly ® L3 @ (w) is a linear layout
of G having width at most k + 1. Clearly it has width k& + 1 because G\w has linear rank-width & + 1
by Lemma |6.4] O

The following two lemmas will help us to prove that elementary vertex-minors of graphs in A, have

linear rank-width at most k.

Lemma 6.7. Let k be a positive integer and let G1,Go € Ax_1. Let G be a graph obtained from the
disjoint union of G1 and Gy by adding an edge wiws for fized wy € V(G1) and wy € V(Gs). Then G has

linear rank-width k.

Proof. 1t is trivial that the linear rank-width of GG is at least k because an induced subgraph G; of G
has linear rank-width k& by Proposition By Proposition [6.6] there is a linear layout L; of G having
width & such that the last vertex of L is wy, and there is a linear layout Lo of G2 having width k£ such
that the first vertex of Ly is we. Then obviously L @ Lo is a linear layout of G having width at most
k. O
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Lemma 6.8. Let k be a positive integer. Let Gy, Go € Ag_1, and let Gs be a graph having linear

rank-width at most k — 1. Then every delta composition of G1, Go and Gs has linear rank-width k.

Proof. Let G be a delta composition of Gy, G2 and G3 with the central triangle vivovs such that
v; € V(Gy) for i = 1, 2, 3. Clearly the linear rank-width of G is at least k because an induced subgraph
G4 of G has linear rank-width k& by Proposition [6.6]

Since G1, G € Ag_1, by Proposition there is a linear layout L of G having width k such that
the last vertex of L; is v1, and there is a linear layout Lo of G2 having width k such that the first vertex
of Ly is vo. Let L3 be a linear layout of G3 having width at most k — 1.

We claim that L = L1 @ L3 @ Lo is a linear layout of G having width at most k. Let v € V(G),
Sy ={z 1z <z v}, and T, = V(G)\S,. We need to show that pg(S,) < k for all v € V(G). This is
clearly true if v € V(G1) u V(G2). So let us assume that v € V(G3). By symmetry we may assume

vy ¢ Sy, because we can swap Gy and Gs. Then no vertex of Gy has a neighbor in S, n V(G3) and

therefore
pc(Sy) < rank(A(GQ)[V(G1),Ty]) + rank(A(G)[S, n V(Gs),T,])
=14 pg,(Sy "V (G3)) < k.
Therefore, G has linear rank-width at most k. O

We now prove that every elementary vertex-minor of G in Ay has linear rank-width at most k. To
prove it, we will use the following lemmas. By Lemma it is sufficient to prove that G\v, G * v\v,

and G A vw\v has linear rank-width one less than the linear rank-width of G.

Lemma 6.9. Let k be a non-negative integer and G € Ag. Then G\v has linear rank-width at most k

for each vertex v.

Proof. We use induction on k. We may assume k£ > 1. So G is a delta composition of three graphs in
Aj_1, say G1, G and G3 with the central triangle vivovs such that v; € V(G;) for ¢ = 1, 2, 3. We may
assume that v € V(G1). By the induction hypothesis, G1\v has linear rank-width at most k& — 1.

If v = vq, then G\v is obtained from the disjoint union of three graphs Gi\v, Ga, G3 by adding an
edge vou3 and so G\v has linear rank-width k by Lemma

If v # vy, then G\v is a delta composition of two graphs in Ax_; and one graph having linear
rank-width at most k¥ — 1. Thus by Lemma Irw(G\v) = k. O

Lemma 6.10. Let k be a non-negative integer and G € Ap. Then G = v\v has linear rank-width at most

k for each vertex v.

Proof. We use induction on k. We may assume k > 1. Let G be a delta composition of Gy, Go, G3 € Ag_1
with the central triangle vivqus such that v; € V(G;) for i = 1, 2, 3. We may assume that v € V(Gy).

If v # v1, then G % v\v is a delta composition of Gy * v\v, Gy and G35 where G * v\v has linear
rank-width at most k£ —1 by the induction hypothesis. Thus by Lemma G #v\v has linear rank-width
k.

So we may assume v = v1. let G} = (G = v\v)[V(G1) U {ve, v3}]. Since vs is a twin of vy in G} and
v3 is not adjacent to ve in G # vo and G * va\vs is isomorphic to G (see Figure , by Lemma
G’ has a linear layout (vy) ® L1 @ (v3) of width k.

By Proposition @ G5 has a linear layout Lo of width & whose last vertex is v, and Gz has a linear

layout L3 of width k whose first vertex is vs.
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V2 V3 V2 V3

G[V(G1) v {va,v3}] G G # g

Figure 6.2: The case G # v\v where v = vy in the proof of Lemma

V2 V3 V3

G[V(G1) v {va,v3}] G[V(G1) v {va,v3}] A v1v2\v1

Figure 6.3: The case G A v1v2\v in the proof of Lemma

It follows easily that L = Lo @ L1 @ L3 is a linear layout of G * v\v having width & because
(G = 0v\0)[V(G2)] = Ga, (G = v\v)[V(G3)] = G, and (G = v\v)[V(G1) U {vs,v3}] = G}. O

Lemma 6.11. Let k be a non-negative integer and G € Ay. Then G A vw\v has linear rank-width at

most k for each edge vw.

Proof. For each vertex v, it is enough to prove it for one neighbor w of v by Lemma [2.I] and Lemma [T.9

We use induction on k. We may assume k > 1. Let G be a delta composition of G, G2, G3 € Ag_1
with the central triangle vivous such that v; € V(G;) for i = 1, 2, 3. We may assume that v € V(Gy).

If v has only one neighbor w, then G' A vw\v is isomorphic to G\w and by Lemma we know that
G\w has linear rank-width at most k. So we may assume that v has at least two neighbors.

If v # vy, then we choose a neighbor w of v such that w # v;. It is easy to observe that G A vw\v
is a delta composition of G A vw\v, Ga, G3 where G; A vw\v has linear rank-width at most k — 1 by
the induction hypothesis. Hence, by Lemma G A vw\v has linear rank-width k.

Thus we may assume v = v1. Since G[V(G1) U {va,v3}] A vvg\v is isomorphic to a graph obtained
from G; by adding a twin of v (see Figure[6.3), by Lemma [6.5, G[V (G1) U {v2,v3}] A vv2\v has a linear
layout (v2) ® Ly @ (v3) of width k.

Let w be a neighbor of v in Gy and let G} = G[V(G1) U {vs, v3}] Avw\v. By Lemmal[l.9] G} A vow =
G[V(G7) U {va,v3}] A vw A vaw\v = G[V(G1) U {va,v3}] A vvg\v and therefore (vo) ® Ly @ (v3) is also
a linear layout of G} having width k.

By Proposition @ G5 has a linear layout Lo of width k& whose last vertex is vo, and GGz has a linear
layout L3 of width k whose first vertex is vs.

It is now easy to see that L = Lo @ Ly @ L3 is a linear layout of G A vw\v having width at most &
because (G A vw\v)[V(G2)] = Ga, (G Avw\v)[V(G3)] = G3, and (G Avw\v)[V(G1)u{ve,v3}] = G}. O

Finally we are ready to prove the main theorem of this section.
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Proof of Proposition[6.3 Let G € Ay. By Proposition G has linear rank-width k£ + 1. And by lem-
mas and every elementary vertex-minor of G has linear rank-width at most k. Therefore,

G is a vertex-minor obstruction for the class of graphs of linear rank-width at most k. O

6.2 The number of graphs in A;

We now prove that Ay has at least 29(3") pairwise non-isomorphic graphs. A rooted graph is a pair

of a graph and a specified vertex called a root. Two rooted graphs (G,v) and (G’,v’) are isomorphic
if there exists a graph isomorphism ¢ from G to G’ that maps v to v’. Let us write Aut(G) to denote
the automorphism group of a graph G. For a rooted graph (G,v), we write Aut(G,v) to denote the
automorphism group of (G, v). In other words, Aut(G,v) = {¢ € Aut(G) : ¢p(v) = v}.

First we show that each graph in Ay has a unique central triangle.

Lemma 6.12. Let k > 1 and G € Ag. Then G has a unique cycle vivovs of length 3 such that

G\v1va\vau3\v3v1 has exactly three components G1,Ga,G3, each of which is in Ap_q.

Proof. Clearly there is at least one such cycle because of the construction. Suppose there are two such
cycles T = vyvavg and T7 = vjvhvl. Let H be a component of G\vjva\vavs\vsvy having no vertex of 7”.
By the condition, H € Ayx_; and so H has exactly 2 - 3¥~1 vertices. We may assume v; € V(H). The
component J of G\vjvh\vhvs\viv] intersecting V(H) should be equal to H because 7" does not intersect
H and |V(J)| = |[V(H)|. Thus ve,vs € T” and so ve and vs have a common neighbor other than v;.

However, this contradicts our assumption that G\viva\vevs\vsv; has exactly three components. O

Let k > 2 and let G be a graph in Ag. By the construction, G is a delta composition of three graphs
G1,Ga,G3 € Ag_;1 with the central triangle vqvovs such that v; € V(G;) for i = 1,2,3. We call G € A

o Type-A if (G1,v1), (Ga,v2), and (Gs,v3) are pairwise isomorphic,
e Type-B if exactly two of (G1,v1), (Ga,v2), (Gs,vs) are isomorphic,
e Type-C otherwise.

Lemma 6.13. Letk > 1 and G be a delta composition of three graphs G1,Ga, G3 € Ag_1 with the central
triangle vivavs such that v; € V(G;) for alli = 1,2,3. Then,

1. Aut(G) ~ S5 x Aut(Gq,v1) x Aut(Ga,v2) x Aut(Gs,v3) if G is Type-A.
2. Aut(G) ~ Sy x Aut(G1,v1) x Aut(Ge,va) x Aut(Gs,vs) if G is Type-B.
3. Aut(GQ) ~ Aut(Gy,v1) x Aut(Ge, va) x Aut(Gs,vs) if G is Type-C.

Proof. Let g € Aut(G). By Lemma [6.12) g({v1, v2,v3}) = {v1,v2,v3} and therefore

9(V(G1)),9(V(G2)), 9(V(Gs)) € {V(G1), V(G2),V(Gs)}-

So Aut(G) induces a subgroup I" of S5 on {v1, v2,v3} based on the type of G. It is clear that Aut(G)/T’

is a composition of automorphism groups of three rooted graphs (G1,v1), (G2, v2) and (Gs,v3). O

For a graph G and x € V(G), we define the orbit of z in G as the set

{weV(G) : w= f(z) for some automorphism f of G},
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and we denote #O0rb(G) as the number of all distinct orbits of G. For a rooted graph (G, v) and z € V(G),
we define the orbit of z in (G, v) as the set

{weV(G) : w= f(x) for some automorphism f of (G,v)},
and we denote #0rb(G, v) as the number of all distinct orbits of (G, v).

Lemma 6.14. Letk > 1 and G be a delta composition of three graphs G1,Go, Gz € A_1 with the central
triangle vivavs such that v; € V(G;) for alli=1,2,3. If ve V(Gy), then

#O0rb(G,v) = #0rb(G1,v1) + #0rb(Ga, v2).

Proof. By Lemma [6.12] no vertex in (G; can be mapped to a vertex in G5 or GG3 by an automorphism of
G fixing v. Thus orbits of (G, v) intersecting V' (G1) cannot contain a vertex in G2 or G3. The number
of orbits of (G,v) intersecting V(G1) is equal to the number of distinct subsets of V(G;) that can be

represented as
{f(z) e V(Gy): f is an automorphism of G; such that f(v) = v, f(vi) = v1}

for some z € V(G1) and this number is at least #Orb(Gy,v1). The number of orbits of (G,v) not
intersecting V' (G1) is at least #O0rb(Gz, v2) by Lemma Thus, we obtain the desired inequality. [

Lemma 6.15. Let k be a non-negative integer and G € Ay, and v € V(G). Then (G,v) has at least 28+1

orbits.
Proof. Trivial if k = 0. It follows easily by induction from Lemma [6.14] O
Lemma 6.16. Let k be a positive integer and G € Ay.

1. If G is Type-A, then G has at least 2% orbits.

2. If G is Type-B, then G has at least 2 - 2F orbits.

3. If G is Type-C, then G has at least 3 - 2% orbits.

Proof. Let G be a delta composition of G1,Gs,Gs € Ap_1 with the central triangle vivov3 such that
v; € V(G;) for all i = 1,2,3. By Lemma [6.13]

1. #0rb(G) = #0rb(G1,v1) if G is Type-A,
2. #O0rb(G) = #0rb(G1,v1) + #O0rb(Ga, vo) if G is Type-B and (Gy,v1) is isomorphic to (Gs, vs),
3. #Orb(Q) = #O0rb(G1,v1) + #Orb(Ga, vs) + #Orb(Gy, v3) if G is Type-C.

By Lemma we deduce the lemma. O

Let pr be the number of non-isomorphic rooted graphs (G,v) with G € Ag. Then py = 1, p1 = 2,
and ps = 24 (see Figure . We can easily verify that Ay has

e exactly pr_1 non-isomorphic Type-A graphs,
e exactly pg—1(pr—1 — 1) non-isomorphic Type-B graphs,

e exactly (p ’“3*1) non-isomorphic Type-C graphs.
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We are now ready to provide a lower bound on the number of non-isomorphic graphs in Ay.
Proposition 6.17. Let k > 2 be an integer. Then Ay has at least 203" non-isomorphic graphs.

Proof. Let ay, by, cx be the number of non-isomorphic graphs in Ay, that is Type-A, Type-B, and Type-C
respectively. By Lemma [6.16
ok = 28ay, + 2 2Fb, + 3 - 2F¢y,.

Since ag = pr—1, bk = pk—1(Pk—1 — 1) and ¢ = (p’gl), we obtain the following recurrence relation;

aps1 = pr = 2%ap +2- 280, +3-2%¢;, = Zk_lai(ak +1) > Zk_lai
and as = 2. We deduce that aj, > 2(1=2k)/4+7:3%/36 _ 29(3%), O
Now we can combine all to prove our main theorem.

Proof of Theorem[6.1 By Proposition every graph in Ay is a vertex-minor minimal graph for the
class of graphs of linear rank-width at most k. Proposition states that Aj has at least 203"
non-isomorphic graphs. Lemma [6.2] and Theorem [5.20] show that two non-isomorphic graphs in Ay
cannot be locally equivalent. Therefore, there are at least 206" pairwise locally non-equivalent vertex-
minor minimal graphs for the class of graphs of linear rank-width at most k. In other words, if Oy is a

vertex-minor obstruction set for the class of graphs of linear rank-width at most k, thn |Oy| > 223%)

6.3 Canonical split decompositions of graphs in A,

We now aim to describe the canonical split decomposition Sg of each graph G in Ay for & > 1
explicitly. Using this structure, we can show that two locally equivalent graphs in A, are isomorphic,
even though we showed it using a general theorem. In the next subsection, we generalize this construction
to obain all vertex-minor minimal distance-hereditary graphs for the class of graphs of linear rank-width
at most k.

Let us call the edges of the graph in Ay thick. In graphs in Ay, the edges originated from Ag are
thick and all other edges introduced by a delta composition are thin. Observe the set of thick edges of

G € Ay is a perfect matching and therefore we deduce the following.

Lemma 6.18. For graphs in Ay, each leaf is incident only with a thick edge and no two leaves have a

common neighbor.

For G € Ay, let C(G) be the set of triangles in G. First let us describe the set ©(G) of marked
vertices of Hg. For each thick edge uv joining two non-leaf vertices, we have two new vertices m(u,v)
and m(v,u) in O(G) and for each pair of a vertex v and a triangle C' containing v, we have two new
vertices m(C,v) and m(v,C). We will construct Sg so that V(Sg) is the disjoint union of V(G) and
O(G). For convenience, if w is a leaf incident with an (thick) edge vw, then m(v, w) := w.

Now we describe all bags of Sg. For each vertex v in G of degree n > 1, if w is the unique neighbor

of v joined by a thick edge, then let B(v) be the graph isomorphic to Ky (;,—1)/24+1 on the vertex set
{v,m(v,w)} v {mv,C): CeC(G),veV(C)}

with the center v. For each triangle C of G, let B(C) be the graph isomorphic to K3 on the vertex set
{m(C,v):veV(C)}.

— 65 —



Figure 6.4: A graph G € Ay with thick edges, and a part of S¢.

Let Sg be the marked graph on the vertex set ©(G) u V(G) such that all bags of S are
{B(v) : v is a non-leaf vertex in G} u {B(C) : C € C(G)}
and the set M (S¢) of all marked edges is exactly

{m(v,CYm(C,v) : C € C(G),v e V(C)}

u{m(v, w)m(w,v) : vw is the thick edge joining two non-leaf vertices}

For a graph G in A, the marked graph S¢ is depicted in Figure
We now show that if G € Ag, then Sg is the canonical split decomposition of G.

Proposition 6.19. For each graph G € Ay with k > 1, the marked graph Sg is the canonical split

decomposition of G.

Proof. We first prove that Sg is a split decomposition of G. We use induction on k. We may assume
that k£ > 2 and let C' be the central triangle vivov3 of G. For each 1 < ¢ < 3, let G; be the component
of G\vyv2\vaus\vsvy such that v; € V(G;), and let S; be the component of

Sc\{m(C,v1),m(C,v2),m(C,v3)}

such that v; € V(S;). Let w; be the neighbor of v; such that v;w; is thick.

If v; is not a leaf in G;, then by construction, S;\m(v;,C) = Sq,. If v; is a leaf of G;, then Sg,
is obtained from S;\m(v;,C") by recomposing a marked edge joining m(v;, w;) and m(w;,v;). By the
induction hypothesis, Sg, is a split decomposition of G; and therefore in both cases, S;\m(v;,C) is a
split decomposition of G; because we obtain G; from S;\m(v;, C') by recomposing all marked edges of
Si\m(v;, C).

Let G be the graph obtained from S; by recomposing all marked edges of S;. Then m(v;,C) is a
leaf of G} and G;\m(v;,C) = G;.

— 66 —



If we recompose all marked edges of S except three marked edges associated with C, then we obtain
a marked graph obtained from the disjoint union of G}, G5, G%, and B(C') by adding three marked edges
in {m(v;, C),m(C,v;)}1<i<3. It is then clear that G is obtained from this graph by recomposing three
marked edges in {m(v;, C), m(C,v;)}1<i<3 from this graph. This proves that S¢ is a split decomposition
of G.

It remains to check whether S¢ is a canonical split decomposition. From the construction, every
bag of S¢ is a complete bag or a star bag, and every star bag has marked vertices only on its leaves and

no two complete bags are adjacent bags. This proves the lemma. O

6.4 General constructions of distance-hereditary obstructions

We generalize the constructions of Ay to generate all vertex-minor minimal graphs that are distance-
hereditary graphs. We use the incremental characterization of distance-hereditary graphs, described in
Section B}

We say that for a distance-hereditary graph G, a graph G’ is an one-vertex DH-extension of G if
G = G"\w for some vertex v € V(G') and G’ is distance-hereditary. For convenience, if G’ is an one-vertex
DH-extension of G and D, D’ are canonical split decompositions of G, G’, respectively, then D’ is also
called an one-vertex DH-extension of D.

For a set D of canonical split decompositions, we define
Dt :=Du{D': D is an one vertex DH-extension of D € D}.

From Theorem [5.4] we can generate the set DT from D. For a set D of canonical split decompositions,

we define a new set A(D) of canonical split decompositions D as follows:

e Choose three split decompositions D1, Do, D3 in D and for each 1 < ¢ < 3, take an one-vertex
extension D} of D; with a new vertex w;. We introduce a new bag B of type K or S having three

vertices vy, Vg, v3 and

1. if v; is in a complete bag, then we define D := D * w;,
2. if v; is the center of a star bag, then we define D} := D} A w;z; for some z; linked to w; in D},

3. if v; is a leaf of a star bag, then we define D := D..

Let D be the canonical split decomposition obtained by the disjoint union of DY, D}, D% and B by

adding the marked edges viw1, vows, v3Ws3.

For each non-negative integer k, we recursively construct the sets W and ®j; of canonical split

decompositions as follows.
1. Uy = Py := {K>} (K> is the canonical split decomposition of itself.)
2. For k>0, let Upyq 1= A(T]).
3. For k =0, let @1 := A(Py)
We prove the following.

Theorem 6.20. Let k > 0. FEwvery distance-hereditary graph of linear rank-width at least k + 1 con-
tains a vertex-minor isomorphic to a graph whose canonical split decomposition is isomorphic to a split

decomposition in \IJ;: .
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We remark that for each non-negative integer k, starting with the set \Il,j, we can construct a set of

vertex-minor minimal graphs O such that

1. every distance-hereditary graph of linear rank-width at least k + 1 contains a vertex-minor isomor-

phic to a graph in O, and
2. for G € O, Irw(G) = k + 1 and every its proper vertex-minor has linear rank-width at most k.

For computing the linear rank-width values of distance-hereditary graphs, we can use the result in
Theorem [0.11

Let D be the canonical split decomposition of a connected distance-hereditary graph G.

Lemma 6.21. Let By and Bs be two distinct bags of D, and for each i € {1,2}, let T; be the components
of D\V(B;) such that Ty contains the bag Bs and Ty contains the bag By. If

o yy := (p(D, By, T1) is not a center of a star bag, and
e B, is a star bag and ys := (p(D, B2, Ts) is a leaf of Bs,
then there exists a canonical split decomposition D' such that

1. D has l/)\’ as a verter-minor,
2. DIV(L)\V(Ty)] = D'[V(T)\V (1)),
3. DIV(Ty)\V(T2)] = D'[V(T1)\V(T3)]. and

4. either D' has no bags between By and By, or D’ has only one bag B between By and Bs such that
|V(B)| = 3, B is star, the center of B is an unmarked vertex, and the two leaves are adjacent to

y1 and yo in D'.

Proof. If B and By are adjacent bags in D, then we are done. We assume that there exists at least one
bag between By and By in D. Let P = pips...pe be the shortest path from y; = p; to y2 = py in D.
Note that ¢ > 4.

Let C be a bag in D that contains exactly two vertices p;, p;+1 of P. Then we remove C' and all
components of D\V(C') which does not contains a vertex of By or Bs, and add a marked edge p;_1p;12.
Since this operation does not change the parts D[V (T2)\V(T1)] and D[V (T1)\V(T»)], applying this
operation consecutively, we may assume that except B; and Bs, all bags of D having a vertex of P
contain three vertices of P. Those bags should be star bags where the middle vertices of them are the
centers.

If there exist two adjacent bags C; and Cs in D such that p;, piv1, piv2 € V(C1) and pi13, Pita, Pivs €
V(Cs3). Take two unmarked vertices x;11 and x;44 of D that are represented by p;+1, pita, respectively.
By pivoting x;+1x;4+4 in D, we can modify two bags C; and Cs so that p;p;op;+3pi+5 become a path.
By Lemma this pivoting does not affect on the parts D[V (T2)\V (T1)] and D[V (T1)\V (12)]. We
remove C and Cs from D (with all components of D\V(C;) which does not contain a vertex of B; or
Bs), and add a marked edge p;_1p;+6. Because by the assumption that y; is not the center of By we
know that by removing C; and C5 the bag B; will not be merged with the bag just after C5 in the path
between y; and y2, we obtain a canonical split decomposition satisfying the condition (1), (2), (3), and
the number of bags containing P is decreased by two. By recursively doing this procedure, at the end,
we have either no bags between By and Bs, or only one star bag whose two leaves are adjacent to y; and
Yo- O
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The next proposition says how we can replace limbs having linear rank-width > k = 1 into a split
decomposition in \I/,j_l using Lemma

Proposition 6.22. Let B be a star bag of D and v be a leaf of B. Let T be a component of D\V(B)
such that (p(D, B,T) = v, and w be an unmarked vertex of D represented by v. Let A be the canonical
split decomposition of a distance-hereditary graph. If Lo [B,w] has a vertex-minor that is either A or
an one-vertex extension of A\, then there exists a canonical split decomposition D' on a subset of V(D)
such that

1. either D\V(T) = D\V(T) or D\V(T) = (D\V(T)) % v, and

2. L [B,w'] is either A or an one-vertex DH-extension of A for some unmarked vertex w' of D’

represented by v.

Proof. Suppose that there exists a sequence x1, s, .. . , , of vertices of Lp[B,w] and S < V(Lp[B,w])
such that (ED [B,w] * @1 * xg * ... % xy)\S is either A or an one-vertex DH-extension of A. Note that
(Lp[B,w]*xyxxo*...%x,,)\S is not necessary a split decomposition, because it could have some marked
vertices that does not represent any unmarked vertices. However, by removing such vertices successively,
we make it a split decomposition of either A or an one-vertex DH-extension of A. Let Q < V(D) such
that (Lp[B,w]*x1 %29 *...%x,,)[Q] is a split decomposition of either A or an one-vertex DH-extension

of A. Since £ p|[B,w] is an induced subgraph of D, we have

(Lp[B,w]# @y #xo#...%xx0)[Q] = (D *xq %29 %...%x,)[Q]

For convenience, let D* = D %z # 2 % ... * x,,. Note that D[V (B)] = D*[V(B)].
We choose a bag B’ in D* such that

1. B’ has a vertex of ), and
2. the distance from B’ to B in Tp+ is minimum.

Here, we want to shrink all the bags between B’ and B using Lemma Let T be the component
of D*\V(B'’) containing the bag B and let T3 be the component of D*\V(B) containing the bag B’.
Let y := (,(D, B, T1). From the choice of B’, y ¢ Q. (If y € @, then there exists an unmarked vertex
represented by y, and all vertices on the path from y to it should be contained in Q.) Since D*[Q] is
connected and B’ has at least two vertices of (), y is not the center of a star bag.

Applying Lemma there exists a canonical split decomposition D; such that
1. D* has DAl as a vertex-minor,
2. D¥[V(TR)\V(T1)] = D1[V(T2)\V(T1)],
3. D*[V(TW)\V(T2)] = Di[V(T1)\V(T2)],

4. either D has no bags between B and B’, or D; has exactly one bag B, between B and B’ such
that |V(Bs)| = 3, Bs is star whose center is an unmarked vertex, and the two leaves of By are

adjacent to y and v in Ds.

We first remove the vertices of V(T3)\V(T1) that are not contained in @ u {y}. Let Dy :=
D\ (V(T)\V(T1)\(Q v {y})). From the choice of @, we know that every marked vertex of Dy repre-

sents at least one unmarked vertex, and therefore Ds is a split decomposition. We consider 13; Because
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v is a leaf of B, and Dy[B’] is either a complete graph or a star with y a leaf, B’ and B are still bags in
52. Moreover, if By exists in D1, then Bj is still a bag of 52
Let By be the bag of Dy containing y. Clearly, D5[Q] = D1[Q] = D*[Q], and therefore 13_\[6_2] is

either A or an one vertex DH-extension of A. We divide into cases.

Case 1. bvg has no bags between B and Bs.
In this case, 52 is a required decomposition. Choose an unmarked vertex z in 13; that is represented

—_—

by v. Then ZfD\; [B, z] = D2[Q] because v is a leaf of the bag B.

Case 2. lf)\; has one bag Bs between B and By where |V (Bs)| = 3, B is star whose center ¢ is an
unmarked verter, and two leaves c1, co of By are adjacent to y and v, respectively.

Choose an unmarked vertex z in Zri/g that is represented by c;. From the construction, we can easily
observe’% ZB; [Bs, z] = D/\[(:Q/]

If D>[Q] = A, then we can regard LB, c] as an one-vertex DH-extension of A with the new vertex
c. Therefore, we may assume that D»[Q)] is an one-vertex DH-extension of A with a newly added vertex
a for some unmarked vertex a of 132\[@/] Note that since y is not the center of a star bag, either y is a
leaf of a star bag or By is a complete bag.

If By is a star whose center is an unmarked vertex in 1%7 then we obtain a new decomposition D3
by applying local complementation at ¢ and removing ¢ and recomposing the two marked edges incident
with Bs. Note that D3 is exactly the decomposition obtained from the disjoint of the two components
of ﬁQ\V(BS) by adding a marked edge yv, and it is canonical. Also, z is represented by v in Ds, and
therefore £ ps[B,z] = /_\[Q/] Thus, D3 is a required decomposition.

If By is a complete bag and its vertex y’ is an unmarked vertex in 13;, then we obtain a new
decomposition D3 by pivoting y'c on 52 and removing ¢ and recomposing the two marked edges incident
with B,. Here, we also have a split decomposition obtained from the disjoint of the two components of
E\V(BS) by adding a marked edge yv, and therefore Dj is a required decomposition.

Now we may assume that at least two unmarked vertices of 13; are represented by ¢;. So, c is linked
to at least two vertices of A in 172 Since A is an one vertex DH-extension of a connected distance-
hereditary graph, /Al\a is connected. So, if we define D3 := 5;\_;1, then Dj is connected and ENDB [B,c]

can be regarded as an one vertex DH-extension of A. Therefore, D3 is a required decomposition. O

Proof of Theorem[6.20. We prove it by induction on k. If k = 0, then Irw(G) > 1 and G has an edge.
Therefore, we may assume that k£ > 1.

Let D be the canonical split decomposition of G. Since G has linear rank-width at least k + 1,
by Theorem there exists a bag B in D with three components 77,75, T3 of D\V(B) such that
fp(B,T;) = k for each 1 < i < 3. For each 1 <i < 3, let v; := (D, B, T;) and w; := (D, B, T;), and
z; be an unmarked vertex of D that is represented by v; in D.

By Proposition 5.7, we may assume that B is a star with the center v3. We also assume that B has
exactly three vertices, by removing all components of D\V(B) other than 77,75, T5. Since v; and v are
leaves of B, for each i € {1,2}, Lp[B, z] = T,\w; and Lp[B, z;] has linear rank-width at least k. So, by
the induction hypothesis, there exists a canonical split decomposition D; in ‘1’1;1 such that £ p[B, zi]
has a vertex-minor isomorphic to a graph l/)\Z Note that D; is a split decomposition in ¥;_; or an one
vertex DH-extension of a split decomposition in ¥;_;. Then by applying Proposition twice, we can

obtain a canonical split decomposition D’ satisfying that

1. D'[V(B)] = D[V (B)],
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2. either D'[V(T3)] = T3 or D'[V(T5)] = T5 * ws, and

3. for each i € {1,2}, ZD, [B, z}] is isomorphic to a split decomposition in \Il;g_l for some unmarked

vertex z] of D' represented by v;.

For each i € {1,2, 3}, let T} be the component of D’\V(B) containing z;, and w; := {,(D’, D'[V(B)], T}).
Note that T7\w} and Tj\w} are contained in ¥} ;. We choose an unmarked vertex z4 that is represented

by v5 in D’. If we apply local complementation at z5 and z5 subsequently in D’, then

1. B is changed to a star with the center vs,

2. T7 is the same as before,

3. Ty is changed to T4 = wh = 25,

4. T3 is changed to T3 = 25 * ws.

Now, we again apply Proposition to D'« 2% = 2}, and obtain a canonical split decomposition D"

satisfying that

L D"[V(B)] = (D' * 23 * 25)[V(B)] and D"[V(T{)] = (D" * 25 * 25)[V(T7)],

2. either D"[V(T4)] = (D’ = 2§ = 25)[V(T4)] or (D' = 25§ = 25)[V (T4)] * w}, and

3. Lp» [B, 23] is isomorphic to a split decomposition in ¥} | for some unmarked vertex z§ of D”

represented by vs.

Let T4 be the component of D"\V(B) containing 23, and wj := ((D”,D"[V(B)],T4). Note that
TY\w4 € W} | and for i € {1,2}, 2/ is still represented by v; in D”.

Now we claim that D” € Uy or D" « 2, € U),. We observe two cases depending on whether
DV(T3)] = (D" z5 % 25)[V(T3)] or (D' = z3 % 25)[V(T5)] * ws.
Case 1. D"[V(T%)] = (D' = 2z} = 25) [V (T3)].

We observe that B is a star with the center vg in D”, and the three components of D"\V(B) are

Ty, Ty = wh = z5, and TY . In this case, D" « 2}, € ¥}, because
1. B is a complete bag in D” * 24, and
2. the three components of D"\V(B) are T} % w, T4 = wh, and T4 = wj,

and each limb of D" « 24 with respect to B are T7\w}, Ty\w}, T4 \w}, which are contained in ¥ _;.

Case 2. D"[V(T3)] = (D' # 2 = 25)[V(T3)] * wh.

We observe that B is a star with the center vy in D”, and the three components of D"\V(B) are
T], T4 % wh « zb = wh, and Ty. We can see that D” € U}, because each limb with respect to B are T7\wj,
To\ws, Ty \wy, which are contained in ¥} _,.

We conclude that G has a vertex-minor isomorphic to D" where D" € U, C ', as required. O

In order to prove that Wy is the set of canonical split decompositions of distance-hereditary vertex-
minor obstructions for linear rank-width at most k, we need to prove that for every D € ¥y, D has linear
rank-width k£ + 1 and its proper vertex-minors have linear rank-width at most k. However, while by

Theorem we know that lrw(f)) > k + 1, it is not true that for all D € Wy, all proper vertex-minors
of D have linear rank-width k. For instance, the canonical split decomposition in Figure is in Uy,
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Figure 6.5: A canonical split decomposition in V.

has linear rank-width 2 but not all proper vertex-minors have linear rank-width 1. Instead we show the

property for canonical split decompositions in ®y.

Proposition 6.23. Let k > 0 and let D € ®y. Then lrw(ﬁ) =k + 1 and every proper vertex-minor of

D has linear rank-width at most k.
To prove Proposition we need some lemmas.
Lemma 6.24. Let D € ®;, and let v be an unmarked vertex in D. Then D v € ®y,.

Proof. We proceed by induction on k. We may assume that k£ > 1. By the construction, there exists
a bag B of D such that the three limbs D;, Do, D3 in D corresponding to the bag B are contained in
Dp_q.

Let Dy, D}, D5 be the three limbs of D = v corresponding to the bag B such that D} and D; came
from the same component of D\V(B). Then by Proposition D} is locally equivalent to D;. So by
the induction hypothesis, D € ®;_1. And D * v is the canonical split decomposition obtained from D)

following the construction of ®;. Therefore, D * v € ®y. [

Proof of Proposition[6.23 By Lemmal[6.24] and Lemma [I.8] it is sufficient to show that if D € &) and v
is an unmarked vertex of D, then ﬁ\v has linear rank-width at most k. We use induction on k to prove
it. We may assume that k > 1. Let B be the bag of D such that D\V(B) has exactly three limbs whose
underlying graphs are contained in ®;_;. Clearly there is no other bag having the same property. Since
B has no unmarked vertices, v is contained in one of the limbs D’, and by induction hypothesis, l/)\’\v
has linear rank-width at most kK — 1. Therefore, by Theorem ﬁ\’U has linear rank-width at most
k. O

One can observe that for two graphs other than Cy in Figure [1], their canonical split decompo-
sitions are contained in ®;. Also, all of the canonical split decompositions of graphs in A are contained
in @ for each k > 1.

We leave an open question to identify a set &, < O, < ¥ that forms the set of canonical split
decompositions of distance-hereditary vertex-minor minimal graphs for the class of graphs of linear rank-
width k.
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Chapter 7. Finding a tree as a vertex-minor

For the path-width of graphs, it is known that for a fixed forest T', every graph of sufficiently large
path-width contains T' as a minor [169, [I3]. For the tree-width of graphs, it is known that for fixed n,
every graph of sufficiently large tree-width contains an n x n-grid graph as a minor [I71].

Oum [150, [154] proved that for a fixed bipartite circle graph H, every bipartite (or line, or circle)
graph of sufficiently large rank-width contains a vertex-minor isomorphic to H. We ask a similar question

for linear rank-width.

Question For a fixed tree T, does every graph of sufficiently large linear rank-width contain a

vertex-minor isomorphic to T ¢

The author [133] showed that if we replace the containment relation with pivot-minor, then this
question becomes false. We remark that there exists a class of trees of unbounded linear rank-width
which do not have a pivot-minor isomorphic to a graph in Figure [133]. However, we still have no
counterexamples for Question (1.3

We show that Question [1.3]is true if it is true for prime graphs. To support this statement, we show

the following.

Theorem 7.1. Let p = 3 be an integer and T be a tree. Let G be a graph such that every prime
induced subgraph of G has linear rank-width at most p. If lrw(G) = 30(p + 4)|V(T)|, then G contains a

vertex-minor isomorphic to T'.

We prove that for fixed p and a graph G whose prime induced subgraphs have linear rank-width at
most p, if G has large linear rank-width, then its split decomposition tree has large path-width. We first
establish a relation between the linear rank-width of a distance-hereditary graph and the path-width of
its split decomposition tree. Next we observe a relation for graphs whose prime induced subgraphs have
bounded linear rank-width. At the last moment, we show that for a fixed tree T, if a graph G admits a

split decomposition tree of sufficiently large path-width, then G contains a vertex-minor isomorphic to
T.

Figure 7.1: This tree is not a pivot-minor of a tree obtained from a tree by replacing each edge with a
path of length 2 [133].
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7.1 Path-width of split decomposition trees

We will observe a relation between the linear rank-width of a distance-hereditary graph and the
path-width of its split decomposition tree. This analysis is natural because path-width on trees and
linear rank-width on distance-hereditary graphs admit similar characterizations.

We prove the following.

Theorem 7.2. Let D be the canonical split decomposition of a connected distance-hereditary graph G.
Let Tp be the split decomposition tree of D. Then %+ pw(Tp) < Irw(G) < pw(Tp) + 1.

For example, every complete graph G with at least two vertices has linear rank-width 1 and the
path-width of its split decomposition tree has path-width 0. For the set A; defined in Chapter [6] and
G € A1, G has linear rank-width 2 and the path-width of its split decomposition tree is 1. We recall the

following lemmas on trees from [85].

Lemma [3.7] (Ellis, Sudborough and Turner [85]; Takahashi, Ueno and Kajitani [I82]). Let k be a positive
integer and let T be a tree. Then pw(T) < k if and only if for each vertex v of T, at most two subtrees
of T\v have path-width k and all the other subtrees of T\v have path-width at most k — 1.

Lemma 7.3 (Ellis, Sudborough and Turner [85]). Let T' be a tree. Let P be a path in T such that
for each vertex v of P and each component T' of T\v having no vertices of P, pw(T') < k — 1. Then
pw(T) < k.

Lemma 7.4 (Ellis, Sudborough and Turner [85]). Let T be a tree such that for each v e V(T), at most
two subtrees of T\v have path-width k and all the other subtrees of T\v have path-width at most k — 1.
Then T has a path P such that for each vertex v of P and a component T' of T\v having no vertices of
P,pw(T") <k—1

We first show the lower bound in Theorem
Lemma 7.5. Let G be a graph and let wv € E(G). Then pw(G) < pw(G/uv) + 1.

Proof. Let w be the contracted vertex from the edge wv in G/uv, and let (P, B) be a path-decomposition
of G/uv having the minimum width. It is not hard to check that a new path-decomposition obtained
by replacing w with u and v in each bag containing w is a path-decomposition of G. We conclude that
pw(G) < pw(G/uv) + 1. O

Lemma 7.6. Let G be a graph. Let u be a vertex of degree 2 in G such that vi,vs are the neighbors of
u in G and vivg ¢ E(G). Then pw(G) < pw(G/uvy /uve) + 1.

Proof. Let w be the contracted vertex from the two edges vy, uve in G/uvi/uve, and let (P,B) be a
path-decomposition of G /uv;/uve having the minimum width pw(G/uv; /uvs). Let t := pw(G/uvy /uvs).
We may assume that every two consecutive bags are not equal.

We first obtain a path-decomposition (P, B’) from (P, B) by replacing w with v; and vs in all bags
containing w. Since every consecutive two bags in (P, B) are not equal, every consecutive two bags in
(P, B") are not equal.

We first assume that there are two adjacent bags By and By in (P, B’) containing both v; and vs,
respectively. We obtain a path-decomposition (P’, B”) from (P, B’) by subdividing between two bags B,
and By with adding a new bag B’ = (B n Bs) U {u}. Since By and By are not same, |B; n Ba| <t +1
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and therefore, |B’| < t + 2. Thus, (P’,B") is a path-decomposition of G' of width at most ¢ + 1, and
pw(G) < pw(G/uvy fuve) + 1.

Now we assume that there are only one bag B in (P,B’) containing both v; and ve. In this
case, since v1vs ¢ E(G), we can obtain a path decomposition of G by replacing this bag B with a
sequence of two bags By and Bs, where By = B\{v2} U {u} and By = B\{v1} u {u}. This implies that
pw(G) < pw(G/uvy fuve) + 1. O

Let D be the canonical split decomposition of a connected distance-hereditary graph G.
Lemma 7.7. pw(Tp) < 2lrw(G).

Proof. We prove by induction on k := Irw(G). If k = 0, then G is an one vertex graph, and pw(Tp) = 0.
If £ = 1, then by Theorem Tp is a path. Therefore, pw(Tp) = 0 or 1, and we have pw(Tp) < 2k.
Thus, we may assume that k > 2.

Since Irw(G) = k > 2, by Theorem and Lemma, there exists a path P = vgvy - - - vpUpa1
in Tp such that for each node v in P and a component C of D\V (bagp(v)) not containing a bag of P,
f(B,C) < k—1. By induction hypothesis, for each corresponding limb L¢ of linear rank-width at moat
k —1, the split decomposition tree 17, of it has path-width at most 2k — 2. We compare the path-width
of T (the split decomposition tree of C) and the path-width of Tr..

We claim that pw(T¢) < 2k — 1. As described in Section when we take a canonical split
decomposition from a limb, if there is a bag having 2 vertices, then we apply one of the following

operations:
1. Removing a bag having exactly one adjacent bag,
2. Removing a bag having exactly two adjacent bags and linking the adjacent bags, or
3. Removing a bag having exactly two adjacent bags and merging the adjacent bags into one bag.

First two cases correspond to contracting at most one edge in view of subtrees of Tp. So, pw(T¢) <
pw(Tr.) +1 < (2k—2) +1 = 2k — 1 by Lemma The last case corresponds to contracting two
incident edges where the middle node has degree 2 and its neighbors are not adjacent. By Lemma [7.6
pw(Te) < pw(TrL.) +1 <2k —1.

Therefore, By Lemma [7.3] T has path-width at most 2k, as required. O

Now, we prove the upper bound part.
Lemma 7.8. Irw(G) < pw(Tp) + 1.

Proof. We prove by induction on k := pw(Tp). If k = 0, then T consists of one node, Irw(G) = 0 or 1.
So, we have Irw(G) < pw(Tp) + 1. We assume that k > 1.

Since pw(Ip) = k, by Lemma for each vertex v of Tp, at most two subtrees of T\v have
path-width & and all the other subtrees of T\v have path-width at most k — 1. Also by Lemma
there exists a path P = vgvy -+ - v,v,41 in Tp such that for each node v in P and a component T of
Tp\v not containing a node of P, pw(T) < k — 1. By induction hypothesis, the graph obtained from
a corresponding canonical split decomposition has linear rank-width at most (k —1) + 1 = k. From
the definition of limbs, we have that for each node v in P and a component T of D\V(bagp(v)) not
containing a bag of P, f(B,T) < k. By Theorem we conclude that lrw(G) < k + 1. O
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Proof of Theorem[7.4 From Lemmas and we conclude that 1 pw(Tp) < Irw(G) < pw(Ip) +
1. O

We could not confirm that the lower bound of Irw(G) is tight. We remain the following as an open

question.

Question 7.9. Let D be the canonical split decomposition of a connected distance-hereditary graph G.
Is it true that pw(Tp) < Irw(G)?

Now we consider graphs whose prime induced subgraphs have bounded linear rank-width. Note
that every prime induced subgraph of a distance-hereditary graph has at most 3 vertices [31]. Thus, the

following can be regarded as a general version of Lemma [7.§

Lemma 7.10. Let p = 3 be an integer. Let G be a graph such that every prime induced subgraph of G
has linear rank-width at most p, and let D be the canonical split decomposition of G. Then lrw(G) <
2p+4)(pw(Tp) +1).

From the condition, it is easy to observe that every prime bag of D has bounded linear rank-width.
A basic strategy to bound linear rank-width is to recursively replace an optimal linear layout of some

bag with linear layouts of subdecompositions branched from this bag.

Proof. We prove by induction on k := pw(Tp). If £ = 0, then Tp consists of one vertex, and by the
assumption, Irw(G) < p < 2(p + 4). We assume that k > 1.

We follow similar steps in the proof of Theorem Since pw(Tp) = k, by Lemma and
Lemma there exists a path P = vgvy - + - 0,0, 41 in Tp such that for each node v in P and a component
T of Tp\v not containing a node of P, pw(T) < k — 1. For each 0 < j < n+ 1, let B; := bagp(v;). For
each 0 < i < n, let b; be a marked vertex of B; and let a;11 be a marked vertex B;,; such that b;a;y1
is the marked edge connecting B; and B;,1. If necessary, by adding unmarked vertices on By and B, 11
which are twins of one of the first or last vertex in the optimal linear layout, we may assume that By
and B, ;1 have unmarked vertices ag and b, in D, respectively, and the linear rank-width of By and
B, 11 are at most p.

In case when n = —1, let Dg := D. If n > 0, then we define the following subdecompositions.
1. Let Dy be the component of D\V(B;) containing the bag By.
2. Let D, 41 be the component of D\V(B,,) containing the bag By, ;1.
3. For each 1 < i < n, let D; be the component of D\(V(B;_1) u V(B;4+1)) containing the bag B;.

Notice that the vertices a; and b; are unmarked vertices in D;

We claim that for each i € {0,1,...,n + 1}, D; has a linear layout of width at most 2p+4)(k+1)
whose first and last vertices are a; and b;, respectively. Let i € {0,1,...,n+1} and let D’ be a component
of DAV (B;). Since pw(Tp/) < k—1, by induction hypothesis, D’ has linear rank-width at most 2(p+4)k,
and in particular, the graph ﬁ’\ct(D, B;, D') has linear rank-width at most 2(p + 4)k.

By the assumption the bag B; has linear rank-width at most p. Since the rank of any matrix can

be increased by at most 2 when we move one element in the column indices (or the row indices) to the
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row indices (or the column indices, respectively), B; admits a linear layout of width at most p + 4 whose

first and last vertices are a; and b;, respectively. Let
Lp, = (wi,ws,...,wy)

be a linear layout of B; of width at most p + 4 whose first and last vertices are a; and b;, respectively.

Foreach 1 < j <m,
1. if w; is an unmarked vertex, then let L(w;) := (w;), and

2. if w; is a marked vertex adjacent to a vertex of a component of D;\V'(B;), say Dy, then let L(w;)
be the optimal linear layout of ﬁ;\Q(D, Bi, Dy, ).

Since each Ty, has path-width at most k — 1, the width of L(wj;) is at most 2(p 4 4)k. We define that
L; := L(wy) ® L(wy) - - - ® L(w,)-

We claim that L; has width at most 2(p + 4)(k + 1). It is sufficient to prove that for every w €
V(Di)\{ai.bi}, pg,({v - v <p, w}) < 2(p+4)(k+1). For each w € V(D;)\{as, bi}, let S,y 1= {v 1 v <p, w}
and T, := V(l/)\i)\Sw. We fix 2 < j <m — 1. If w; is an unmarked vertex of the bag B;, then clearly,

p5, (Sw,;) = pp,({v:v <L, w;i}) <p+4

i

by the assumption. Thus, we may assume that w; ¢ V(B;).

From the assumption we have the following.
L 9% (Su;, T, \V(Duy)) < minfpp, ({v 2 v <z, w5}) o, ({020 <z, wjma))} <p+4,
2. p (S, \V(Du,). To,) < min{pp, ({0 v g, w;)). o, ({020 g, wj1})} <p+4,
8. P (Su, 0 V(Du,), Tw, 0 V(Dy,)) < 2(p + 4)k.

Therefore,

Pp, (Swj)
< % (Suy T, \V(Day)) + 95 (S, \V (D), Tu) + P (S, 0 V(Day), Ty 2 V(D)

<2(p+4)+2(p+ Dk <2(p+4)(k+1).

We show that D; has a linear layout L; of width 2(p + 4)(k + 1) whose first and last vertices are
a; and b;, respectively. For each i, let L’ be the linear layout obtained from L; by removing a; and b;.
Then it is not hard to check that

(a0) ®LG® - DL 1 @ (byt1)

is a linear layout of G having width at most 2(p+4)(k+1). We conclude that lrw(G) < 2(p+4)(pw(Tp)+
1). O

7.2 Containing a tree as a vertex-minor

Now we prove Theorem[7.IJusing Lemma[7.10] Let G be a graph where every prime induced subgraph
has linear rank-width at most p. We first prove that if G has sufficiently large linear rank-width, then
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the split decomposition tree of the canonical split decomposition of G has large path-width, by applying
Lemma [7.10] Then this tree must contain a subdivision of a complete binary tree as a subgraph by
Theorem [3.13] We take a corresponding decomposition from the canonical split decomposition of G.
The next step is to replace each prime bag with some canonical split decomposition that consists of only

complete bags or star bags by removing some vertices and applying local complementations such that
e the new split decomposition tree is still a subdivision of the same complete binary tree.

In the last step, we modify to obtain a canonical split decomposition of trees. For this, we will use the

Bouchet’s characterization of trees in terms of canonical split decompositions in Theorem [5.2}

We first prove some lemmas to reduce general trees into subcubic trees. For a tree T', we denote by
¢(T) the sum of the degrees of vertices of T whose degree is at least 4. Note that for every subcubic tree
T, ¢(T) = 0.

Lemma 7.11. Let k be a positive integer and let T be a tree with ¢(T) = k. Then T is a vertex-minor
of a tree T" with ¢(T") =k — 1 and |V(T")| = |V(T)| + 2.

Proof. Since ¢(T) = 1, T has a vertex of degree at least 4. Let v € V(T) be a vertex of degree at least
4, and vy, v9,...,v,, be the neighbors of v. We obtain T’ from T by replacing v with a path vpips
and adding edges between v and vz, vy, ..., vy, and between py and wvi,ve. It is easy to verify that
T’ A p1p2\p1\p2 = T. Because p; and ps are vertices of degree at most 3 in 7", and the degree of v in 7"
is one less than the degree of v in T, we have ¢(T) = k — 1. O

Lemma 7.12. Let T be a tree. Then T is a vertez-minor of a subcubic tree T' with |V (T")| < 5|V (T)].

Proof. By Lemma T is a vertex-minor of a subcubic tree T with |V (T7)| < |V(T')| + 2¢(T). Since
&(T) < 2|E(T)| < 2|V(T)|, we conclude that |V(T")| < |V(T)| + 26(T) < 5|V(T)|. O

For a tree T, let n(T) be the tree obtained from T by replacing each edge with a path of length 3.
We recall a characterization of trees in Theorem that a connected graph is a tree if and only if each

bag of its canonical split decomposition is a star bag whose center is an unmarked vertex.

We now prove two lemmas which tell how to modify the canonical split decompositions.

Lemma 7.13. Let D be a split decomposition obtained from a path of bags B1 B B3 By by attaching two
bags Bs and Bg on By such that each bag B; consists of exactly three vertices, and By, By, B3 are star
bags whose centers are unmarked vertices. Let vy, wq be the two marked vertices in By adjacent to a
vertex of Bs and Bg, respectively. Then D has a vertez-minor whose canonical split decomposition is D’

where
1. Tp: is a star whose center is By, and the leaves are By, Bs, Bg,
2. forie{l,5,6}, B; = D'[V(B;)], and
3. |[V(By4)| =4 and By is a star bag whose center is an unmarked vertex other than vy and wy.

Proof. By applying local complementations at some vertices in By or Bg, we may assume that By is a
star bag, and without loss of generality, we assume that v, is the center of By.
Let vy and vs be the unmarked vertices of By and Bs, respectively. Consider D A vavz\vs. The bag

Bjs can be shrunk by recomposing in D A vavs\vs and the marked edge connecting By and By becomes a
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marked edge of type S.S,. By Theorem it is not a canonical split decomposition, and by recomposing
this marked edge of type S.S5,, we obtain a canonical split decomposition where B, contains v as a leaf
which is unmarked. By pivoting v with an unmarked vertex represented by wvy4, v2 becomes the center

of By as required. O

Lemma 7.14. Let k be a positive integer and T be a subcubic tree. Let D be the canonical split decom-
position of a connected distance-hereditary graph whose split decomposition tree Tp is isomorphic to a
subdivision of n(T) and each bag of D consists of exactly 3 vertices. Then D contains a vertex-minor D’

where Tp: is isomorphic to a subdivision of T and for each bag B of D',
1. B is a star bag,
2. if B is a leaf bag or a bag having 2 adjacent bags, then |V (B)| = 3,

3. if B is a bag having 3 adjacent bags, then |V (B)| = 4. (that is, the center of B is an unmarked

vertez, and the other vertices of B are marked vertices.)

Proof. We choose a leaf bag R in D and call it the root. By applying a local complementation if necessary,
we may assume that R is a star bag whose center is an unmarked vertex. From the root to bottom, we
do the following two procedures recursively to obtain the required decomposition D’. Let B be a bag
that is not chosen before. Note that B has at most 3 adjacent bags. We may assume that the parent
bag of B is a star bag whose center is an unmarked vertex.

Suppose that B is a bag having 2 adjacent bags. Let ¢ be the unmarked vertex of B and let y be a
vertex represented by a vertex of B that belongs to a descendant bag of B. Since the parent bag of B
is already a star bag and whose center is an unmarked vertex, B is either a complete bag or a star bag
where c is not linked to a vertex of the parent bag. If it is a complete bag, then we modify it into a star
bag by applying local complementation at c. If it is a star bag, we pivot cy to turn this bag into a star
bag whose center is c.

Now suppose that B is a bag having 3 adjacent bags. Since Tp is isomorphic to a subdivision of n(T),
there are at least 2 ancestor bags above B, which are already processed. Therefore, using Lemma [7.13]
we can modify it into a star bag of size 4 by shrinking the two ancestor bags, where its center is an
unmarked vertex.

If we do this procedure recursively, we finally obtain the canonical split decomposition satisfying
the condition. O

Now we introduce lemmas which tells how to replace each prime bag with some canonical split

decomposition that consists of complete bags or star bags.

Lemma 7.15. Let D be the canonical split decomposition of a connected distance-hereditary graph and
let B be a prime bag of D such that D\V (B) has two components Ty, T and for each i € {1,2}, the bag
containing (t(D, B, T;) is either a star bag whose leaf is ¢:(D, B,T;) or a prime bag. Then by applying
local complementations at vertices and deleting vertices in B, we can transform D into a canonical split

decomposition D' such that
1. B is transformed to a complete bag of size 3 in D',

2. for every bag B’ in D other than B, D'[V(B)] is a bag of D', and
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3. the types of adjacent bags of B in D' are the same as in D.

Proof. For each i € {1,2}, let v; := ((D,B,T;), and let B; be the adjacent bag of B containing
¢:(D,B,T;). Since B is prime, there exists a path from v; to vy except a possible edge vivy. We
take a shortest one among those paths, and say P. Then by applying local complementations at internal
vertices of P, we can shrink it into a path of length exactly 2, without changing the types of adjacent
bags. Finally, by applying local complementation at the middle vertex of the path of length 2, we can
create the edge vivs if not exists. Therefore, by removing all other vertices in B except the vertices of
the path of length 2, we can turn B into a star bag of size 3 whose center is an unmarked vertex. Since

each marked edge connecting B and B; is of type K S, or K P, it is not recomposable. O

Lemma 7.16. Let D be the canonical split decomposition of a connected distance-hereditary graph and
let B be a prime bag of D such that D\V (B) has one components Ty and bag containing (;(D, B, T)
is either a star bag whose leaf is (D, B,T1) or a prime bag. Then by applying local complementations
at vertices and deleting vertices in B, we can transform D into a canonical split decomposition D’ such
that

1. B is transformed to a complete bag of size 3 in D',
2. for every bag B’ in D other than B, D'[V(B)] is a bag of D', and
3. the types of adjacent bags of B in D' are the same as in D.

Proof. We choose any vertex vy other than the vertex (,(D,B,T1). Then by the same argument in

Lemma [7.15] we can turn B into a star bag of size 3 whose center is an unmarked vertex. O

Lemma 7.17. Let D be the canonical split decomposition of a connected distance-hereditary graph and
let B be a prime bag of D such that D\V (B) has three components Ty, T, T3, and for each i € {1,2, 3}, the
bag containing (D, B,T;) is either a star bag whose leaf is (¢(D, B, T;) or a prime bag. Then by applying
local complementations at vertices and deleting vertices in B, we can transform D into a canonical split

decomposition D' such that
1. for every bag B' in D other than B, D'[V(B)] is a bag of D', and
2. the types of adjacent bags of B in D' are the same as in D, and

3. B is transformed into a split decomposition Dp whose split decomposition tree is a star with at
most 3 leaves where its center corresponds to a complete bag of size 3 and its leaves correspond to
star bags of size 3 whose centers are unmarked vertices, and a leaf of a star bag or a verter of a

complete bag is adjacent to a vertex of one of T;.

Proof. For each i € {1,2,3}, let v; := ((D,B,T;) and let B; be the adjacent bag of B containing
¢:(D, B,T;). We take a minimal induced subgraph B’ of B containing vy, v and vs. It is not hard to

observe that B’ is one of the following:

1. There exist a vertex ¢ in B’ and three internally vertex-disjoint paths P; from ¢ to each v; such
that V(B') = J,<;<3 V(P) and E(B') = |, <;<3 E(5)-

2. There exist a triangle cicocs in B’ and three vertex-disjoint paths P; from ¢; to each v; such that
V(B') = Uicics V(1) and E(B') = (U i3 E(P2)) U {c1c2, c2c3, 31}
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In both cases, we may assume that each P; has length at most 1, by applying local complementation
at internal vertices of P; and taking a shorter path. Note that we did not yet remove vertices and the

modified bag is still prime. We analyze each case, separately.

Case 1. There exist a vertez c in B’ and three internally vertex-disjoint paths P; from ¢ to each v;.

If ¢ ¢ {v1,v2,v3}, then B’ is exactly isomorphic to K7 3, and it is enough to remain this subgraph
by removing all other vertices. Without loss of generality, we may assume that ¢ = v;. Note that vs, v3
are the neighbors of v; in B and vev3 ¢ E(B). Since B is prime, it is 2-connected and there exists a path
P’ from vy to vz in B\vi;. We assume that P’ is a shortest path among those paths. By applying local
complementations at internal vertices of P’, we can create an edge between ve and vz so that {vy,ve,v3}
forms a triangle. Then by removing all vertices except vi,vs2,v3, we can turn B into a complete bag.

Since each marked edge connecting B and B; is of type K5, or K P, it is not recomposable.

Case 2. There exist a triangle cicacs in B’ and three vertex-disjoint paths P; from c; to each v;.

In this case, we just replace B with the canonical split decomposition of B’. Note that a split
decomposition tree of B’ is a star where the bag corresponding to the center of the star is a complete
bag of size 3, say q1¢2q3, and for each 1 < ¢ < 3, the canonical split decomposition of B’ possibly has at

most one neighbor star bag @Q; of size 3 where t; is adjacent to a leaf of @Q;, and
1. if Q); exists, then v; is the other leaf of @;,
2. if Q; does not exist, then t; = v;,

So, the canonical split decomposition obtained by replacing B with the canonical split decomposition of

B’ is a required decomposition. O

Now we prove the main result.

Proof of Theorem[7.1} Let t := |V(T)| and suppose that lrw(G) > 30(p + 4)¢t. By Lemma there
exists a subcubic tree T such that T is a vertex-minor of 7" and |V (T")| < 5t. Note that |V (n(T"))| < 15t¢.
Since Irw(G) = 30(p + 4)t, by Lemma pw(Tp) = 15t — 1. Since |V(n(T"))| < 15¢, from
Theorem Tp contains a minor isomorphic to n(T"). Since the maximum degree of n(7”) is 3, Tp
contains a subgraph isomorphic to a subdivision of n(7”).
Let D’ be the subdecomposition of D whose split decomposition tree is isomorphic to the subdivision
of n(T"). We first describe how to take a vertex-minor D” of D’ whose split decomposition tree is also

isomorphic to a subdivision of n(T"), and D" is distance-hereditary.

Suppose that B is a prime bag of D’. Note that B contains 1, 2 or 3 marked vertices because the
split decomposition tree of D’ is isomorphic to a subdivision of n(7”). Let B’ be a adjacent bag of B,
and let v be the marked vertex in B that is adjacent to a vertex of B’. If B’ is a star bag, then by
pivoting with some unmarked vertex in B and an unmarked vertex linked to it on the side of B’, we
can turn B’ into a star bag whose leaf is adjacent to v. If B’ is a complete bag, then by applying local
complementation at the outside of B, we can turn B’ into a star bag whose leaf is adjacent to v. This
local complementation may affect some other adjacent bags of B, but for every adjacent bag that is
already a star bag whose leaf is adjacent to B, is not changed by this local complementation. Therefore,
by doing these procedures, we may assume that each adjacent bag of B is either a prime bag, or a star

bag whose leaf is adjacent to a vertex of B.
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Let T1,T5,T5 be three components of D'\V(B). Since for each i € {1,2,3}, the bag containing
¢:(D', B, T;) is either a star bag whose leaf is (;(D’, B,T;) or a prime bag, by Lemmas and
we can transform D’ into a canonical split decomposition D” by applying local complementations

at vertices and deleting vertices in B such that
1. for every bag B’ in D’ other than B, D”[V(B)] is a bag of D", and
2. the types of adjacent bags of B in D" are the same as in D, and

3. B is transformed into a split decomposition Dp whose split decomposition tree is a star with at
most 3 leaves where its center corresponds to a complete bag of size 3 and its leaves correspond to
star bags of size 3 whose centers are unmarked vertices, and a leaf of a star bag or a vertex of a

complete bag is adjacent to a vertex of one of Tj.

So, the new canonical split decomposition has a split decomposition tree isomorphic to a subdivision of

n(T"), as required.

Now we prove that we can obtain a tree T' from the canonical split decomposition D” of a distance-
hereditary graph whose split decomposition tree is isomorphic to a subdivision of n(T”). If a leaf bag
has at least three unmarked vertices, by removing unmarked vertices, we may assume that every leaf
bag contains exactly 3 vertices. If a bag having 2 adjacent bags contains at least two unmarked vertices,
by removing unmarked vertices, we may assume that it contains exactly 3 vertices. If a bag having 3
adjacent bags contains a center x of a star that is an unmarked vertex, we apply local complementation
at z and remove it. And, if a bag having 3 adjacent bags still has at least two unmarked vertices, by
removing unmarked vertices, we may assume that it contains exactly 3 vertices. So, we may assume that
every bag of D” consists of exactly 3 vertices. Note that T~ is not changed.

Since Tp~ is isomorphic to a subdivision of n(7T") and each bag of D" consists of exactly 3 vertices,
by Lemma D" contains a vertex-minor D" where T~ is isomorphic to a subdivision of 7”7 and for
each bag B of D",

1. B is a star bag,
2. if B is a leaf bag or a bag having 2 adjacent bags, then |V(B)| = 3,
3. if B is a bag having 3 adjacent bags, then |V(B)| = 4.

By Theorem D" is a split decomposition of a tree, and in fact, it is not hard to observe that D"
has an induced subgraph isomorphic to T” by removing some unmarked vertices in leaf bags. Since T is

a vertex-minor of T”, we conclude that G contains a vertex-minor isomorphic to 7. O
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Chapter 8. Unavoidable vertex-minors in large

prime graphs

In this chapter, we investigate a Ramsey type theorem on prime graphs. We recall that prime graphs
G have no vertex partitions (A, B) with |A|,|B| = 2 and pf(A) < 1. The main theorem of this chapter

is the following.

Theorem 8.1. For every n, there is N such that every prime graph on at least N vertices has a vertex-

minor isomorphic to C, or K, H K, .

Ramsey’s theorem [I61] states that for every n, there exists N such that every graph on at least N
vertices contains an induced subgraph isomorphic to K, or K,,. There are several variants of Ramsey’s
theorem with some given connectivity conditions. For instance, if a given graph is connected, then
we may expect structures more than K, because K, is not connected. It is known that every large
connected graph contains an induced subgraph isomorphic to either K,, K, or P, [76]. We point out

some variants of Ramsey’s theorem in this direction.

e (folklore; see Diestel’s book [76, Proposition 9.4.1])
For every n, there exists IV such that every connected graph on at least N vertices contains an
induced subgraph isomorphic to K,,, K1y, or P,.

e (folklore; see Diestel’s book [76, Proposition 9.4.2])
For every n, there exists IV such that every 2-connected graph on at least IV vertices contains a
topological minor isomorphic to C,, or K ,.

e (Oporowski, Oxley, and Thomas [149])
For every n, there exists N such that every 3-connected graph on at least IV vertices contains a
minor isomorphic to the wheel graph W,, on n vertices or K3 ,,.

e (Ding, Chen [78])

For every integer n, there exists N such that every connected and co-connected graph on at least
N vertices contains an induced subgraph isomorphic to P, K7, (the graph obtained from K,
by subdividing one edge once), Ks ,\e, or Ky ,/e\f\g where {f, g} is a matching in K5, /e, or one

of their complements. A graph is co-connected if its complement graph is connected.

e (Chun, Ding, Oporowski, and Vertigan [53])

For every integer n > 5, there exists N such that every internally 4-connected graph on at least
N vertices contains a parallel minor isomorphic to K, Kz’;,n (K4, with a complete graph on the
vertices of degree n), T'F,, (the m-partition triple fan with a complete graph on the vertices of
degree n), D, (the n-spoke double wheel), D! (the n-spoke double wheel with axle), M, (the
(2n + 1)-rung Mobius zigzag ladder), or Z,, (the (2n)-rung zigzag ladder).
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These theorems commonly state that every sufficiently large graph having certain connectivity con-
tains at least one graph in the list of unavoidable graphs by certain graph containment relation. Moreover
in each theorem, the list of unavoidable graphs is optimal in the sense that each unavoidable graph in the
list has the required connectivity, can be made arbitrary large, and does not contain other unavoidable
graphs in the list.

Theorem is a first non-trivial variant of Ramsey’s theorem on the vertex-minor relation. The

proof of Theorem [8.1] consists of the following steps.

1. We first prove that for each n, there exists N such that every prime graph having an induced path

of length NV contains a vertex-minor isomorphic to C,,. (In fact, we prove that N = [6.75n7].)

2. Secondly, we prove that for each n, there exists IV such that every prime graph on at least IV

vertices contains a vertex-minor isomorphic to P, or K, 3 K,.

To prove (1), we actually prove first that every sufficiently large generalized ladder, a certain type of
outerplanar graphs, contains C,, as a vertex-minor. This will be shown in Section [8.3] Then, we use
the technique of blocking sequences developed by Geelen [102] to construct a large generalized ladder
in a prime graph having a sufficiently long induced path, shown in Section [8.4l Blocking sequences will
be discussed and developed in Section The second part (2) is discussed in Section where we
iteratively use Ramsey’s theorem to find a bigger configuration called a broom inside a graph.

We write R(n1,na,...,nk) to denote the minimum number N such that in every k coloring of the
edges of Ky, there exist ¢ and a clique of size n; whose edges are all colored with the i-th color. Such a
number exists by Ramsey’s theorem [I61].

We introduce three classes of graphs which are frequently used in this chapter.

Constructions of graphs

For two graphs G and H on the same set of n vertices, we would like to introduce operations to
construct graphs on 2n vertices by making the disjoint union of them and adding some edges between
two graphs. Roughly speaking, G = H will add a perfect matching, G [x] H will add the complement of
a perfect matching, and G 1 H will add a bipartite chain graph. Formally, for two graphs G and H on
{v1,v2,...,0,}, let GEIH, GX H, GIN H be graphs on {vi,vi,... v, v% v3 ... v2} such that for all
1,7€{1,2,...,n},

1. vjvl € E(GEH) if and only if v;v; € E(G),

L
J

2
2. viv

SN

€ E(GEH) if and only if v;u; € E(H),

<o

€ E(GHH) if and only if i = j,

€ E(GX H) if and only if v;v; € E(G),

[ Sy

<o

€ E(GX H) if and only if v;v; € E(H),

€ E(GX H) if and only if ¢ # j,

Sho

e E(GIWH) if and only if v;v; € E(GQ),

(S

ST

e E(GIWH) if and only if v;u; € E(H),

©
<
S

.’UJZGE(GZH) if and only if 7 > j.
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Figure 8.1: K5 3 K5, K5 X K5, and K5 [J Ks.

See Figurefor Ks B K5, Ks X K5, and Ks 1 K.

We will use the following lemmas.
Lemma 8.2. Let n = 3 be an integer.
1. K, ¥ K,, has a vertez-minor isomorphic to K,_1BE Kp_1.
2. K, XK, has a vertez-minor isomorphic to K,_o 3 K,_o.

Proof. (1) Let V(K,,) = V(K,) = {v; : 1 <i < n}. The graph (K,, x| K,,) * v1 = v?\v{\v? is isomorphic
to K,,_1 B K,—1.

(2) Let V(K,,) = {v1,v2,...,v,}. The graph (K, X K,,) * v{\vi\v? is isomorphic to K,,_1 5 K, _1.
By (1), K, X K, has a vertex-minor isomorphic to K, o H K, _». O

Lemma 8.3. Let n be a positive integer.
1. The graph K, [ K,, is pivot-equivalent to Py, .
2. The graph K, N K,, is locally equivalent to Ps,.

Proof. (1) Let P = p1ps...p2,. We can check that K, [1K,, can be obtained from P by pivoting p;pi;1
forallt=1,3,...,2n — 1.

(2) Let V( n) = V(K,) = {vi,va,...,v,}. Since (K, 1 K,,) *v? is isomorphic to K,, 1 K,,, the
result follows from (1). O

Before going to prove Theorem we first observe similar theorems of this type on vertex-minors

with respect to less restrictive connectivity requirements in Section

8.1 Ramsey type theorems on vertex-minors with less connec-
tivity
We present three simple statements on unavoidable vertex-minors.

Theorem 8.4. 1. For every n, there exists N such that every graph on at least N wertices has a

vertexr-minor isomorphic to K,.

2. For everyn, there exists N such that every connected graph having at least N vertices has a vertex-

minor isomorphic to K.

3. For every n, there exists N such that every graph having at least N edges has a vertex-minor
isomorphic to K,, or K, B K,.
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Proof. (1) If a graph has no K, as a vertex-minor, then it has no vertex-minor isomorphic to K, 1. So
we can take N = R(n,n + 1).

(2) Let us assume that G has no vertex-minor isomorphic to K,. Then the maximum degree of
G is less than A = R(n — 1,n — 1) by Ramsey theorem. If |V(G)| is big enough, then it contains an
induced path P of length 2n — 3 because the maximum degree is bounded. By Lemma [8.3] Ps,_» has a
vertex-minor isomorphic to K ,—1, that is locally equivalent to K,,.

(3) Let G be a graph having no vertex-minor isomorphic to K,, or K, H K,. Each component of G
has bounded number of vertices, say M, by (2). Since K,, [ K, is not a vertex-minor of G, G has less
than n non-trivial components. (A component is trivial if it has no edges.) So G has at most (1\24 )(n—1)

edges. O

These theorems together with Theorem can be restated with the concept of vertex-minor ideals.
A set I of graphs is called a vertez-minor ideal if for all G € I, all graphs isomorphic to a vertex-minor

of G are also contained in I. This formulation allows us to appreciate why these theorems are optimal.

Corollary 8.5. Let I be a vertex-minor ideal.

(1) (Theorem M) Graphs in I have bounded number of vertices if and only if {K, :n >3} & I.
(2) (Theorem|8.4]) Connected graphs in I have bounded number of vertices if and only if {K,, : n > 3} & I.

(3) (Theorem Graphs in I have bounded number of edges if and only if {K, : n = 3} & I and
{(K,BK,:n>1} ¢ I.

(4) (Theorem Prime graphs in I have bounded number of vertices if and only if {Cp, :n >3} € I
and {K, B K, :n>3} £ 1.

8.2 Short blocking sequences

We will use blocking sequences to investigate vertex-minors. We first recall the definition of blocking
sequences, introduced by Geelen [102].
A sequence v1,vs, ..., Uy (Mm = 1) is called a blocking sequence of a pair (A, B) of disjoint subsets

A, BofV(G) if

(a) p&(A, B u{un}) > pi(A B),

(b) p&(Au{v}, Bu{vig}) > p&(A,B) foralli=1,2,...,m—1,
(©) p&(Av{om}, B) > p5 (A, B),

(d) no proper subsequence of v1,...,v,, satisfies (a), (b), and (c).

The following proposition allows us to change the graph to reduce the length of a blocking sequence.
This was pointed out by Geelen [private communication with Oum, 2005]. A special case of the following

proposition is presented in [153].

Proposition 8.6. Let G be a graph and A, B be disjoint subsets of V(G). Let vy, va, ..., vy be a blocking
sequence for (A,B) in G. Let 1 <i < m.
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o Ifm > 1, then p§,, (A, B) = p§(A, B) and a sequence
V1,02, ey Vi1, Vid 1y -« - s Uy
obtained by removing v; from the blocking sequence is a blocking sequence for (A, B) in G * v;.
o Ifm =1, then pf,,. (A, B) = p§(A, B) + 1.

Proof. Let k = pf(A,B) and H = G * v;.
If m =1, then by Lemma 2.4

p5 (A, B) + pi(A, B) = pi(A U {01}, B) + p(A, B U {v1}) — 1 > 2k + 1

and therefore p¥, (A, B) = k + 1. Since p};(A4,B) < pj;(A,B U {v1}) = p&(A, B u{vi}) < k+1, we
deduce that pi(A,B) =k+1ifm =1

Now we assume that m # 1. First it is easy to observe that p¥ (X,Y) < p&(X,Y U {v;}) and
P (X,Y) < p&(X U {v;},Y) whenever X, Y are disjoint subsets of V(G)\{v;}, because the local com-
plementation does not change the cut-rank function of G[X UY U {v;}]. This with Lemma implies
that

e p}(AB) <k,

o ph(Au{v;},B) <kforall je{l,2,...,m}\{i — 1,m},

pi(Au{vi1},B) <kifi+#1,m.

pi (A, B u{v;}) <kforall je{1,2,...,m}\{1,7+ 1}.

P (A, Buivi}) <kifi#1,m.
o pi(Au{v;},Bu{v}) <kforall jle{l,2,... mj\{i} with{—j > 1, unless j+1=i=¢—1.

Let B’ = B u{v;11} if i <m and B’ = B otherwise. Then p} (A U {v;}, B’) = k+ 1 and p{ (A, B’) = k.
(1) We claim that if i > 1, then p% (A, B U {v1}) > k. By Lemma [2.4]

p}i[(A,B/ Y {vl}) + pZ‘(AvB/) = pg(A,B/ Y {vl’vi}) + pZ‘(A Y {vi}aB/) - 1a

and therefore we deduce that p§ (4, B’ U {v1}) = p&(A, B' U {v1,v;}) > k. By Lemma[2.2} p¥ (A, B' U
{vi}) + P (A, B U {n}) = pi (A, B" U {v1,v;}) + pf; (A, B) > 2k. We deduce that p}; (A, B U {vi}) > k
because p¥; (A, B' U {v;}) = p&(A, B' U {v;}) = k by Lemma 2.5

(2) By (1) and symmetry between A and B, if ¢ < m, then p¥ (A U {v,,}, B) > k.

Then we deduce that p}; (A, B) > k and therefore p}; (A, B) = k.

(3) We claim that if j < i — 1, then p¥,(A U {v;}, B U {vj41}) > k. By Lemma [2.4]

pr(A v v}, B u{vja}) + p6(A v {v}, BY)
2p5(A v {v}, B' o {vjn,0i}) + p (A v {v, 0}, BY) — 1> 2k,

and therefore p§ (Au{v;}, B'U{vj41}) > k. By Lemmal2.2] p¥ (Au{v;}, Bu{vj1})+pi(Au{v;}, B') =
pE(A U {v;}, B U {vj11}) + pi (A U {v;},B) > 2k. Note that p% (A U {v;},B) = p§(A,B) = k.
Since p§ (A U {v;},B') < p5(A U {v;},B" U {v}) = p&(A U {v;}, B’ U {v;}) < k, we deduce that
Pi(Au{v}, Bu{vjia}) > k.

(4) By symmetry, we deduce from (3) that if ¢ < j < m, then p¥% (AU {v;}, B U {vj41}) > k.

— 87 —



(5) We claim that p3;(A U {v;_1}, B’) > k. By Lemma

pi (AU {vii}, B) + pG(A U {via}, BY)
> pa(Au vz}, B u{v}) + p&(Au {vi1,v}, B) — 1> 2k.

Since p& (A U {vi—1}, B') = k, we have p§ (A v {vi_1},B') > k.
This completes the proof of the lemma that vy, ve,...,v;-1,vi41,..., vy is a blocking sequence of
(A,B) in G = v;. O

Corollary 8.7. Let G be a graph and A, B be disjoint subsets of V(G). Let vy,va,..., vy be a blocking
sequence for (A, B) in G. Let 1 <i < m. Suppose that v; has a neighbor w in A U B.

o If m > 1, then pf, ., (A, B) = p&(A, B) and the sequence v1,va, ..., Vi—1,Vit1,...,Vm obtained

by removing v; from the blocking sequence is a blocking sequence for (A, B) in G A v;w.
o Ifm=1, then pf,, (A B) = p&(A,B) + 1.

Proof. Tt follows easily from the facts that G A v;w = G * w * v; *w and p&(X,Y) = p¥,., (X,Y) for all
graphs G withwe X uY. O

Corollary 8.8. Let G be a graph and A, B be disjoint subsets of V(G). Let vy,va, ..., vy be a blocking

sequence for (A, B) in G. Let 1 <i < 'm. Suppose that v; and vy are adjacent and i < 7.

o Ifm > 2, thenpg,,, ., (A, B) = p(A, B) and the sequence v1,v2, ..., Vi—1,Vit1, s Vir—1, Vit 1, - -, Um
obtained by removing v; and vy from the blocking sequence is a blocking sequence for (A, B) in

G A vvg.
o Ifm =2, then p§,,, . (A, B) = p&(A, B) + 1.

Proof. If v; has a neighbor w in A U B, then G A v;v;y = G A v;w A wvy and this corollary follows from
Corollary So we may assume that v; has no neighbors in A U B and similarly v;; has no neighbors
in Au B. Thus 4,7 ¢ {1,m} and m > 4.

Since v; and vy are adjacent, we may assume that i’ = i+ 1. Let H = G Av;vi4q and k = pf (A, B).
Since v; and v;41 have no neighbors in A u B, p¥;(4, B) = k.

Then vy,vs,...,v; is a blocking sequence for (A, B u {v;11}) in G by Lemma Similarly
Vit1,Vit2,- .-, Um 18 & blocking sequence for (A U {v;}, B) in G.

By Corollary V1,2, ..,0;—1 is a blocking sequence for (A, B U {v;+1}) in H. Then p% (A, B v
{v1}) = p3 (A, B U {v1,vi+1}) > k, because v;11 has no neighbors of H in A.

For 1 < j <i—1, p§(Au{v},Bu{vjq}) + pi(Au{v},Bou{vigi}) = pi(A o {v;},Bu
{vj11,vi41}) + pi (AU {v;}, B) > 2k and therefore

P40 {0y}, B U {v;1)) > &

because p¥; (A U {v;}, B) < pi (AU {v;}, Bu {vit1}) < k.

Similarly v;12,v;i43,...,0n is a blocking sequence for (A u {v;}, B) in H. By symmetry, we deduce
that p¥, (AU {vy},B) > k and p¥; (AU {v;},Bu{vjp1}) > kforalli+ 1 <j<m.

We now claim that p¥; (A U {vi—1}, B U {vi42}) > k. By Lemma

P (Au{viia}, Bu{vite}) + pi (AU {viga}, B U {viga})
= pi (AU {vi—1,vig1}, B U {viga}) + p5 (A, B U {vif2}).
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Since v;41 has no neighbors in Au B, we have p}; (AU {vit1}, Bu{vise}) = p&(Au v}, Bu{vige}) =k
and p¥ (A, B U {vit2}) = p&(A, B U {vi42}) = k. Therefore

Pi(A U {vii1}, Bui{viga}) = pi(A U {vim1,viga ), B U {viga}).

Pir (AU {vie1,viva}, B U {viga}) + pG(A U {vim}, B U {vi41, viga})

> pt(A U {vimi}, B {vi,vig1,vig2}) + pE(A U {vim1, v, vi01}, B U {vig2}) — 1.

By Lemma pa(Au{vi_1,vi,vi41}, Bu{vige}) > kand pf (Au{vi—1}, Bu{viy1,vi42}) = k. Therefore
P (Au{viei}, Bu{vita}) = pl(Au{vi1,vip1}, Bu{vige}) = pG(Au{viei}, BU{vi, vi1,vige}) > k.
This proves the claim.

So far we have shown that the sequence vy, v, ..., v;-1,V42,..., 0, satisfies (a), (b), (c) of the
definition of blocking sequences. It remains to show (d). For j € {2,3,...,m}\{i,i+1}, p¥ (A, Bu{v;}) =
p&(A, B U {v;}) = k because v; and v; 41 have no neighbors in A U B. Similarly pf,(A U {v;},B) =
pE(Au v}, B) =k for j e {1,2,...,m — 1}\{i,i + 1}. For j,£ € {1,2,...,m}\{5,7 + 1} with £ — j >
1, either p&(A U {v;}, B U {vg,vi,vi41}) = k or p&(A U {vj,vi,vig1}, B U {ve}) = k and therefore
pi(Au{v;}, Bu{uv}) <k, unless j =i—1and £ =i + 2. This completes the proof. O

We will now prove that without loss of generality, a blocking sequence for (A, B) is short by applying

local complementation while keeping the subgraph induced on A U B.

Proposition 8.9. Let G be a prime graph and let A, B be disjoint subsets of V(G) with |A|,|B| = 2.
Suppose that there exist two nonempty sets Ag € A and By S B such that the set of all edges between A
and B is {zy : x € Ag,y € By}. Let

3 if [Ao| = |Bo| = 1,
bo=14 if|Ao| =1 or|Bo| =1,
6 otherwise.
Then there exists a graph G’ locally equivalent to G satisfying the following.
1. GIJAu B]=G'[A v B].
2. G’ has a blocking sequence by, ba, ..., by of length at most £y for (A, B).

Proof. Since G is prime, G has a blocking sequence for (A, B) by Proposition Let G be the set of
all graphs G’ locally equivalent to G such that G'[A u B] = G[A u B]. We assume that G is chosen in
G so that the length ¢ of a blocking sequence by, ba, ..., by for (A, B) is minimized.

For 1 <i </, Ng(b;)) n B = By or & because pg(Au {b;},B) =1. For 1 <i</{, Ng(b;)n A= Ag
or & because pg(A, B u {b;}) = 1.

Suppose that Ng(b;) n(AuB) = Ng(b;) n(Au B) for some 1 < i < j < £. If b; and b; are adjacent,
then G’ = G A bbj € G. If b; and b; are non-adjacent, then G’ = G #b; *b; € G. In both cases, we found
a graph in G having a shorter blocking sequence by Proposition [8:6 or Corollary [8-8] contradicting our
assumption.

If |By| = 1, then for all 1 < ¢ < £, Ng(b;)nA = Ag because otherwise G+#b; € G has a shorter blocking
sequence by Proposition contradicting our assumption. Similarly if |Ag| = 1, then Ng(b;) n B = By
forall 1 <7 </.

By the pigeonhole principle, we deduce that £ < £. O
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Figure 8.2: An example of a generalized ladder.

8.3 Obtaining a long cycle from a huge generalized ladder

A generalized ladder is a graph G with two vertex-disjoint paths P = pips...pe, @ = q1q2---qp
(a,b = 1) with additional edges, called chords, each joining a vertex of P with a vertex of @ such that
V(P)u V(Q) = V(G), p1 is adjacent to ¢1, p, is adjacent to g, and no two chords cross. Two chords
piq; and pyq; (i <1') cross if and only if j > j'. We remark that a generalized ladder is an outerplanar
graph whose weak dual is a path. We call piq; the first chord and p,qp the last chord of G. Since no
two chords cross, p1 or ¢; has degree at most 2. Similarly, p, or g, has degree at most 2. See Figure [8.2]
for an example.

We will prove the following proposition.

Proposition 8.10. Let n > 2. FEvery generalized ladder with at least 4608n° vertices has a cycle of

length 4n + 3 as a vertex-minor.

8.3.1 Lemmas on a fan

Let F,, be a graph on n vertices with a specified vertex ¢, called the center, such that F;,\c is a path
on n — 1 vertices and c is adjacent to all other vertices. We call F}, a fan on n vertices. Note that Fj is

the gem graph.
Lemma 8.11. A fan F3, has a vertex-minor isomorphic to a cycle of length 2n + 1.

Proof. Let ¢ be the center of Fj3,. Let v1,vs,...,v3,_1 be the non-center vertices in F3, forming a path.
Let G = Fsp, # 03 % vg % Ug - - - % v3,,_3. Clearly ¢ is adjacent to v; in G if and only if i € {1,3n —1} or i =0
(mod 3) and furthermore vs;_1 is adjacent to vs;+1 in G for all i. Let H = G\{vs,vg,...,V3,—3}. Then
H is a cycle of length 3n — (n — 1). O

Lemma 8.12. Let n = 2. Let G be a graph with a vertex ¢ such that G\c is isomorphic to an induced
path P whose both ends are adjacent to c. If [V (G)| = 6(n—1)2—3, then G has a vertez-minor isomorphic
to a cycle of length 2n + 1.

Proof. We may assume that n > 3. Let P = vjvy ... v, with k > 6. We may assume that v, is adjacent
to ¢ because otherwise we replace G with G * v;. Similarly we may assume that v,_; is adjacent to c.
We may also assume v3 is adjacent to ¢ because otherwise we replace G with G A vyve. Similarly we may
assume that vg_o is adjacent to c.

If ¢ is adjacent to at least 3n — 1 vertices on P, then G has a vertex-minor isomorphic to F3,. So
by Lemma [8:11] G has a vertex-minor isomorphic to a cycle of length 2n + 1. Thus we may assume that
the number of neighbors of ¢ is at most 3n — 2. The neighbors of ¢ gives a partition of P into at most

3n — 3 subpaths. We already have 4 subpaths at both ends having length 1. Since

|E(P)]=6(n—1)—-3—-2>(2n—2)((3n —3) —4) + 4,
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there exists a subpath P’ of P having length at least 2n — 1 such that no internal vertex of P’ is adjacent
to ¢ and the ends of P’ are adjacent to c. This together with ¢ gives an induced cycle of length at least
2n + 1. O

8.3.2 Generalized ladders of maximum degree at most 3

Lemma 8.13. Let G be a generalized ladder of mazimum degree 3. If G has at least 6n vertices of degree

3, then G has a cycle of length 4n + 3 as a vertex-minor.

Proof. We proceed by induction on |V(G)|. Let P, @ be two defining paths of G. We may assume that
all internal vertices of P or ) has degree 3, because if P or ) has an internal vertex v of degree 2,
then we apply the induction hypothesis to G # v\v. Since p; or ¢; has degree 2, we may assume that
p1 has degree 2 by symmetry. We may assume that g; has degree 3 because otherwise we can apply
the induction hypothesis to G * g;\¢q1. Consequently ¢; is adjacent to ps and thus for each internal
vertex ¢; of @, ¢; is adjacent to p;;1 and each internal vertex p;;1 of P is adjacent to ¢;. Thus either
a = b and p, has degree 3 or @ = b+ 1 and p, has degree 2. But if a = b+ 1 and p, has degree
2, then we can apply the induction hypothesis to G * p,\p,. Thus we may assume that a = b and p,
has degree 3. Since G has at least 6n vertices of degree 3, a > 3n and b > 3n. If a = b > 3n + 1,
then we can apply the induction hypothesis to G\gp. Thus we may assume that a = b = 3n + 1 and
po has degree 3 and ¢, has degree 2. Note that p; is adjacent to ¢;_1 for all i = 2,...,3n + 1. Then

G *P1 A Daq3 A PrQs - A P3n+143n\{P4, D7, - - -, D3n—2,43: 46, - - - , @3n—3, @3n+1} is isomorphic to a cycle of
length 4n + 3. O

Lemma 8.14. Let G be a generalized ladder of maximum degree 3. If |V (G)| = 12n?, then G has a

cycle of length 4n + 3 as a vertex-minor.

Proof. Let P, @ be the two defining paths of G. We may assume a > 1 and b > 1 because otherwise G
has an induced cycle of length at least 6n2 + 1 > 4n + 3.

Let prqy, be the unique chord other than p;¢; with minimum z +y. We claim that we may assume
(. —1) 4+ (y — 1) < 2. Suppose not. Then p,q,, p1g: and subpaths of P and @ form a cycle of length
x4y >=5and p1,p2,...De—1,41,G2,---,qy—1 have degree 2. By moving the first few vertices of P to Q
or @ to P, we may assume that z > 3 and y > 2. Then we may replace G with G * p;. This proves the
claim.

Thus the induced cycle containing p;q; has at most 2 edges from E(P) u E(Q). Similarly we may
assume that the induced cycle containing p,g, has at most 2 edges from E(P) u E(Q).

If G has at least 6n vertices of degree 3, then by Lemma [8.13] we obtain a desired vertex-minor. So
we may assume that G has at most 6n — 1 vertices of degree 3. Thus G has at most 3n — 1 chords other
than p1q; and pags. These chords give at most 3n induced cycles of G where each edge in E(P) u E(Q)

appears in exactly one of them. If every such induced cycle has length at most 4n + 2, then
|E(P)u E(Q)] < (3n—2)(4n) +4=12n* — 8n +4 < 12n* — 2.

Since |V(G)| = 12n?, we have |E(P) U E(Q)| = 12n? — 2. This leads to a contradiction. O

8.3.3 Generalized ladders of maximum degree 4

Lemma 8.15. Let G be a generalized ladder of mazimum degree at most 4. Let o be the number

of vertices of G having degree 3 or 4. Then G has a vertex-minor H that is a generalized ladder of
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mazimum degree at most 3 such that |V(H)| = a/4.

Proof. Let P = pip2...pa, @ = q1G2...q» be the paths defining a generalized ladder G. Let X;; =
{p1,p2,...,pi,q1,q2,...,q;}. We may assume o > 8.

If a = 1, then p; has at least @ — 1 neighbors but the maximum degree is 4 and therefore a < 5,
contradicting our assumption. Thus a¢ > 1. Similarly b > 1.

We may also assume that no internal vertex of P or @ has degree 2, because otherwise we can apply
local complementation and remove it.

Let o ;j(G) be the number of vertices in V/(G)\X; ; having degree 3 or 4. We will prove the following.

Claim 1. Suppose that there exist 1 <i < a and 1 < j < b such that §q(X; ;) has exactly two edges and
every vertex in X; ; has degree 2 or 3 in G. Then G has a vertex-minor H that is a generalized ladder
of mazimum degree at most 3 such that |V (H)| = | X, ;| + o ;(G)/4.

Before proving Claim ] let us see why this claim implies our lemma. First we would like to see why
there exist 7 and j such that d¢(X; ;) has exactly two edges. If p; has degree bigger than 2, then p; is
adjacent to g2 and so G * ¢ = G\p1¢g2. Thus we may assume that both p; and ¢; have degree 2. Keep
in mind that the number of vertices of degree 3 or 4 in X; ; may be decreased by 1 by replacing G with
G q and so a11(GQ) = a — 2.

By applying Claim [I| with ¢ = j = 1, we obtain a generalized ladder H of maximum degree at most
3 as a vertex-minor such that |V (H)| = 2 + (o — 2)/4 > «/4. This completes the proof of the lemma,
assuming Claim

We now prove Claim [I| by induction on |V(G)| — |X; ;(G)|. We may assume that every vertex in
V(G\(X;; U {pa-w}) has degree 3 or 4 because otherwise we can apply local complementation and
delete it while keeping o ;. Then p;4q is obviously adjacent to q;11.

We may assume that i < a — 1 because otherwise G is a generalized ladder of maximum degree 3
if p, has degree 3 and G\g is a generalized ladder of maximum degree 3 otherwise. Similarly we may
assume j < b — 1. Either p;11 or ¢;41 has degree 4, because otherwise d¢(X;41,41) has exactly two
edges. By symmetry, we may assume that p;1 has degree 3 and ¢;41 has degree 4 and therefore ¢, is
adjacent to p;yo.

If o; j(G) < 12, then H = G[ X, 42 j4+1] is a generalized ladder of maximum degree at most 3. Thus
we may assume that a; j(G) > 12. If b — j < 4, then a — i < 8 because each vertex in ¢;i1,¢j+2;---, b
has degree at most 4 and each vertex in p;41,pit2,...,Pq—1 has degree at least 3. This contradicts our
assumption that «; ;(G) > 12. So we may assume that b — j > 5 and similarly a — ¢ > 5.

Let R be the component of G\(E(P) u E(Q)) containing p;1. Because of the degree condition, R

is a path. We now consider six cases, see Figure 8.3

1. If R has length 2 and p;,3 has degree 3 in G, then G’ = G # p;y2\pir2 = (G\Pit2 + pit1Di+s +
¢j+1Pi+3)\Pi+1¢j+1 is a generalized ladder of maximum degree at most 4. Every vertex in G’ not
in X; ; has degree at most 4. Furthermore p;41 has degree 2 in G’. Thus, d¢/(X,+1,;) has exactly
2 edges. Then | X, 11 ;| + iv1,;(G)/4 = (1Xi ;] + 1) + (0, ;(G) — 2)/4 = | X, ;| +  j(G) /4. By the

induction hypothesis, we find a desired vertex-minor H in G'.

2. If R has length 2 and p;y3 has degree 4 in G, then the vertex g;j;o has degree 3. Then G’ =
G#pit2*qj4+2\Pi+2\qj+2 is a generalized ladder of maximum degree at most 4. Then d¢/ (Xit1,5+1)
has exactly two edges and «;11,41(G') = «;,;(G) — 6. Again, |Xit1 41| + ait1,41(G)/4 =
| X5 5] + 2+ (2, ;(G) — 6)/4 = | X, j| + o j(G)/4 and therefore we are done.
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Figure 8.3: Cases in the proof of Lemma
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3. If R has length 3 and g¢;43 has degree 3 in G, then G’ = G * ¢j12\gj+2 is a generalized ladder of
maximum degree at most 4. Then d¢(X;41,j11) has exactly two edges and 11 ;41(G") = a4 ;(G)—
3. We deduce that |Xi+17j+1| + Oéi+17j+1(G/)/4 = |Xi7j| + 2+ (Oéi,j(G) — 3)/4 = |Xi7j| + Oéi7j(G)/4.

4. If R has length 3 and g¢j;3 has degree 4 in G, then p;;3 has degree 3 and G’ = G * gj42 *
Pi+3\gj+2\Pi+3 is a generalized ladder of maximum degree at most 4. Then d¢/(Xit2,+1) has
exactly two edges and ;12 41(G’) = o j(G) — 7. We deduce that | X412 j11| + qigo,j+1(G)/4 =
| X + 3+ (0 ;(G) = 7)/4 = | X, ;| + a;;(G)/4. By the induction hypothesis, G’ has a desired

vertex-minor and so does G.

5. If R has length 4, then G’ = G A p;12G;+2*Di+3\Di+2\Pi+3\¢j+2 is a generalized ladder of maximum
degree at most 4. Then d¢/(X;11,+1) has exactly two edges and a;41,;41(G') = «;;(G) — 7 and
therefore |X¢+17j+1| + Oéi+1,j+1(G/)/4 = |Xi’j| + 2 + (ai,j(G) — 7)/4 = ‘Xi,j‘ + Oli’j(G)/ll. Our

induction hypothesis implies that G’ has a desired vertex-minor.

6. If R has length at least 5, then G’ = G A p;12gj12\pi+2\gj+2 is a generalized ladder of maximum
degree at most 4. Then 0¢/(X; j+1) has exactly two edges and «; ;4+1(G') > «;;(G) — 4 and
therefore |X1’7j+1| + Oéi,j+1(G/)/4 = |Xi,j| +1+ (Oé,‘J'(G) - 4)/4 = |Xi7j| + Oéi,j(G)/Zl. Our induction

hypothesis implies that G’ has a desired vertex-minor.
In all cases, we find the desired vertex-minor H. This completes the proof of Claim O

Lemma 8.16. Let G be a generalized ladder of mazimum degree at most 4. If |V (G)| = 192n3, then G

has a cycle of length 4n + 3 as a vertex-minor.

Proof. Let P, Q be the two defining paths of G. We may assume a > 1 and b > 1 because (192n3 —
2)/3+2=4n+ 3.

Let prqy be the unique chord other than p;q; with minimum z +y. We claim that we may assume
(x — 1)+ (y — 1) < 2. Suppose not. Then p,q,, p1¢1 and subpaths of P and @ form a cycle of length
x4y >=5and p1,p2, ... De—1,41,G2,---,qy—1 have degree 2. By moving the first few vertices of P to @
or () to P, we may assume that z > 3 and y > 2. Then we may replace G with G % p;. This proves the
claim.

Thus the induced cycle containing p1q; has at most 2 edges from E(P) u E(Q). Similarly we may
assume that the induced cycle containing p,gs has at most 2 edges from E(P) u E(Q).

If G has at least 48n? vertices of degree 3 or 4, then by Lemma G has a generalized ladder H
as a vertex-minor such that |V(H)| > 12n? and H has maximum degree at most 3. By Lemma H
has a cycle of length 4n + 3 as a vertex-minor.

Thus we may assume that G has less than 48n? vertices of degree 3 or 4. We may assume that G
has at least one vertex of degree at least 3. The cycle formed by edges in E(P) u E(Q) v {p191, paqs} is
partitioned into less than 48n? paths whose internal vertices have degree 2 in G. One of the paths has
length greater than 192n3/(48n2) = 4n. Then there is an induced cycle C' of G' containing this path.
Since C' does not contain pi;q; or paq, C' must contain two edges not in E(P) u E(Q) v {p1¢1,Pags}-
Thus the length of C is at least 4n + 3. O

8.3.4 Treating all generalized ladders

Lemma 8.17. Let G be a generalized ladder. If G has n vertices of degree at least 4, then G has a

vertex-minor H that is a generalized ladder such that the mazximum degree of H is at most 4 and H has
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at least n vertices.

Proof. Let P, Q be the two defining paths of G. Let S be the set of vertices having degree at least 4.
For each vertex v in S, let P, be the minimal subpath of ) containing all neighbors of v in @ if v € V/(P)
and let P, be the minimal subpath of P containing all neighbors of v in P if v € V(Q).

Then each internal vertex of P, has degree 2 or 3 and has degree 3 if and only if it is adjacent to v.
We apply local complementation to each internal vertex and delete all internal vertices of P,. It is easy
to see that the resulting graph H is a generalized ladder and moreover S € V(H) and every vertex in S

has degree at most 4 in H. O
We are now ready to prove the main proposition of this section.

Proof of Proposition[8.10. Let G be such a graph. If G has at least 192n? vertices of degree at least 4,
then by Lemma G has a vertex-minor H having at least 192n? vertices such that H is a generalized
ladder of maximum degree at most 4. By Lemma [8.16] H has a cycle of length 4n + 3 as a vertex-minor.

Thus we may assume that G has less than 192n3 vertices of degree at least 4. For a vertex v in
P having degree at least 5, let ¢;, ¢; be two neighbors of v in @ such that if g; is a neighbor of v in
Q, then i < k < j. By Lemma if j —i 4+ 2 > 24n? — 3, then G contains a cycle of length 4n + 3
as a vertex-minor. Thus we may assume j — i < 24n? — 6. The subpath of Q from ¢; to g; contains
j —i—1 < 24n? — 7 internal vertices. Similarly the same bound holds for a vertex v in Q having
degree at least 5. As in the proof of Lemma|[8.17] we apply local complementation and delete all internal
vertices of the minimal path spanning the neighbors of each vertex of degree at least 5 to obtain H.
Then each vertex of degree at least 5 in G will have degree at most 4 in H. Since we remove at most
(192n3 — 1)(24n? — 7) vertices,

[V(H)| = |V(G)| — (192n3 — 1)(24n> — 7) > 192n3.

By Lemma H has a cycle of length 4n + 3 as a vertex-minor. O

8.4 Obtaining a long cycle from a huge induced path

In this section we aim to prove the following theorem.

Theorem 8.18. If a prime graph has an induced path of length [6.75n7], then it has a cycle of length n

as a verter-minor.

The main idea is to find a big generalized ladder, defined in Section [8.3| as a vertex-minor by using

blocking sequences in Section [8:2]

8.4.1 Patching a path

For 1 < k < n—2, a k-patch of an induced path P = wvgvy---v, of a graph G is a sequence

Q = wy,ws,...,wy of distinct vertices not on P such that for each i € {1,2,...,k},
1. v;49 is the only vertex adjacent to w; among v;11, V12, - ., Un,
2. O # Ng(wi) N {’Uo, e, Ui, Wy ,’sz‘_l} #* {’Uz',wi_l} if ¢ > 1,

3. NG(’Ujl) N {’UQ,’Ul} = {’Uo}.
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Vo vp ' V2 ' VU3 I V4 ! Vs Ve U7 Ug

Figure 8.4: An example of a 4-patched path of length 8.

An induced path is called k-patched if it has a k-patch. An induced path of length n is called fully
patched if it is equipped with a (n — 2)-patch. See Figure for an example.
Our goal is to find a fully patched long induced path in a vertex-minor of a prime graph having a

very long induced path.

Lemma 8.19. Let P = vgvy ... v, be an induced path from s = vg to t = vy, in a graph G and let H
be a connected induced subgraph of G\V (P). Let v be a vertex in V(G)\(V(H) v V(P)). Suppose that
Ne(V(H)) nV(P) = {s}, |E(P)| = 6(n —1)?> =5, and v has neighbors in both V(P)\{s} and V(H).

If G has no cycle of length 2n + 1 as a vertez-minor, then there exist a graph G’ locally equivalent

to G and an induced path P' from s to t of G' disjoint from V(H) satisfying the following.
1. GIV(H) v {s}] = G'[V(H) v {s}],
2. Ng(v) nV(H) = Ng:(v) n V(H),
3. P = vg0;vi11Vi40 - Uy for some i,
4. v; is the only vertex on V(P') adjacent to v in G,
5. |[E(P)| = |E(P)| —6(n—1)%+6.

Proof. Since G has a cycle using H with s and P, GG is not a forest and therefore n > 2. Let vy =
S,V1,Va,...,0y =t be vertices in P. Let vy be the neighbor of v with maximum k. Then G has a fan
having at least k + 3 vertices because H is connected and v has a neighbor in H. If k > 6(n — 1)? — 6,
then G has a fan having at least 6(n — 1)? — 3 vertices and by Lemma G contains a cycle of length
2n + 1 as a vertex-minor. This contradicts to our assumption that G has no such vertex-minor. Thus,
k<6(n—1)2-7.

Let Go = G x vy % va %03+ #vp_o and let Py = vgUk—10kVk4+1 " Umm. (If k < 2, then let Gy = G and
Py = P.) Then clearly P is an induced path of Gy and v, € Ng,(v) n V(Py) € {vo, vk—1, v}

If Ne,(v) nV(P) =

If Ng,(v) nV(P) =

If Ng,(v) n V(Py) = {vg, v}, then we can take G’ = G * vp—1 * vy and P’ = vgUk11Vk+2 " - U

Finally, if Ng,(v)

{vk}, then we are done by taking G’ = Gg * vg—1 and P’ = vgUgVk+1 ** * Upn.

{vg—_1,vE}, then we can take G’ = G * vg, * vg_1 and P’ = VgUg41Vk12 " * Uy

N V(Py) = {vo,vgp—1,vk}, then we can take G' = Gg * vg * vg_1 * V11 and

Pl = Uovk+21}k+3 e Ume
In all cases, |[E(P")| = |E(P)| — (k+1) = |[E(P)| — 6(n — 1)? + 6. ]

Lemma 8.20. Let n = 2. Let G be a prime graph having an induced path of length t. If t = 6(n —
1)2 — 3, then there exists a graph G’ locally equivalent to G having a 1-patched induced path of length
t —6(n —1)2 +6, unless G has a cycle of length 2n + 1 as a vertez-minor.

Proof. We may choose G so that the length ¢ of an induced path P is maximized among all graphs locally

equivalent to G. Let vy, vy, ..., v, be vertices of P in this order. Since G is prime, vy has a neighbor v
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other than v;. We may assume that v is non-adjacent to v; because otherwise we can replace G with
G *vg.

Since P is a longest induced path, v must have some neighbors in V(P)\{vg,v1}. We now apply
Lemma [8.19) with H = G[{vo,v1}], deducing that there exists a graph G’ locally equivalent to G having
a 1-patched induced path of length ¢ — 6(n — 1) + 6, unless G has a cycle of length 2n + 1 as a vertex-

minor. O

Lemma 8.21. Letn > 2. Let G be a prime graph and let P be a k-patched induced path vovy - - ve. If
t = 6(n —1)% + k, then there exists a graph G’ locally equivalent to G having a (k + 1)-patched induced
path vovy - - Vg 420V 11 - - - Vg of length at least t —6(n —1)% + 3 with some i > k+2, unless G has a cycle

of length 2n + 1 as a vertex-minor.

Proof. Let P = vgvy ...v; be an induced path of length ¢t in G and @ = wy,ws,...,wy be its k-patch.
Suppose that G has no vertex-minor isomorphic to a cycle of length 2n + 1.

Let A = {vg,v1,...,0k+1} U Q. By Proposition we may assume that G has a blocking sequence
b1,ba, ..., by of length at most 4 for (A, V(P)\A) because vpio is the only vertex in V(P)\A having
neighbors in A.

Notice that P\A is an induced path of G. We say that a blocking sequence b1,bs,..., by for
(A, V(P)\A) is nice if by has a unique neighbor in V(P)\A, that is also a unique neighbor of vj 2
in V(P)\A.

We know that by has neighbors in {vgis,...,v:} by the definition of a blocking sequence. We
take H = G[A U Q U {b1,ba,...,bs_1}]. By Lemma there exist a graph Gy locally equivalent
to G and an induced path Py = vguy - V20041 - - - vy of Gy for some ¢ with a k-patch @ such that
Go[A U {vkt2}] = G[A U {vg+2}], a sequence by, ba, ..., by is a nice blocking sequence for (A4, V(FPy)\A)
in Gy, and |E(Py)| =t —6(n—1)% +6.

Let » > 1 be minimum such that there exist a graph G’ locally equivalent to G and an induced
path P’ = wov1 - - Up4200i41 - - Uy for some ¢ with a k-patch @ in G’ such that G'[A U {vg42}] =
G[A U {vgi2}], a sequence by, ba, . .., b, is a nice blocking sequence for (A, V(P')\A) in G', and |E(P")| =
t—6(n—1)2+6+r — £ Such r exists because Gy and P, satisfy the condition when r = /.

We claim that r = 1. Suppose r > 1.

Suppose that b, is non-adjacent to vg41 in G'. Then v; is the only neighbor of b, in V(P') in G’
and b, is adjacent to b,_1 in G'. If b,_1 is non-adjacent to vg 2, then take G” = G’ b, and P" = P’;
in G”, a sequence by, bs,...,b._1 is a nice blocking sequence for (A, V(P')\A) and the length of P’ is
at least t — 6(n — 1)2 + 6 + 7 — £. This leads a contradiction to the assumption that r is minimized.
Therefore b,_1 is adjacent to v, 2. Then take G” = G’ * b, x v; with P” = vguy -+ Up4120ii1 " Upn.
Then by, b, ...,b,_1 is a nice blocking sequence for (A, V(P")\A) in G” and the length of P” is at least
t—6(n—1)2+6+r — ¢ — 1. This contradicts to the assumption that 7 is chosen to be minimum.

Therefore b, is adjacent to vg 1 in G’. Since b, is the last vertex in the blocking sequence, b, is also
adjacent to wy in G’. If b,_; is non-adjacent to v, o, then take G” = G’ * vy o * b, and P” = P’; in
G”, a sequence by,ba,...,b._1 is a nice blocking sequence for (4, V(P”)\A) and the length of P” is at
least t — 6(n — 1)? + 6 + 7 — £, contradicting our assumption on r. So b,_; is adjacent to vy, 2. Then we
take G" = G % v 1o * b * v; with P” = vguy - - Vg 12011 -+ - Upy. Then by, bo, ..., b._1 is a nice blocking
sequence for (A, V(P")\A) in G” and the length of P” is at least t —6(n —1)2 4+ 6 +r — ¢ — 1. This again

contradicts to the assumption on r. This proves that r = 1.
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Since by is a nice blocking sequence for (A4, V(P')\A) in G’, b; has a neighbor in A in G’ and
N (b1) n A # {vky1,wi}. In addition, v; is the only neighbor of b; among V(P')\A in G'. Now it
is easy to see that wiy,ws,ws,...,wk, b1 is a (k + 1)-patch of P’ in G’. And, since ¢ < 4, we have
|E(P)| =t —6(n—1)%>+3. O

Proposition 8.22. Let N > 4 be an integer. If a prime graph G on at least 5 vertices has an induced
path of length L = (6(n —1)? —2)(N —2) — 1, then there exists a graph G’ locally equivalent to G having
a fully patched induced path of length N, unless G has a cycle of length 2n + 1 as a vertex-minor.

Proof. Suppose that G has no cycle of length 2n + 1 as a vertex-minor. Then n > 3 by Theorem By
Lemma we may assume that G has a 1-patched path of length L — 6(n — 1) + 6. By Lemma
we may assume that G has an (N — 2)-patched path of length

L—6(n—1)%*+6—(N-3)(6(n—-1)%-3)=N

Thus G has a fully patched induced path of length N. O

8.4.2 Finding a cycle from a fully patched path

We aim to find a cycle as a vertex-minor in a sufficiently long fully patched path.

Let P = vgvy - - - v, be an induced path of a graph G with a (n — 2)-patch Q = wiwows, ... w,—2.
Let Ay = {vg,v1} and for i = 2,...,n— 2, let A; = {vg,v1,...,0;, w1, Wa,...,w;—1} and B; = V(P)\4;
forallie{1,2,...,n—2}.

For ¢ = 1, let L(w;) be the minimum j > 0 such that

p&(Aj1, Bipr v {wi}) > 1.

Since w; is a blocking sequence for (A;, B;), L(w;) is well defined and L(w;) < i.

We classify vertices in @) as follows.
e A vertex w; has Type 0 if L(w;) = 0 and w; is adjacent to vg.

e A vertex w; has Type 1 if L(w;) > 1 and w; has no neighbor in Ay,,) and w; is adjacent to exactly

one of v (y,)+1 and w(y,)-
e A vertex w; has Type 2 if L(w;) = 1 and w; is adjacent to vy, non-adjacent to vg.

e A vertex w; has Type 3 if L(w;) > 2 and w; has no neighbor in Ay ,,)—1 and w; is adjacent to

both vy (y,) and ww,)—1-
By the definition of fully patched paths, we can deduce the following lemma easily.
Lemma 8.23. Fach vertex in QQ has Type 0, 1, 2, or 3.

Proof. If w; is adjacent to vg, then pf(Ar, By u {w;}) > 1 and therefore L(w;) = 0, implying that w;
has Type 0. We may now assume that w; is non-adjacent to vg and so L(w;) > 0.

If w; has no neighbors in Ay, (y,), then p& (AL w,)+1> Briw)+191{wi}) = 0&(ALwi)+1\AL(w:)» BL(w,)+1Y
{wi}) > 1. Thus vp(y,)+2 and w; cannot have the same set of neighbors in Ap,)41\AL@w,) =
{VL(w;)+1, WL(w;)}- By the definition of fully patched paths, vp(y,)12 is adjacent to both vy (,,)41 and

Wr(w;)- It follows that w; is adjacent to exactly one of v (y,)4+1 and wr ;). So w; has Type 1.
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P]I /\/\/\‘ I

Y Vp(w)+2  VL(wi)+3 " Vi+1

Te {’UL(w,i)-Fl, wL(wi)}

ye {UL(wi)Jrh wL(wl)}\{x}

UL(w;)+1 UL(wi)+2 " " Vi+1

T e {UL(wi),wL(wi)q}

Figure 8.5: Constructing a generalized ladder in a fully patched path. The vertex w; has Type 1 in (a)
and has Type 3 in (b).

Now we may assume that w; has some neighbors in Ap,,,). By definition,

pg(AL(wi)’BL(wi) o {wl}) <1

and therefore w; and v (,,)41 have the same set of neighbors in Ay (,,). Therefore, if L(w;) = 1, then
w; is adjacent to vy, implying that w; has Type 2. If L(w;) > 1, then w; is adjacent to both vy,(,,) and
Wr(w;)—1, and so w; has Type 3. O

We say that a pair of paths P} and Pj from {vg,v1} to {vi1,w;} is good if
1. P} and P} are vertex-disjoint induced paths on A; 1,
2. for each j € {1,2,...,i— 1}, wj € V(P{) 0 V(Pi) or vj41 € V(P}) u V(P)),
3. G[V(P}) u V(PH] + vi11w; is a generalized ladder with two defining paths P} and Pj.

Lemma 8.24. For all i € {1,2,...,n — 2}, G has a good pair of paths P{ and Pi from {vg,vi} to

{viy1, wi}.

Proof. We proceed by induction on i. If w; has Type 0, then let P} = vivs---v;11 and P = vow;. Since
vp has no neighbors in {ve,vs,...,v;11}, G[V(P}) U V(P3)] + vi41w; is a generalized ladder with two
defining paths P} and Pi. Also, V(P{) u V(P4) € A;11 and for all j € {1,2,...,i — 1}, vj41 € V(P).
Thus, the pair (P}, P§) is good.

If w; has Type 2, then let P} = vowiv3vs---v;41 and Py = viw;. By the definition of a patched
path, v; is not adjacent to wy. So, v has no neighbors in {wy,vs, vy, ..., vi41}, and therefore G[V (P}) u
V (P§)]+vit1w; is a generalized ladder with two defining paths Pj and Pj. Clearly, V(P})uV (Pi) S Ait1.
Moreover, wy € V(P}) and for each j € {2,...,i— 1}, vj41 € V(P}). Therefore, the pair (P}, P3) is good.

Now, we may assume that w; has Type 1 or Type 3. Since L(w;) = 1, by the induction hypothesis,

G has a good pair of paths PlL(wj), PQL(W) from {vo, v1} t0 {V1(w,)+1> WL(w,)}-
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Suppose w; has Type 1 and therefore w; is adjacent to exactly one of vp ()41 and wp(y,). Let

,Y} = {VL(w)+1, WL(w,)} sSuch that x is adjacent to w;. We may assume that the paths PE®) and
{z, 9} = {vLw) 11 Wrwn} j y P 1

P;(wi) end at y and z, respectively. Let P} be a path

L(w;
Py Cos) 4 YUL(w;)+2VL(w;)+3 * " Vit

and let P be a path PzL(wi) +zw;. See Figure By the induction hypothesis, V(PlL(wi)) uV(PQL(wi)) c
Ap(w)+1 € Aig1, and for each j € {1,2,..., L(w;) — 1}, V(PF™y O v(PF™)) contains w; or vj4;.
Thus it follows that V(Pf) u V(Pi) € A;41 and for each j € {1,2,...,i— 1}, V(P}) u V(P4) contains w;
Or Vj41.

We claim that G[V (Pf) u V(P$)] + vir1w; is a generalized ladder with the defining paths P} and
Pi. By the induction hypothesis, it is enough to show that there are no two crossing chords za and w;b
for some a,b e V(Pf). Since w; has no neighbor in AL (w,) and w; and y are non-adjacent, be X = {vy :
ke {L(w;) + 2, L(w;) +3,...,i+ 1}}. Since = has no neighbor in X\{vy(,,)+2}, we deduce that xa and
w;b cannot cross and therefore G[V (P}) u V(P3)] + viy1w; is a generalized ladder. This proves that if
w; has Type 1, then (P, Pi) is a good pair.

Finally, suppose that w; has Type 3 and so w; is adjacent to both vy, () and wr,(y,)—1. By symmetry,

(ws) (wi)

we may assume that P2L ends at vp(y,)4+1- Let ¥ be the predecessor of vy, ()41 in P2L . Since

P;(wi) is on Ap(w,)+1 and vr, ()41 has only two neighbors vy, u,), Wr(w;)—1 0 Ap(w;)+1, either z = v,

Or & = Wr,(yw,)—1- Let y be the predecessor of wp,(,) in PlL(wi). Let P} be a path

L wi;
P () + WL (w; ) VL(w; ) +2VL(w;)+3 * " Vit1

and let P} be a path obtained from PQL(“”) by removing vy, ,,)+1 and adding zw;. See Figure (b) It
follows from our construction and the induction hypothesis that V(P{)uV (P3) € A; 41 and V(P{)uV (P3)
contains w; or v; 41 for each j e {1,2,...,i—1}.

We claim that G[V (Pf) u V(P$)] + vit1w; is a generalized ladder with the defining paths P} and
Pi. By the induction hypothesis, it is enough to prove that there are no two chords xa and w;b such
that a,b e V(P}) and b precedes a in P{. Suppose not. Since w; has no neighbor in AL (w;)—1, neighbors
of w; in P{ are in {y,wr ()} v {vx : k € {L(w;) + 2, L(w;) + 3,...,7+ 1}}. Since z has no neighbor
in {vg : ke {L(w;) + 2, L(w;) +3,...,7 + 1}}, we deduce that a = wp(,,) and b = y. Since w; has no
neighbor in Ap(,,)—1, b is one of vy (y,) and wg,,)—1 other than z. Thus wr,,) is adjacent to both
UL (w;) and W (y,)—1. This contradicts (iii) because UL (w;)+1 18 also adjacent to both vy (y,) and wr(w,)—1
and so G[V(PIL(U”)) V) V(P;(wi))] + VL (w;)+1WL(w;) 15 Not a generalized ladder. O

Lemma 8.25. If a graph has a fully patched induced path of length n, then it has a generalized ladder
having at least n + 2 vertices as an induced subgraph.

Proof. Let P = vguy - - - vy, be the induced path of length n with an (n — 2)-patch Q = wiws - wy_s.
Lemma provides a good pair of paths P2 and Py~ 2 from {vg,v1} to {v,_1,w, 2} such that
GIV(P}?) UV (Py™%)] +vp_1wp_2 is a generalized ladder and V(P}'~2) u V(Py'~?) contains w; or v,
for each j € {1,2,...,n — 3}. Since v, is only adjacent to v,,_; and w,_» in G, G' = G[V(P"?) u
V(P2"72) u{vn}] is a generalized ladder. Since vy, v1, Vn, Vp—1, Wp—2 € V(G'), G’ has at least (n—3)+5 =

n + 2 vertices. O

Now we are ready to prove the main theorem of this section.

Lemma 8.26. Let n > 1. If a prime graph has an induced path of length 110592n7, then it has a cycle

of length 4n + 3 as a vertex-minor.
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Proof. Let G be a prime graph having an induced path of length 110592n7. Suppose that G has no cycle
of length 4n + 3 as a vertex-minor. Let N = 4608n°. Then

(6(2n)% — 2)(N —2) — 1 < 110592n".

Thus by Proposition there exists a graph G’ locally equivalent to G having a fully patched induced
path of length N. By Lemma G’ must have a generalized ladder having at least N + 2 vertices
as an induced subgraph. By Proposition we deduce that G’ has a cycle of length 4n + 3 as a

vertex-minor. O

Proof of Theorem[8.18 Let k = |n/4]. Let G be a prime graph having a path of length at least 6.75n".
Then G has a path of length 6.75(4k)” = 110592k", and by Lemma G has a cycle of length 4k+3 > n

as a vertex-minor. O

8.5 Obtaining C,, or K, H K,, from a large prime graphs
In this section, we prove the main result of this chapter.

Theorem [B.1} For every n, there is N such that every prime graph on at least N vertices has a vertex-

minor isomorphic to C,, or K, 3 K,,.
By Theorem [8:I8] it is enough to prove the following proposition.

Proposition 8.27. For every c, there exists N such that every prime graph on at least N vertices has

a vertex-minor isomorphic to either P, or K. 3 K..
Here is the proof of Theorem assuming Proposition [8.27]
Proof of Theorem[8.1, We take ¢ = [6.75n7] and apply Proposition and Theorem O

For integers h,w, ¢ > 1, a (h,w, £)-broom of a graph G is a connected induced subgraph H of G such
that

1. H contains a vertex v, called the center,
2. one component of H\v is an induced path P of length h — 1, and
3. H\(V(P) u {v}) has w components, each having exactly ¢ vertices.

The path P is called a handle of H and each component of H\V(P) is called a fiber of H. If H = G,
then we say that G is a (h,w,¥)-broom. We call h, w, £ the height, width, length, respectively, of
a (h,w,f)-broom. See Figure Observe that v has one or more neighbors in each fiber.

Here is the rough sketch of the proof. If a prime graph G has no vertex-minor isomorphic to P. or
K.HK_, and G has a broom having huge width as a vertex-minor, then it has a vertex-minor isomorphic
to a broom with larger length and sufficiently big width. So, we increase the length of a broom while
keeping its width big. If we obtain a broom of big length by repeatedly applying this process, then we
will obtain a broom of larger height. By growing the height, we will eventually obtain a long induced
path.

To start the process, we need an initial broom with sufficiently big width. For that purpose, we use

the following Ramsey-type theorem.
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height h := number of edges in the handle

center

length ¢ :=number of vertices in each ﬁberI

p——)
width w :=number of fibers

Figure 8.6: A (h,w, {)-broom.

Theorem 8.28 (folklore; see Diestel [76]). For positive integers ¢ and t, there exists N = go(c,t) such

that every connected graph on at least N vertices must contain K11, K+, or P. as an induced subgraph.

By Theorem if G is prime and |V (G)| = go(c,t + 1), then either G has an induced subgraph
isomorphic to P, or G has a vertex-minor isomorphic to Kj ;1. Since a (1,t,1)-broom is isomorphic
to K1 +4+1, we conclude that every sufficiently large prime graph has a vertex-minor isomorphic to a

(1,¢,1)-broom, unless it has an induced subgraph isomorphic to P..

8.5.1 Increasing the length of a broom

We now show that if a prime graph has a broom having sufficiently large width, we can find a broom
having larger length after applying local complementation and shrinking the width.
In the following proposition, we want to find a wide broom of length 2 when we are given a sufficiently

wide broom of length 1, when the graph has no P, or K. K, as a vertex-minor.

Proposition 8.29. For all integers ¢ = 3 and t = 1, there exists N = g1(c,t) such that for each h = 1,
every prime graph having a (h, N, 1)-broom has a vertex-minor isomorphic to a (h,t,2)-broom, K.HK,,
or P..

We will use the following theorem.

Theorem 8.30 (Ding, Oporowski, Oxley, Vertigan [79]). For every positive integer n, there exists
N = f(n) such that for every bipartite graph G with a bipartition (S,T), if no two vertices in S have the
same set of neighbors and |S| = N, then S and T have n-element subsets S’ and T', respectively, such
that G[S’,T'] is isomorphic to K, B K., K, [N K., or K, X K,.

Proof of Proposition[8.29. Let N = f(R(w,w)) where f is the function in Theorem and w =
max(t + (¢ — 1)(¢ — 3),2¢ — 1). Suppose that G has a (h, g1(c,t),1)-broom H. Note that every fiber of
H is a single vertex.

Let S be the union of the vertex sets of all fibers of H, and z be the center of H. Let Ng(S)\{z} =T.
Since G is prime, no two vertices in G have the same set of neighbors, and so two distinct vertices in S
have different sets of neighbors in T Since |S| = N = f(R(w, w)), by Theorem 8.30] there exist Sy < S,
Ty < T such that G[So, To] is isomorphic to K gw,w) K p(w,w)s K Rw,w) DK Rw,w) O KR(w,w) KK gw,w)-
Since |Tp| = R(w,w), by Ramsey’s theorem, there exist S’ € Sy and 77 € Tj such that G[S’,T"] is
isomorphic to K, H K, K, 1Ky, or K, Xl K, and T’ is a clique or a stable set in G. If G[S",T’] is
isomorphic to K, 1K, or K, X K,, then by Lemmas and G has a vertex-minor isomorphic to
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Figure 8.7: Dealing with 4-vertex graphs in Lemma M

either Py, or Ky _oE Ky 2. Since w = 2c¢— 1 and ¢ > 3, we have P, or K. H K.. Thus we may assume
that G[S’,T'] is isomorphic to K, E K.

If T is a clique in G, then we can remove the edges connecting 7" with x by applying local com-
plementation at some vertices in S’. Thus, we can obtain a vertex-minor isomorphic to K,, 8§ K,, from
G[S' v T’ U {x}] by applying local complementation at x and deleting x. Therefore we may assume that
T’ is a stable set in G.

We claim that each vertex y # x in the handle of H is adjacent to at most ¢ vertices in 7", or G has
K.H K, as a vertex-minor. Suppose not. If y is a neighbor of z, then by pivoting an edge of G[S’,T"],
we can delete the edge zy. From there, we obtain a vertex-minor isomorphic to K. H K, by applying
local complementation at x and y. If y is not adjacent to z, then we obtain a vertex-minor isomorphic to
K.H K. by deleting all vertices in the handle other than x and y, and applying local complementation
at  and y. This proves the claim.

By deleting at most (¢ — 1)h vertices in 77 and their pairs in S’, we can assume that no vertex
other than z in the handle has a neighbor in 7" and this broom has width at least w — (¢ — 1)h. If
h + 2 > ¢, then we have P. as an induced subgraph. Thus we may assume that h < ¢ — 3. Since

w—(c—1)h=w-—(c—1)(c—3) >t, we obtain a vertex-minor isomorphic to a (h,t,2)-broom. O

We now aim to increase the length of a broom when the broom has length at least 2. For a fiber F’
of a broom H, we say that a vertex v € V(G)\V(H) blocks F if

pe(V(E), (VH))\V(F)) v {v}) > 1.

If G is prime and F' has at least two vertices, then G has a blocking sequence for (V(F), V(H)\V(F)) by
Proposition [2.6] and therefore there exists a vertex v that blocks F' because we can take the first vertex

in the blocking sequence.

Lemma 8.31. Let G be a graph and let z,y be two vertices such that pe({x,y}) = 2 and G\z\y is
connected. Then there exists some sequence v1,va,...,v, € V(G)\{z,y} of (not necessarily distinct)

vertices such that G vy % vg -+ - % v, has an induced path of length 3 from x to y.

Proof. We proceed by induction on |V(G)|. If |V(G)| = 4, then it is easy to check all cases to obtain a
path of length 3. To do so, first observe that up to symmetry, there are 2 cases in G[{z,y}, V(G)\{z, y}];
either it is a matching of size 2 or a path of length 3. In both cases, one can find a desired sequence
of vertices to apply local complementation, see Figure [8.7] for all possible graphs on 4-vertices up to
isomorphism.

Now we may assume that G has at least 5 vertices. Let Ay = Ng(2)\(Na(y) u {y}), A2 = Ng(x) n
N¢a(y), and Az = Ng(y)\(Ng(z) v {z}). Clearly pg({x,y}) = 2 is equivalent to say that at least two of
Ay, As, A3z are nonempty.

We say a vertex t in G\z\y deletable if G\z\y\t is connected. If there is a deletable vertex not in
Ay U Ay U Az, then pg({z,y}) = 2 and we apply the induction hypothesis to find an induced path.

Thus we may assume that all deletable vertices are in A; U As U Ags.
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If [A;] > 1 and A; has a deletable vertex ¢ for some i = 1,2,3, then pey({7,y}) = 2 and so we
obtain a sequence by applying the induction hypothesis. So we may assume that if A; has a deletable
vertex, then |4;| = 1.

If there are three deletable vertices ¢y, to, t3 in G\x\y, then we may assume A; = {t;}. However,
pet; ({7, y}) = 2 because Az, A3 are nonempty and therefore we obtain an induced path from x to y by
the induction hypothesis.

Thus we may assume that G\x\y has at most 2 deletable vertices. So G\z\y has maximum degree
at most 2 because otherwise we can choose leaves of a spanning tree of G\z\y using all edges incident
with a vertex of the maximum degree. If G\z\y is a cycle, then every vertex is deletable and so G\z\y is
a path. Let w be a degree-2 vertex in G\z\y. Then G * w has at least 3 deletable vertices and therefore
we find a desired sequence vy, vs, ..., v, such that G  w * vy * vy -+ * v, has an induced path of length

3 from x to y. O

Lemma 8.32. Let G be a graph and let x, y be two vertices in G, and let Fy, Fs, ..., F, be the components
of G\a\y. If p&({z,y}, F;) = 2 for all 1 < i < ¢, then G has a vertex-minor isomorphic to K. 5 K..

Proof. We proceed by induction on |V(G)| + |E(G)].

Suppose that G[V (F;) u{z,y}] is not an induced path of length 3 from z to y. By Lemma([8.31] there
exists a sequence vy, v, ..., v, € V(F;) such that G[V (F;) u {x, y}] # vy % vg - - - * v, has an induced path
of length 3 from z to y. If |V (F;)| = 3, then we delete all vertices in F; not on this path and apply the
induction hypothesis. If |V (F;)| = 2, then |E(G[V(F;) u{z,y}])| > |[E(G[V (F;) u{z,y}]*vi 2 vgs- - -0y,
because two vertices in F; are connected, G[{z, y}, V(F;)] has at least two edges, and G[V (F;) u{z, y}] is
not an induced path of length 3 from x to y. So we apply the induction hypothesis to G vy vy # - - - v,
to obtain a vertex-minor isomorphic to K.H K..

Therefore we may assume that G[V (F;) u {x,y}] is an induced path of length 3 from z to y for all
1. Thus G = z * y\z\y is indeed isomorphic to K. H K. O

Lemma 8.33. Let t be a positive integer, and G be a bipartite graph with a bipartition (S,T) such that
every vertex in T has degree at least 1. Then either S has a vertex of degree at least t + 1 or G has an

induced matching of size at least |T|/t.

Proof. We claim that if every vertex in S has degree at most ¢, then G has an induced matching of size
at least |T|/t. We proceed by induction on |T|. This is trivial if |T| = 0. If 0 < |T| < t, then we can
simply pick an edge to form an induced matching of size 1. So we may assume that |T'| > ¢.

We may assume that T has a vertex w of degree 1, because otherwise we can delete a vertex in S
and apply the induction hypothesis. Let v be the unique neighbor of w. By the induction hypothesis,
G\v\N¢(v) has an induced matching M’ of size at least (|T'| —t)/t. Now M’ U {vw} is a desired induced
matching. O

Lemma 8.34. Let H be a broom in a graph G having n fibers F1, Fy, ..., F, given with n vertices
V1,02, ..., Uy tn V(GN\V(H) such that

1. v; blocks F; if and only if i = j,
2. v; has a neighbor in F; if and only if i < j.

Ifn>= R(c+ 1,c+ 1), then G has a vertex-minor isomorphic to P..
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Proof. If j > i, then v; has a neighbor in F};, but v; does not block F;. Therefore, v; is adjacent to every
vertex in V(F;) n Ng(z) for j > i. Since n = R(c+ 1,c¢+ 1), there exist 1 < t; <ty -+ < tey1 < n
such that {vs,,vs,,...,0¢,,,} is a clique or a stable set of G. For 1 < i < ¢+ 1, let w; be a vertex in
V(F;,) n Ny (x). Clearly,

G[{Utl ) Utga ... avt2[6/2171}7 {'LU27 Wy, )wQ[C/Q] }]

is isomorphic to K[C/Q] | K[C/Z]-

By Lemma Kic/21 A Ke/2) or K[e21 A K|e/2) has a vertex-minor isomorphic to P. O

Lemma 8.35. Let H be a broom in a graph G having n fibers F1, Fs, ..., F,. Letvi,vs,...,v, be vertices
in V(G)\V(H) such that

1. v; blocks F; if and only if i = j,
2. v; has a neighbor in F; for all i and j.
Ifn>= R(c+2,¢c+ 2), then G has a vertex-minor isomorphic to K.H K..

Proof. If ¢ # j, then v; does not block F; and therefore Ng(v;) n V(F;) = Ng(x) n V(F;). Since

n = R(c+2,c+2), there exist 1 <t <ty < teyo < n such that {vy,,vs,,...,0¢,,,} is a clique or a
stable set of G.
We claim that for each 1 < i < ¢ + 2, there exist a sequence wgi), wgi), . ,w,i? of k; = 0 vertices in

V(F,)\(Ng(z) U Ng(vy,)) and z; € V(F,) such that z; is not adjacent to vy, in G = wy) * wéi) ek w,(fi)
but z; is adjacent to vy, in G * wY) * wéi) * ook w,(j) for all j # 1.

Let A% = (Ng(v,)\Ne(2))nV(F,), A = (Ng(vr,)nNe(2))nV(F,) and AY) = (Ng(2)\Ng(ve,))n
V(Fy,).

If Agi) # (J, then a vertex z; in Agi) satisfies the claim. So we may assume Agi) is empty. Then
Agi) # & and Aéi) # (&, otherwise pf({vy,, vy, }, V(Fy,)) < 1 for all j # i because Ng(vi,) n V(Fy,) =
Ng(z) n V(F;,). We choose agi) € Agi) and a(;) € Agi) so that the distance from agi) to agi) in F; is
minimum.

Let P; be a shortest path from agi) to aéi) in F},. Note that each internal vertex of P; is not contained

in Agi) v Ag). After applying local complementation at all internal vertices of P;, agi) is adjacent to a;i)
and vy,, and non-adjacent to vy, for all j # i. So by applying one more local complementation at agi)
if necessary, we can delete the edges between aéi) and vy, for all j # i. And then, z; = ag) satisfies the

claim.

Now, take G’ = G * w%l) CREE w,(cll) * w?) CREE w,(;) ce w%C’LQ) CRER w,(::f) Since each wl(f)
has no neighbors in {vs,,vs,,...,v¢,} in G, applying local complementation at w,(:) does not change
the adjacency between any two vertices in {vs,,vs,,..., v ,}. Thus the induced subgraph of G’ on
{z1,22,. s Zeq2y U{ve,, vy, ..., v, } is isomorphic to Ko XK oqg or K. yoXKci2, and by Lemma
G has a vertex-minor isomorphic to K. 3 K. O

Lemma 8.36. Let H be a (h,n,£)-broom in a graph G having n fibers Fy, F, ..., F,, given with n vertices
V1,2, ..., 0y tn V(G)\V(H) such that

1. v; blocks F} if and only if i = j,
2. ifi # j, then v; has no neighbor in F}.

Ifn = R(t+(c—1)(c—3),¢), then G has a vertez-minor isomorphic to P., K.AK., or a (h,t,{+1)-broom.
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Proof. Since n = R(t + (¢ — 1)(c — 3),¢), there exist 1 < ¢; <t2--- <t < n such that either
1. k =cand {vy,v,,...,0 } 18 a clique in G, or
2. k=t+ (c—1)(c—3) and {vy,,vs,,...,0,} is a stable set in G.

First, we assume that k = c and {v;,,vs,, ..., vy, } is a clique. For each t;, since pf ({z, vy, }, V(Fy,)) =
2, by Lemma there exists some sequence wy, wa, . .., w, € V(F},) of (not necessarily distinct) vertices
such that G[V (F},) u{z, vy, }] *wy #ws - - - #w,, has an induced path of length 2 from vy, to . By applying
local complementation at z, we have a vertex-minor isomorphic to K.H K..

Now, suppose that k = ¢t + (¢ — 1)(c¢ — 3) and {v¢,,vs,,...,0¢,} is a stable set in G. Let P be
the handle of H. If h + 2 > ¢, then we have P. as an induced subgraph. Thus we may assume that
h < ¢ — 3. We assume that a vertex y € V(P)\{z} adjacent to ¢ vertices in {v1,va,...,v;}. Then since
pE({x,y}), V(F;) u{vy,}) = 2 for each i, by Lemma [8.32) we have a vertex-minor isomorphic to K.HK.
Thus, every vertex in the handle other than = cannot have more than ¢—1 neighbors in {v,, v¢,, ..., vy, }.
By deleting at most (¢ — 1)h vertices in {v,, Vs, ..., 04, }, we can remove all edges from V(P)\{z} to
{vi,, vy, ..., 04, }. Since

k—(c—1Dhzk—(c—1)(c—3)>t,

we have a vertex-minor isomorphic to a (h,t, ¢ + 1)-broom. O

Proposition 8.37. For positive integers ¢ and t, there exists N = go(c,t) such that for all integers £ = 2
and h = 1, every prime graph having a (h, N, £)-broom has a vertez-minor isomorphic to a (h,t,¢+ 1)-
broom, P., or K.H K..

Proof. Let N = gs(c,t) = (¢ — 1)m, where m = R(my,ma, ma, ms), my = R(t+ (¢ —1)(c — 3),¢), and
ma = R(c+ 2,c+ 2). Let H be a (h,N,{)-broom of G. If a vertex w in V(G)\V(H) blocks ¢ fibers
of H, then for each fiber F' of them, pf({w,z}, V(F')) = 2. So by Lemma G has a vertex-minor
isomorphic to K. K.. Thus, a vertex in V(G)\V(H) can block at most ¢ — 1 fibers of H.

For each fiber F of H, there is a vertex v € V(G)\V (H) that blocks F because G is prime. Thus, by
Lemma|8.33] there are g2(c,t)/(c — 1) = m vertices v1,va, ..., vy, in V(G)\V(H) and fibers Fy, Fy, ..., F,,
of H such that for 1 <i,j < m, v; blocks F} if and only if ¢ = j. For i # j, either v; has no neighbor in
F; or v; has a neighbor in Fj but pf ({v;, z}, V(F})) = 1.

We assume that V(K,,) = {1,2,...,m}. We color the edges of K, such that an edge {i,j} is

o green if Ng(v;) n V(F;) # & and Ng(v;) n V(F) # &,
o red if Ng(v;) 0 V(F;) # & and Ng(v;) n V(F) = &,

o yellow if Ng(v;) N V(F;) = & and Ng(v;) A V(F) # &,
e blue if Ng(v;) n V(F}) = Ne(v;) n V(E) = &.

Since |V(K,,)| = m = R(my, ma, ma, my), by Ramsey’s theorem, either K, has a green clique of size
myq, or K,, has a monochromatic clique of size my which is red, yellow, or blue.

If K, has a red clique C of size mo, then for 4, j € C, v; has a neighbor in Fj if and only if ¢ < j.
Since mo = R(c + 1,¢+ 1), by Lemma G has a vertex-minor isomorphic to P.,.

Similarly, if K, has a yellow clique C' of size m2, by Lemma[8.34] G has a vertex-minor isomorphic
to P..
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If K, has a blue clique C of size mo, then for distinct 4,5 € C, v; has a neighbor in F};. Since
ms = R(c+2,¢+2), by Lemma G has a vertex-minor isomorphic to K. H K.

If K,, has a green clique C' of size my, then for distinct 4, j € C, v; has no neighbor in Fj. Since
my = R(t + (¢ — 1)(¢ — 3),¢), by Lemma G has a vertex-minor isomorphic to P., K. H K., or a
(h,t, £ + 1)-broom. O

8.5.2 Increasing the height of a broom

Proposition 8.38. For positive integers ¢, t, there exists N = gs(c,t) such that for h = 1, every prime

graph having a (h,1, N)-broom has a vertez-minor isomorphic to a (h + 1,t,1)-broom or P..

Proof. Let N = g3(c,t) = go(c,2t) where go is given in Theorem Suppose that G has a (h,1, N)-
broom H and let x be the center of H. Let F' be the fiber of H.

Since F is connected, by Theorem [8.28] F has an induced subgraph isomorphic to P., or F has a
vertex-minor isomorphic to Ko, 1. We may assume that F' has an induced subgraph F’ isomorphic to
Koiy1. Let P = pipa...pm be a shortest path from p; = z to F’ in H. Note that m > 2 and p,,_1 is
adjacent to at least one vertices of F'. Let S = Ny (pm—1) n V(F’).

We claim that there exists a vertex v € V(F') such that (G *v)[V(F) u {z}] has an induced path of
length at least m — 1 from x, and the last vertex of the path has ¢ neighbors in F’ which form a stable
set in G.

If |S] < t, then choose p,,11 € V(F')\S and we delete S\p,, from F’. And by applying local
complementation at p,,.1, we obtain a path from z to p,,+1 such that p,, 1 has ¢ neighbors in F’ which
form a stable set.

If |S| = t + 1, then by applying local complementation at p,,, we obtain a path from z to p,, such
that p,, has ¢ neighbors in I’ which form a stable set. Thus, we prove the claim.

Since m > 2, the union of the handle of H and the path in the claim form a path of length at least
h + 1, and the last vertex of the path has ¢ neighbors which form a stable set in F’. Therefore, G has a

vertex-minor isomorphic to a (h + 1,¢,1)-broom. O

Proposition 8.39. For positive integers c, t, there exists N = gy(c,t) such that for all h = 1, every
prime graph having a (h, N, 1)-broom has a vertex-minor isomorphic to a (h + 1,t,1)-broom, P., or
K.BK..

Proof. By Proposition there exists Ny depending only on ¢ and ¢ such that every prime graph
having a (h, 1, Np)-broom has a vertex-minor isomorphic to a (h + 1,¢,1)-broom or P.. By applying
Proposition m (Ng — 2) times, we deduce that there exists N; such that every prime graph having
a (h, N1,2)-broom has a vertex-minor isomorphic to a (h,1, Ny)-broom, P., or K. H K.. By Propo-
sition there exists N such that every prime graph having a (h, N,1)-broom has a vertex-minor
isomorphic to a (h, Ny, 2)-broom, P,., or K.H K. O

We are now ready with all necessary lemmas to prove Proposition [8:27}

Proof of Proposition[8.27. By Theorem [{:2] every prime graph on at least 5 vertices has a vertex-minor
isomorphic to C5 and Py is a vertex-minor of C5. Therefore we may assume that ¢ > 5.

By applying Proposition (c — 3) times, we deduce that there exists a big integer ¢ depending
only on ¢ such that every prime graph G with a (1,%,1)-broom has a vertex-minor isomorphic to a
(¢—2,1,1)-broom, P., or K.HK,. Since a (¢—2, 1, 1)-broom is isomorphic to P. and a (1,¢, 1)-broom is
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isomorphic to K 41, we conclude that every prime graph having a vertex-minor isomorphic to K 441
has a vertex-minor isomorphic to P. or K. H K.. By Theorem there exists IV such that every
connected graph on at least IV vertices has a vertex-minor isomorphic to Kj ¢41. This completes the

proof. [

8.6 Why optimal?

Theorem states that sufficiently large prime graphs must have a vertex-minor isomorphic to C,
or K,HK,. But do we really need these two graphs? To justify why we need both, we should show that
for some n, C,, is not a vertex-minor of Ky 3Ky for all N and similarly K,, 3K, is not a vertex-minor

of C'y for all N, because C,, and K,, H K,, are also prime.
Proposition 8.40. Let n be a positive integer.

1. K3H K3 is not a vertex-minor of C,,.

2. Cr is not a vertex-minor of K, EH K,.

Since C7 is a vertex-minor of C),, for all n > 7, the above proposition implies that C, is not a
vertex-minor of Ky 5 Ky when n > 7. Similarly K,, 3 K, is not a vertex-minor of C'y for all n > 3.

We can classify all non-trivial prime vertex-minors of a cycle graph.

Lemma 8.41. If a prime graph H on at least 5 vertices is a vertex-minor of C,, then H is locally

equivalent to a cycle graph.

Proof. We proceed by induction on n. If n = 5, then it is trivial. Let us assume n > 5. Suppose
|V(H)| < |V(Cy)|- By Lemma[L.8] H is a vertex-minor of Cy,\v, Cy, * v\v, or C,, A vw\v for a neighbor
w of v.

If H is vertex-minor of C,, = v\v, then we can apply the induction hypothesis because C,, * v\v is
isomorphic to C),_1.

By Lemma H cannot be a vertex-minor of Cp,\v because Cy,\v has no prime induced subgraph
on at least 5 vertices.

Thus we may assume that H is a vertex-minor of C,, A vw\v for a neighbor w of v. Again, by
Lemma H is isomorphic to a vertex-minor of C,,_s. O

Classifying prime vertex-minors of K,, 5 K,, turns out to be more tedious. Instead of identifying
prime vertex-minors of K, = K,,, we focus on characterizing prime vertex-minors on 7 vertices to prove
(2) of Proposition [8.40}

Instead of K,, K, we will first consider H,. Let H, be the graph having two specified vertices
called roots and n internally disjoint paths of length 3 joining the roots. Let J, be the graph obtained
from H,, by adding a common neighbor of the two roots. Then H,, has 2n + 2 vertices and J,, has 2n + 3
vertices, see Figure It is easy to observe the following.

Lemma 8.42. Let H be a prime vertex-minor of H, on at least 5 vertices. If |V (H,)| — |V(H)| = 3,

then J,_1 has a vertex-minor isomorphic to H.

Proof. We may assume n > 3. Since at most 2 vertices of H, have degree other than 2, there exists
ve V(H,)\V(H) of degree 2 in H,,. Let w be the neighbor of v having degree 2 in H,. Let av’w’d be a
path of length 3 from a to b in H,, such that {v,w} # {v/,w'}.
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Hy Js

Figure 8.8: The graphs Hs and Js.

By Lemma[[.8] H is a vertex-minor of either H,\v, H, *v\v or H, A vw\v. If H is a vertex-minor
of H, = v\v, then H is isomorphic to a vertex-minor of J,_1, because H,, * v\v is isomorphic to J,_1.

Since w has degree 1 in H,\v, by Lemma if H is a vertex-minor of H,\v, then H is isomorphic
to a vertex-minor of H,\v\w. Since H,\v\w is isomorphic to H,_; and H,_; is an induced subgraph of
Jn_1, H is isomorphic to a vertex-minor of .J,,_1.

Similarly, if H is a vertex-minor of H, Avw\v, then H is isomorphic to a vertex-minor of H, Avw\v\w.
Clearly, (H, A vw\v\w) A v'w’ is isomorphic to H,,_;. Since H,_; is an induced subgraph of J,_1, H

is isomorphic to a vertex-minor of J,,_1, as required. O

Lemma 8.43. Let H be a prime vertex-minor of J, on at least 5 vertices. If |V (J,)| — |[V(H)| = 2,

then H,, has a vertex-minor isomorphic to H.

Proof. We may assume n > 2. Let a,b be the roots of J,, azb be the path of length 2, and avwbd be a
path of length 3 from a to b.

Case 1: Suppose that V(J,)\V(H) has a degree-2 vertex on a path of length 3 from a to b. We may
assume that it is v by symmetry. By Lemma H is a vertex-minor of J,\v, J, * v\v, or J, A vw\v.

If H is a vertex-minor of .J,,\v, then H is isomorphic to a vertex-minor of J,\v\w by Lemma
because w has degree 1 in J,\v. Similarly, if H is a vertex-minor of J,, A vw\v, then H is isomorphic
to a vertex-minor of J, A vw\v\w. Clearly, J,\v\w and (J,, A vw\v\w) * z are isomorphic to J,_1, and
Jn—1 18 a vertex-minor of H,.

If H is a vertex-minor of .J,, xv\v, then by Lemma[4.3] H is isomorphic to a vertex-minor of .J,, xv\v\w,
which is isomorphic to J,,_1, because w and z have the same set of neighbors in J,, * v\v. Since J,,_1 is

a vertex-minor of H,, H is isomorphic to a vertex-minor of H,,. This proves the lemma in Case 1.

Case 2: Suppose that z € V(J,)\V(H). Then by Lemma [I.§ H is a vertex-minor of J,,\z, J,, * 2\z, or
Jn Aaz\z. Since J,\z and (J,, # z\z) A vw are isomorphic to H,,, we may assume that H is a vertex-minor
of J, A az\z. However, J,, A az\z has no prime induced subgraph on at least 5 vertices and therefore by

Lemma H cannot be a vertex-minor of J,, A az\z, contradicting our assumption.

Case 3: Suppose that a or b is contained in V (J,)\V(H). By symmetry, let us assume a € V(J,)\V (H).
By Lemma H is a vertex-minor of J,\a, J,, * a\a, or J, A az\a.

Since J,\a has no prime induced subgraph on at least 5 vertices, H cannot be a vertex-minor of
Jp\a by Lemma

Suppose H is a vertex-minor of J,, A az\a. By the definition of pivoting, b is adjacent to all vertices

of Ny (a)\{z} in J, A az\a. We can remove all these edges between b and N (a)\{z} by applying local
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Figure 8.9: Graphs F}, F5 and F3.

Figure 8.10: List of all 3-vertex sets having cut-rank 2 containing a fixed vertex x denoted by a square.
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complementation on all vertices of Ny (b)\{z} in J, A az\a. Thus, H, is locally equivalent to J, A az\a,
and H is isomorphic to a vertex-minor of H,.

Now suppose that H is a vertex-minor of .J,, *a\a. By the definition of local complementation, N; (a)
forms a clique in J, * a\a. So, b is adjacent to all vertices of Ny, (a)\{z} in (J, * a\a) * z. Similarly in
the above case, by applying local complementation on all vertices of Ny (b)\{z} in (J, * a\a) * z, we can
remove all edges between b and N (a)\{z} in (J, * a\a) = z. Finally, by pivoting vw, we can remove the
edge bz, and therefore, J,, * a\a is locally equivalent to H,. Thus, H is isomorphic to a vertex-minor of

H,. [
Let Fy, Fy, F5 be the graphs in Figure [8.9]

Lemma 8.44. Let n = 3 be an integer. If a prime graph H is a vertez-minor of H, and |V(H)| =7,
then H is locally equivalent to Fy, Fa, or F3.

Proof. We proceed by induction on n. If n = 3, then let H be a prime 7-vertex vertex-minor of Hj.
Let axyb be a path from a root a to the other root b in Hz. By symmetry, we may assume that
V(H3)\V(H) = {z} or {a}. By Lemmal[1.8] H is locally equivalent to Hs\z, Hs = 2\z, H3 A za\z, H3\a,
Hs « a\a, or H3 A ab\a. The conclusion follows because Hs\x, Hs A zy\z, Hs\a are not prime and
Hj = 2\x, H3 A ax\a, and Hj * a\a are isomorphic to Fy, Fs, and F3, respectively.

Suppose n > 3. By Lemma every 7-vertex prime vertex-minor is also isomorphic to a vertex-
minor of J,_;. By Lemma@, it is isomorphic to a vertex-minor of H,,_1. The conclusion follows from

the induction hypothesis. O

Lemma 8.45. The graphs Fy, Fy, Fs are not locally equivalent to Cr.

Proof. Suppose that F; is locally equivalent to C7. Then pp (X) = pc,(X) for all X < V(C7) by
Lemmal[2.1] Let z be the vertex in the center of F;, see Figure By symmetry of C7, we may assume
that x is mapped to a particular vertex in C7. Figure presents all vertex subsets of size 3 having
cut-rank 2 and containing = in graphs C7, Fy, Fb, F3. It is now easy to deduce that no bijection on the

vertex set will map these subsets correctly. O
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We are now ready to prove Proposition [8.40

Proof of Proposition[8.40. (1) By Lemma it is enough to check that K3HK3 is not locally equivalent
to Cg. This can be checked easily.

(2) By applying local complementation at roots, we can easily see that H,, has a vertex-minor isomorphic
to K, 3 K,. Lemma [8.44] states that all 7-vertex prime vertex-minors of H, are Fy, F, and Fj.
Lemma [8.45| proves that none of them are locally equivalent to C7. Thus H, has no vertex-minor

isomorphic to C7 and therefore K,, 3 K,, has no vertex-minor isomorphic to C7. O
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Chapter 9. An exact algorithm to compute linear

rank-width

We discuss exact algorithms to compute linear rank-width. We first verify that computing linear
rank-width on bipartite graphs is NP-hard in Section[0.1] For this, we use the relation between matroid
path-width and linear rank-width.

We naturally ask which graph classes allow a polynomial-time algorithm to compute linear rank-
width. Previously, Adler and Kanté [2] proved a linear-time algorithm for trees, and it was the only
known exact algorithm to compute linear rank-width which runs in polynomial time.

We provide a polynomial-time algorithm to compute the linear rank-width of distance-hereditary

graphs.

Theorem 9.1. The linear rank-width of distance-hereditary graphs with n vertices can be computed in

time O(n? - logy n).

We remark that computing the path-width of distance-hereditary graphs is NP-hard [129]. There-
fore, our result provides a difference between path-width and linear rank-width on distance-hereditary
graphs. We use the notion of limbs and the characterization of linear rank-width on distance-hereditary
graphs, developed in Chapter

As a corollary of Theorem we prove that the path-width of matroids of branch-width at most 2

can be computed in polynomial time, provided that the matroid is given by an independent set oracle.

Corollary 9.2. The linear rank-width of n-element matroid branch-width at most 2 with a given inde-

pendent set oracle can be computed in time O(n? -log, n).

9.1 NP-hardness of computing linear rank-width

Here, we prove that computing the linear rank-width of a graph is NP-hard.
Theorem 9.3. The problem of computing the linear rank-width of a graph is NP-hard.
We first remark that the computation of the path-width of a graph is NP-hard [6], [T9].

Theorem 9.4 (Arnborg, Corneil, and Proskurowski [6]). The problem of computing the path-width of a
graph is NP-hard.

Kashyap [123] showed an analogous result for a matroid path-width of graphic matroid.

Theorem 9.5 (Kashyap [123]). For a fized field F, computing the path-width of a matroid representable
over F is NP-hard.

For linear rank-width, we may use a direct relation between the branch-width of a binary matroid
and the rank-width of its fundamental graph, mentioned in Section We recall the following.
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Proposition (Oum [I50]). Let G be a bipartite graph with a bipartition (A, B) and let M :=
M(G,A,B). Then rw(G) =bw(M) —1 and Irw(G) = pw(M) — 1.

Proof of Theorem[9.3 Given a binary matroid M, we want to produce a bipartite graph G in polynomial
time such that pw(M) can be computed from lrw(G). Let M be a binary matroid. We first run a greedy
algorithm to find a base B of M [I56] Section 1.8]. After choosing one base B, for each e € B and
e’ € E\B, we test whether (B\{e}) u {¢'} is again a base, and we create the fundamental graph G with
respect to M in polynomial time. By Proposition and Theorem Irw(G) = pw(M) — 1, and
NP-hardness of computing path-width of binary matroids implies that computing linear rank-width of
bipartite graphs is NP-hard. O

9.2 A polynomial-time algorithm for distance-hereditary graphs

We describe an algorithm to compute the linear rank-width of distance-hereditary graphs. Since
the linear rank-width of a graph is equal to the maximum over all linear rank-width of its connected
components, we will focus on connected distance-hereditary graphs.

The main idea consists of rooting the canonical split decomposition D of a connected distance-
hereditary graph and associating with each bag B of D a canonical limb £ := L p[B’,y] with its parent
B’ and computing the linear rank-width of L. In order to compute the linear rank-width of EA, we will
use the linear rank-width of the graphs Z\l,. . Z; where £,,..., L, are the limbs associated with the
children of B.

Let D be a canonical split decomposition of a connected distance-hereditary graph and let B be a
bag of D, y be a vertex represented by a vertex of B. Let £ := Lp[B,y| be a limb and T, be its split
decomposition tree. Let B’ be the bag in the component of D\V(B) containing y that has a neighbor in
B, and let w be the node of Tp such that its corresponding bag is B’. One easily checks that the split
decomposition tree T of L [B,y] is obtained similarly as Lo [B, y], namely,

1L T=Tcif |B|=4o0r |V(T;)| =1,
2. T = T\{w} if |[B'| = 3 and w has two neighbors in T},

3. If |B’| = 3 and w has 3 neighbors in T, then let 7" be obtained from T,\{w} by adding an edge
e’ between the two neighbors of w in Tp. In this case, either T =T or T is obtained from 7" by

contracting the edge €’.

As a consequence, we may assume that every node of YN’, but at most one, is also a node of Tp.

Similarly, every edge of f, but at most one, is an edge of Tp.

We now define the notion of rooted split decomposition trees of limbs. A split decomposition tree is
rooted if we distinguish either a node or an edge and call it root. Let T' be a rooted decomposition tree
with root r. A node v is a descendant of a node v’ if either r = vv’, or v’ is in the unique path from
the root to v; if moreover v and v’ are adjacent we call v a child of v and v’ the parent of v. Observe
from the definition of descendants that if » = vv’ then v is the parent of v" and also v’ is the parent of
v. Two nodes v and v’ are called comparable if one node is a descendant of the other one. Otherwise,
they are called incomparable. Recall that for each node v of T' and each canonical split decomposition
D with T as a split decomposition tree we write bagp,(v) to denote the bag of D with which it is in

correspondence, and we let pbagy,(v) be bagp(v') with the parent v’ of v.
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Let D be a canonical split decomposition of a connected distance-hereditary graph and let T be its
split decomposition tree rooted at r. For each canonical limb L we root its split decomposition tree T

as follows.

1. If the root (node or edge) r of T exists in Lp [B,y], then we assign it as the root of T. In the other
cases, we can easily see that either the root node is removed or a node incident with the root edge

is removed.
2. If the removed node has one neighbor, then we assign this neighbor as the root of T.

3. If the removed node has two neighbors in 7" and they are linked by a new edge in T, then we assign

the new edge as the root of T.

4. If the removed node has two neighbors in 7" and they are identified in ZN“, then we assign the new

node as the root of 7.

The following observation is easy to check from the definition of rooted split decomposition trees of

canonical limbs.

Fact 1. Let D be a canonical split decomposition and let Tp be its rooted split decomposition tree. If w
is a non-root node of the rooted split decomposition tree T of a canonical limb ED [B,y], then w is also

a non-root node of Tp with the property that V (bagp(w)) = V(bagED[B o] (w)).

For two disjoint bags B and B’ we denote by Tp[B, B’] the component of D\V(B) containing B’.

For conciseness, for every non-root node v of T, we define that

fi(D,v) := fp(pbagp(v), To[pbagp (v), bagp (v)])
fa(D,v) := fp(bagp(v), To[bagp(v), pbagp (v)])-

A node v of T is called k-critical if f1(D,v) = k and v has two children v; and vy such that
fl(DaU].) = fl(D7U2) =k.

From now on, let G be a fixed connected distance-hereditary graph and we fix a root r for the
split decomposition tree Tp of the canonical split decomposition D of G. We remark that since G
has rank-width at most 1, by Lemma Irw(G) < |logy|V(G)]]. For convenience, we denote by
lrwbd := |log, |V (G)]].

For each non-root node v of Tp and each 1 < j < Irwbd, we define the following.

1. Let DY, 4 be any canonical limb £p[pbag,(v),y] with an unmarked vertex y in

Tp[pbagp(v), bagp(v)]

represented by a marked vertex in pbagp(v); and let T}"

nbd D€ the rooted split decomposition tree
of Dy ud-

2. Let

aj := max{fi(D],w) : w is a non-root node of 77'}.

If ay # j, then let DY | = DY and T}, := T}. If ¥ = j, then

- 114 -



(a) if (T} has a node with at least 3 children w such that fi(Dj,w) = j) or (T} has two incom-
parable nodes v; and vp with a j-critical node vy and f(Df,vs) = j) or (T} has no j-critical
nodes), then let DY =D} and T} | :=T}.

(b) if T} has the unique j-critical node v., then let DY _; := LND; [bagD; (ve), y] with y any un-
marked vertex in Tpv[bagp.(vc), pbagpe (ve)] represented by a marked vertex in bagp. (vc)
. J J J

and let T} be the rooted split decomposition tree of DY_,.

The following can be derived from Theorem and Proposition [5.10

Proposition 9.6. Let 0 < j < Irwbd. Let v be a non-root node of Tp such that o < j and T} contains

neither

e a node with at least 3 children w such that f1(D},w) = af,

nor
v_

e two incomparable nodes vy and vy such that vy is a o

critical node and fi (D;-’,vg) =aj.

v_

J
of + 1 if and only if rw(D}_,) = f2(Dj,w) = af.

Let w be a af-critical node of T}. Then w is the unique aj-critical vertex of T}. Moreover, lrw(l/)\}’) =

Proof. Let k := «af. We first show that w is the unique k-critical node of T}. Let w’ be a k-critical
node of T} that is distinct from w. From the second assumption, w and w’ must be comparable in Ty.
Without loss of generality, we may assume that w is a descendant of w’ in T 7. Then by the definition
of k-criticality, v’ has a child w” such that fi(Dj,w”) = k and w is not a descendant of w” in T7,
contradicting to the second assumption.

Now we claim that lrw(ﬁ\;’) = k + 1 if and only if f2(D?,w) = k. By the assumption on k and
by Theorem lrw(l/)\;’) < k + 1. Also, by definition one can see that Dy = DY for all k < £ < j.
Let w; and ws be the two children of w such that fi(D},w1) = fi(Dj,w2) = k. By assumption for
all the other children w’ of w we have f1(D},w") < k — 1. So, by Theorem it remains to check
fD;(bagD; (w), pbagD; (w)) = f2(D},w) = lrw(D¥_,) to conclude whether Irw(D¥) = k + 1. Therefore,
we can conclude that lrw(D}_;) = fo(D7, w) = k implies that rw(D?) > k + 1.

For the forward direction, suppose that h“w(D]V) = k + 1. Since T} contains no node having
at least three children w such that fi(D},w) = k, by Theorem there should exist a k-critical
node v, of T} such that fg(D;’,UC) = k. Since w is the unique k-critical node of 17, w = v and
f2(DY, w) = rw(DY_,) = k, as required. O

Let v be a non-root node of Tp and let k := max{lrw(lm) : v is a non-root vertex of Tp}. From
Theorem we can easily observe that k < lrw(m)) < k + 1. We discuss now how to determine
it precisely. By Proposition the computation of lrw(m)) can be reduced to the computation of
f2(Dppas Ve) where v, is the unique k-critical node of D}, 4. In order to compute it, we can recursively
call the algorithm on D/Z: However, we will prove that these recursive calls are not needed if we

compute more than the linear rank-width.

Lemma 9.7. Let v be a non-root vertex of Tp. Let ¢ be an integer such that 0 < i < Irwbd. If of < 1,

then aj | <i+1.

Proof. Suppose that of, ; > ¢+ 2. By the definition of D}, D} = D}, ; and therefore, of > i + 2, which

yields a contradiction. O
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Before describing the algorithm we prove the following which states that the choice of canonical

limbs in the definition of the D}’s is not important.

Proposition 9.8. Let v be a non-root vertex of Tp. Let i be an integer such that 0 < i < Irwbd and
a? <i. Letw be a non-root node of TY. Then, o < i and DY is locally equivalent to .fjpg [pbagpy (w), y]

for any unmarked vertex y in Tpr[pbagp. (w), bagps (w)] represented by a marked vertex in pbagp.(w).

Proof. Let w be a non-root vertex of 7. By Fact for each 7 + 1 < j < Irwbd, w € V(T}) and
hence w € V(Tp). Moreover, since af < i, by Lemma af < jforalli+1<j < [logy|V(G)].
Now, we claim that for each i < j < Irwbd and each unmarked vertex y in Tpy [pbagDr]q (w), bag . (w)]
represented by a marked vertex in pbagp. (w), L DY [pbagpw (w),y] is locally eqﬁivalen to D¥. We prove
it by induction on (lrwbd — j). ] ]

If j = lrwbd, then Dy, ., and D}, are both limbs in D, and hence by Proposition we can

conclude that Dy, 4 is locally equivalent to a canonical limb

(w), ]

LDl?wbd [pbanglr/wbd

with an unmarked vertex y in Tpv[pbagp. (w), bagp. (w)] represented by a marked vertex in pbagp. (w).
J J J

Now let us assume that ¢ < j < lrwbd, and let y be an unmarked vertex in

Tpy,,[pbagpy  (w),bagpy  (w)]

represented by a marked vertex in pbag pY,, (w). By induction hypothesis DY, is locally equivalent to
~ J
Lpv [pbagDIU 9 (w),y]. Assume first that af,; < j. Then, by Proposition and Lemma we can

Irwbd

conclude that a¥’

i S Since by definition in that case D} = D74 and Dy = DY,,, we can conclude

Jj+1
the statement.

Assume now that aj,; = j+ 1. Since aj,; = j+ 1 and af < j, T}, should have a unique

(j + 1)-critical vertex v. such that D} := ED;;H[bagD;H(vC),yC] with y. some unmarked vertex in
Ty, [bagD;_,+1 (ve), pbagD;H (ve)] represented by a marked vertex in bagD;_,+1 (ve). Let y be any unmarked
vertex in Tpy, | [pbagD;_J+1 (w), bagDJu_+1 (w)] represented by a marked vertex in pbagD;_JJr1 (w) and let y' be
any unmarked vertex in Tpy [pbagD; (w), bag (w)] represented by a marked vertex in pbagpy (w). We

or v, is a descendant of w in T, ;. Since

distinguish two cases: either v. is incomparable with w in T’} T

J+b
w is a vertex of T}, w cannot be a descendant of ve.

Case 1. v, is incomparable with w in T} ;.
Since v, is incomparable with w in T}, ; and v, is the unique (j + 1)-critical vertex in T}, ;, there is
which is by inductive hypothesis and Lemma |4.8|the split decomposition

tree of £~D;+1 [pbagD;Jrl (w),y]. Hence, DY = DY, by definition. By Proposition 5.1 ED;_J [pbagD:79 (w), 9]

no (j+1)-critical vertex in 7} 4,

is locally equivalent to L DY, [pbag DY, (w),y]. Hence, we can conclude that D} is locally equivalent to
Lpy [pbagD}, (w),y'] because DY = DY, ; and D}, is locally equivalent to £D;g+1[pbagD;+l(w),y] by
inductive hypothesis.

Case 2. v. is a descendant of w in T}, ;.

If v, is a child of w in T}, and the bag bagp. (w)) has size 3, then T} cannot contain w as a node,

and this contradicts the assumption that w is a node of 7. Therefore, we may assume that either
L. |bagp,,, (w)| =4, or

2. |bagp,,, (w))| = 3 and v, is not a child of w in T}, .
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This implies that v, is a node of the split decomposition tree of D’ := END;H[pbagD;H(w),y],
and by Proposition ZD; [pbagD; (w),y'] is locally equivalent to £p:[bagp, (v.),z] where z is any
unmarked vertex in Tp[bagp (v.), pbagp (v.)] represented by a marked vertex in bagp (v.). By in-
ductive hypothesis, we know that D}, is locally equivalent to D', and by definition v, is also the
unique critical node of 77 ;, and moreover D} = Lpw _ [bag DY, (ve), #'] for some unmarked vertex 2’ in

Tow,, [bang+1 (ve), pbangJrl (ve)] represented by a marked vertex in bang+1 (ve). Hence, by Proposition
iy J J J

5.18 L pr [bagp/(ve), 2] is locally equivalent to DY, that is, L [bagp (ve), 2] is locally equivalent to Dy,
and this concludes the proof. O

Now we are ready to present and analyze our algorithm. We describe the algorithm explicitly in
Algorithm First, we modify the given decomposition as follows. For the canonical split decompo-
sition D’ of a distance-hereditary graph G, we modify D’ into a canonical split decomposition D of
a connected distance-hereditary graph by adding a bag R and making it adjacent to a bag R’ of D’
so that f(D,R,D[V(D")]) = lIrw(G). So, if we root Tp at the node r such that bag,(r) = R, then
Irw(G) = lrw(m) with bagp(r') = R'. We call (D, R) a modified canonical split decomposition of G.
The basic strategy is to compute lrw(ﬁ\f ) for all non-root vertices v of Tp and all integers i such that

af < i, and we will use Proposition and the canonical split decompositions DY for j < i.

Proof of Theorem[9.1} Let G be a connected distance-hereditary graph. We recall that Irwbd = |log, |V (G)|].
We first show that Algorithm [1| correctly computes the linear rank-width of G. Let (D, R) be a modified
canonical split decomposition of G and let v’ be the unique neighbor node of the root of Tp. As we
observed, we have that lrw(G) = h"vv(ﬁ’;ﬁi)7 and we want to prove that 8" = lrw(m). We claim
that for each non-root node v of Tp and each 0 < 7 < Irwbd such that o < ¢, Algorithm,@’;’ = lrw(l/)\f).

Suppose v is a non-root leaf node of Tp. Since every canonical limb is connected by Lemma [5.5)
Dy g is isomorphic to either a complete graph or a star and it has moreover at least two unmarked
vertices. Thus, lrw(D/ﬁM;j) =1, and by construction for each 0 < ¢ < Irwbd, D} = Dy, .4, and so Line
correctly puts these values.

We assume that v is a non-root node in Tp that is not a leaf, and for all its descendants v’ and
integers 0 < £ < Irwbd such that azl < ¢, ,8}/ is computed (i.e. ﬁé’l # 0). We claim that Line
recursively computes D for each ¢ where of < i. We first remark that for computing «; of T}, we use
the fact that for each non-root node w of T, o}’ < ¢ and lrw(ﬁl‘-‘\’) = f1(Dy,w) from Proposition
So, af = max{f} : w a non-root node w of T}.

Let i € {0,1,...,lrwbd} such that o <. If oY <4, then by the definition, TV ; = T and thus, we
take DY ; = DY. We may assume that o = 4. If either 7} has a node with at least 3 children v’ such
that 5;’/ = ¢, or T has two incomparable nodes v; and ve with v1 an i-critical node and §;? = 4, then
from the definition of Dy, we have that D} ; = Dy and for all 0 < ¢ <i—1, aj =i > {. Since we do
not need to evaluate 57 when of > ¢, we stop the loop. If T} has no i-critical node, then 8 = o = 1,
that is, the 87 value cannot be increased by one. In this case, we also stop the loop. These 3 cases are
the conditions in Line [

Suppose neither of the conditions in Line@occur. Then by Proposition T? has a unique ¢-critical
node v, and DY_; is equal to some canonical limb L py[bagpy (ve),y] where y is some unmarked vertex
in Tpy[bagp. (vc), pbagpy (ve)] represented by a marked vertex in bagp. (ve). So, we compute Dy_; from
D7?, the rooted split decbmposition tree T)” ; of DY ; and compute subsequently «;_ ;. Notice that for
all of ; <€<i—1, Dy = Dy, and thus it is sufficient to deal with Dg. in the next iteration. Thus,

Line [8} [[2] correctly computes canonical split decompositions D} for each i where o = i.
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Algorithm 1: CompUTE LRW orF CONNECTED DH GRAPHS
Input: A connected distance-hereditary graph G

Output: The linear rank-width of G
1 Compute a modified canonical split decomposition (D, R) of G.
2 Let 8Y « 0 for each non-root node v and each 0 < i < Irwbd = |log,|V(G)|]

3 For each non-root leaf node v in Tp and each 0 < ¢ < Irwbd, let 37 « 1
4 while Tp has a non-root node v such that 5}, .4 is not computed do

5 Let v a non-root node in Tp such that 5, .4 = 0, but /J’ﬁ;,bd # 0 for each child v’ of v

6 Compute Df g Divwba a0d o pg

7 k <— oppd> © < k, and let S be a stack

8 while (true) do

9 if (T? has a node with at least 3 children v’ such that 8¢ =) or (T} has two

incomparable nodes v and vy with v1 an i-critical node and 5;* =1i) or (T} has no

i-critical nodes) then

10 t Stop this loop

11 Find the unique ¢-critical node v, of T};

12 Compute DY _,, TV | and o,

13 push(S,i) and i «— af_;

14 if (T has a node with at least 3 children v’ such that Y = i) or (T has two incomparable

nodes v1 and ve with v an i-critical node and B;* = i) then B¢ «— i+ 1 else Y « i
15 while (S # &) do

16 j < pull(S)

17 if By = j then 7 — j+ 1 else ] < j
18 for { —i+1toj—1do

19 | 6B

20 1< J

21 for j — k+1 to Irwbd do
22 L By — By

23 Let 7’ be the unique neighbor of the root and return g} l

Now we verify the procedure of computing 37 in Line Let 0 < ¢ < t be the minimum integer
such that of = ¢. If £ = 0, then 8y = 1. Suppose ¢ > 1. Then since oy_; > ¢ — 1, we have that

1. By = £+ 1 if either T} has a node with at least 3 children v such that 8§ = ¢ or T} has two

incomparable nodes v; and vy with v, an é-critical node and 8;2 = 1,
2. By = L if otherwise.

So, Line [14] correctly computes it.
In the loop in Line |8} we use a stack to pile up the integers 7 such that 7}’ has the unique ¢-critical

node. When 7T} has the unique ¢-critical node, then by Proposition @
1. gy =i+ 1if g7, =i, and

2. BV =iif B, <i—1.
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So, from the lower value in the stack we can compute 3 recursively. From Line to Line
Algorithm [I] computes all 37 correctly where o < 4, and in particular, it computes 3;. Therefore, at
the end of the algorithm, it computes 3} " that is equal to the linear rank-width of G.

Let us now analyze its running time. Let n and m be the number of vertices and edges of G. Its
canonical split decomposition can be computed in time O(n +m) by Theorem and one can of course
a modified canonical split decomposition (D, R) in constant time.

For each node v and each 0 < j < lrwbd, B;’ can be computed in time O(n - log, n). Line [5| can be
done in time O(n). For computing o from T, for each non-root vertex w of T, we call the value 5.
Since o} is the maximum 3} over all non-root nodes of T}, Line [6] or [12] can be done in O(n) time.

The loop in Line |8 runs Irwbd times, and all the steps in Line (8 can be implemented in time O(n).
Also, Lines can be done in time O(n). Since the number of bags in D is bounded by O(n) (see

[99, Lemma 2.2]), we conclude that this algorithm runs in time O(n? - log, n). O

Corollary 9.9. For every connected n-vertex distance-hereditary graph G, we can compute in time

O(n? -logyn) a layout of the vertices of G witnessing the linear rank-width of G.

Proof. We establish a linear layout witnessing lrw(G) = k. Let G be a connected distance-hereditary
graph. Let D be a modified canonical split decomposition of G with the root bag R. We first run the
algorithm computing lIrw(G) and assume that for each non-root vertex v of Tp and each 0 < i < Irwbd
such that of <1, 87 is computed.

Then using the values 3}/,,,4, We can search for the path depicted in Lemma and this can be done
in linear time. Now for all the subtrees pending on that path, the linear rank-width of the corresponding
limbs are at most k — 1. We recursively apply the same algorithm on each of them. Then, similarly in
the backward direction of Theorem we can output a linear layout witnessing lrw(G) = k.

Note that the total number of the recursive calls is bounded by the number of bags. Therefore, we
make at most O(n) recursive calls and in each call, the path is found in O(n). So, if all of the 8?’s are

computed before, then we can compute an optimal layout in time O(n?). O

9.3 Path-width of matroids with branch-width at most 2

Now we prove that the path-width of matroids of branch-width at most 2 can be computed in
polynomial time, provided that the matroid is given by an independent set oracle. Note that by Corol-
lary every matroid of branch-width at most 2 is binary. We use the direct relation between binary
matroids and bipartite graphs, mentioned in Section [2| [I50].

Proof of Corollary[9.2 Let M be a matroid of branch-width at most 2 and assume that an independent
oracle of M is given. We first run a greedy algorithm to find a base B of M [I506, Section 1.8] in time
O(|E(M)|). After choosing one base B, for each e € B and ¢’ € E(M)\B, we test whether (B\{e}) u {e}
is again a base using the independent set oracle, and we create the fundamental graph G with respect
to M in time O(|E(M)|?). By Proposition the rank-width of G is at most 1. Using Theorem
we can compute the linear rank-width of G in time O(|E(M)|? - logy|E(M)|), which is the same as
pw(M) — 1. O
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Chapter 10. Linear rank-width 1 vertex deletion

We discuss a graph modification problem related to graphs of linear rank-width 1, which are called

thread graphs. We recall the problem.

THREAD VERTEX DELETION (LINEAR RANK-WIDTH 1 DELETION)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S € V(G) of size at most k such that G\S is a thread graph?

We prove the following.

Theorem 10.1. For a fized k and a given graph G with n vertices, the Thread Vertex Deletion problem

can be solved in O(8* - n¥) time.

Theorem 10.2. There exists a polynomial-time algorithm that transforms a given instance (G, k) of the

Thread Vertex Deletion problem into an instance (G', k') such that
1. (G, k) is a YEs-instance if and only if (G', k') is a YES-instance,

2. K <k and |V(G')| < O(k33).

We use the induced subgraph obstructions for thread graphs in Theorem [5.22] We recall that the
obstructions consist of a house, a gem, a domino, and induced cycles of length at least 5 in Figure |5.1
which are the induced subgraph obstructions for distance-hereditary graphs [9], and 14 induced subgraph
obstructions for thread graphs that are distance-hereditary, depicted in Figure We define Qp as the
set of graphs in Figure Because the following sets are frequently used, we define that

e Qr := {house, gem, domino, hole} U Q, and
e Qn := {house, gem, domino, Cy, Cq, C7,Cs} U Q.

One of the main ingredient is to investigate a new class of graphs, called necklace graphs, which
are close to thread graphs. Briefly, necklace graphs are locally thread graphs, but they may have a
long induced cycle. We show that every connected graph having no induced subgraph in € is either a
necklace graph or a thread graph, and it is easy to find a minimum vertex set on ) y-free graphs whose
removal makes a given graph a thread graph. We first use a simple branching algorithm to remove the
obstructions in Qy with the time complexity O*(8%) because every graph in Q7 has at most 8 vertices.
(The O* notation indicates that polynomial factors of an input size are suppressed.) If the instance does
not have an obstruction in Qy, then it is an Qy-free graph, and we compare the remaining budget with
the minimum deleting set in the Qy-free graph to decide whether it is a YES-instance.

To obtain a polynomial size kernel, we adapt an idea used to obtain a polynomial size kernel for
PROPER INTERVAL VERTEX DELETION due to Fomin, Saurabh, and Villanger [90]. When a finite list
of graphs is fixed, they use Sunflower lemma to find a small vertex set T in G satisfying that a set is a
minimal hitting set for the list in G if and only if it is a minimal hitting set for the list in the subgraph

of G induced on T'. From the property of T', automatically, the remaining part obtained by removing T’
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has no induced subgraph in the list. For our purpose, this will be an Qn-free graph, and after adding at
most one vertex from each component of G\T, we obtain a vertex subset T” of size polynomial in k such
that G\T" is a thread graph. We analyze how to shrink the remaining part.

For a graph G, a set S € V(G) is called a thread vertex deletion set if G\S is a thread graph.

We recall thread blocks and thread graphs defined in Section [I.I] A thread graph is a graph that
is either an one vertex graph or G = P ® Bp for some directed path P and some set of thread blocks
Bp mergeable with P. In the next subsection, we study graphs which are defined using directed cycles

instead of directed paths.

10.1 Necklace graphs

We generalize the construction of thread graphs from directed paths to directed cycles. A connected
graph G is a mecklace graph if there exist a directed cycle C, called the underlying directed cycle, and
some set of thread blocks Bo mergeable with C' such that G = C © Be.

Our FPT algorithm and the construction of a polynomial size kernel rely deeply on the following

characterization of Qy-free graphs.

Theorem 10.3. A connected Qn -free graph is either a thread graph or a necklace graph whose underlying

directed cycle has length at least 9.
We use the following lemma several times to find one of the forbidden graphs in each induction step.

Lemma 10.4. Let k > 4 be an integer. Let G be a graph and let v € V(G) such that G\v is a path
p1P2 -+ - Dk, and v is adjacent to both p1 and py in G. Then G contains an induced subgraph isomorphic

to a house, a gem, a domino, or an induced cycle of length at least 5.

Proof. The neighbors of v divide G\v into edge-disjoint paths I = {Py,..., P} where the end vertices
of each P; are two neighbors of v and all internal vertices of P; have degree 2 in G. If one of the path in
I has length at least 3, then together with v, G contains an induced cycle of length at least 5. We may
assume that each path in I has length at most 2.

If there exist two consecutive paths P;, P; 1 such that one has length 1 and the other has length 2,
then G contains a house. So, we may assume that all paths Py, Ps, ..., P, have the same length. If all
paths in I have length 1, then G contains a gem because k > 4. If all paths in I have length 2, then
G contains a domino. Therefore, we conclude that G has an induced subgraph isomorphic to either a

house, a gem, a domino or an induced cycle of length at least 5. O

Let G be a connected Qy-free graph and suppose that G is not a thread graph. Since G is Qn-free
and it is not a thread graph, by Theorem G has an induced subgraph isomorphic to Cj for some
k = 9. We prove by induction on |V(G)] that if C is a shortest cycle among induced cycles of length at
least 9 in G, then G is a necklace graph whose underlying directed cycle is C. Let C := (vy,va, ..., vk, v1)
be a shortest cycle among induced cycles of length at least 9 in G and we regard it as a directed cycle
where for each 1 < j < k, v;v;41 is an arc.

If G = C, then we are done because C itself is a necklace graph with the underlying directed cycle
C. We may assume that |V(G)| > |V(C)|. We may choose a vertex v € V(G)\V(C) such that G\v is
connected. Clearly, G\v is again Qy-free graph, and C' is a shortest cycle among induced cycles of length

at least 9 in G\v. By the induction hypothesis, there exists some set of thread blocks Bo mergeable with
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C such that G\v = C © B¢. The remaining part of this section devotes to prove that G = C' ® By, for
some set of thread blocks Bf, mergeable with C'.

For convenience, let vii1 := v1 and vgy2 := vy. Let Bo := {B(z,y) : xy is an arc of C} such that
for each 1 < j < k, B(v;,v+1) is a thread block (Bj,0;,#;) with a linear layout ¢; and a labelling ¢;.
We define that

S := {house, gem, domino, Cs,Cs, ...,Cr_1} U Qu,

M := {B(vj,vj41) : v has a neighbor in V(B;)\{v;,v;+1}}
The proof consists of three steps.

Lemma 10.5. If there are two non-adjacent neighbors of v on C, then G contains an induced subgraph

isomorphic to a graph in S.

Lemma 10.6. If M contains at least two thread blocks of Bc, then either G contains an induced subgraph

isomorphic to a graph in S or G is a necklace graph whose underlying directed cycle is C'.

Lemma 10.7. If the neighbors of v are contained in one thread block of Bco, then either G contains an

induced subgraph isomorphic to a graph in S or G is a necklace graph whose underlying directed cycle is

C.

Using Lemmas |10.5| and and excluding some small cases, we can show that the neighbors of v
should be contained in one thread block. Then, with Lemma [10.7] we conclude our claim.

For an induced path P of a graph G and v € V(G)\V(P), we say (P,v) is a bad pair in G if P has
length ¢ where 3 < ¢ < k — 3, and v is adjacent to the end vertices of P. Lemma [10.4] tells us that if G
has a bad pair (P,v), then G contains an induced subgraph isomorphic to a graph in S.

We first prove Lemma [10.5

Proof of Lemma[10.5 Suppose that v has two neighbors on C that are not consecutive. Let I = {i :
vv; € E}. If there exist two vertices v;,v; in I such that one of the two paths from v; to v; in C has
length ¢ where 3 < ¢ < k — 3, then the path together with v is a bad pair in G.

By the assumption, there exists two distinct vertices v;,v; in I where the distance from v; to v; on

C is 2. Therefore, G contains an induced subgraph isomorphic to either a; or ay which are in S. O
To prove Lemma we need to analyze several cases.

Lemma 10.8. If B(v;,v;+1) € M for some 1 < j < k and v is adjacent to a vertex in V(C)\{vj_1,v;,vj41,Vj42},

then G contains an induced subgraph isomorphic to a graph in S.

Proof. Let z € V(B;)\{v;,vj+1} be a neighbor of v and let w € V(C)\{v;_1,v;,v;+1,v;42} be a neighbor
of v. Since the maximum distance between two vertices in C' is |k/2], there exists an induced path P
from w to z in G\v having length ¢ where 3 < ¢ < |k/2| + 1 < k — 3. Thus, (P,v) is a bad pair, and by
Lemma G contains an induced subgraph isomorphic to a graph in S. O

Lemma 10.9. If B(v;,v;4+1) € M for some 1 < j <k and vv;_1 € E, vv;1 ¢ E, then G contains an

induced subgraph isomorphic to a graph in S.

Proof. Let z € V(B;)\{v;,v;1+1} be a neighbor of v. See Figure for the descriptions of cases. If
z has a label {R} or {L, R}, then (vj_1vzv;11,v;) is a bad pair in G. Let us assume that z has a

label {L}. Since vjvj;1 is an arc of the directed cycle C' and by definition of thread blocks which is
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j—1 I Vj4d

Figure 10.1: Two cases in Lemmam

@(0;1(2)) # {L}, z is not a pendant vertex adjacent to v; in G'\v, and therefore, there exists at least
one element 2z’ € V(B;) preceding z in the linear layout o; of B(v,,v;4+1) such that it has label {R} or
{L,R}. From the previous case, we may assume that v is not adjacent to z’. Then (v;_1vz2'v;11,v;)
is a bad pair in G. Again, by Lemma G contains an induced subgraph isomorphic to a graph in
S. O

Lemma 10.10. If B(vj_1,v;), B(vj,vj41) € M for some 1 < j <k andvv;_1 ¢ E and vvj11 ¢ E, then

G contains an induced subgraph isomorphic to a graph in S.

Proof. Let zj_1 € V(Bj—1)\{vj—1,v;} and z; € V(B;)\{v;,vj11} be neighbors of v. If z; has a label {R}
or {L, R}, then either (z;_1vzvj41,v;) or (vj_12j_1vV%;V;41, ;) is a bad pair in G depending on the
adjacency between v;_; and z;_1. We may assume that z; has a label {L}. Since z; is not a pendant
vertex adjacent to v; in G'\v, there exists at least one element z}; € V(B;)\{v;,v;j 41} preceding z; in the
linear layout of B(vj,v;11) that has alabel {R} or {L, R}. In this case, we have either (z;_1vz;2}vj11,7;)
or (vj-12j-1v2j2;vj+1,v;) is a bad pair in G depending on the adjacency between v;_; and z;_1. Thus,

G contains an induced subgraph isomorphic to a graph in S, as required. O

Lemma 10.11. If B(vj_1,v;) € M for some 1 < j < k, vvj41 € E and Ng(v) < V(Bj_1) v
V(Bj)\{vj_1}, then either G contains an induced subgraph isomorphic to a graph in' S or G is a necklace

graph whose underlying directed cycle is C'.

Proof. Let zj_1 be a neighbor of v in V(B;_1)\{vj_1,v;}. If z;_1 has alabel {L, R} or {L} in B(v,_1,v,),
then (vj_12j_1vvj41,v;) is a bad pair in G, and we are done by Lemma [10.4] Thus, we may assume
that all neighbors of v in B(vj_1,v;) have a label {R}, and are all pairwise non-adjacent. If there exists
a vertex zi_, with z;_1 <,,_, i, and a label {L} or {L, R}, then (v;_12}_,z; 1vv;41,v;) is a bad pair
in G. Since we can reorder between the vertices having the same neighbors in G, we may also assume
that all the neighbors of v in B(v;_1,v;) are the last vertices in the order o;_; before v;.

We forbid the following 4 configurations. See Figure for the description of these configurations
(in this order).

1. v has a neighbor w in V(B;)\{v;,vj11} with £;(w) = {R}.
- (2j—1vvj41w,v) is a bad pair in G.
2. There exists a vertex w of V(B;)\{v;,v,;4+1} with ¢;(w) = {L, R} such that vw ¢ E.

- (zj—1vvj41w,v;) is a bad pair in G.

3. There exists a pair of vertices wy and wy in V(Bj)\{vj,vj41} with vwy,vws ¢ E, w1 <5, wo,
Ej(wl) = {R}, and ﬁj(wz) = {L}

- (zj—1vvj1w1w2, v;) is a bad pair in G.
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Uj

Uj

Uji+ j—1 Uj+ j—1 Uj+

Figure 10.2: Forbidden configurations in Lemma |10.11

4. There exists a pair of vertices wy and wo in V(B;)\{v;,v;j41} with vwy € E, vws ¢ E, w1 <,; wa,
Ej(w1> = {LvR}a and éj(wQ) = {L}

- (zj—1vwiwe, v;) is a bad pair in G.

In all of the four cases, by Lemma G contains an induced subgraph isomorphic to a graph in S.
Now we may assume that G does not have any of these 4 configurations. In particular, by the forbidden
configurations (1) and (2), we may assume that all vertices in V(B;)\{v;,vj1+1} with a label {L, R} are
adjacent to v, and all vertices in V(B;)\{v;,v;4+1} with a label {R} are not adjacent to v.

Let z be the first vertex of V(B;)\{vj,v;4+1} in the sequence ¢;. Note that z has no label {L}
because v;vj41 is an arc of the directed cycle C. If = has a label {R}, then vw ¢ E, and all vertices
in V(B;)\{vj,vj+1} with a label {L} must be adjacent to v because of the forbidden configuration (3).
Similarly, if = has a label {L, R}, then vw € E, and all vertices in V' (B;)\{v;,vj4+1} with a label {L} must
be adjacent to v because of the forbidden configuration (4). It implies that all vertices in V/(B;)\{v;, vj 11}
with a label {L} or {L, R} are adjacent to v.

Now we claim that

Bi_, = G[V(B;-1)\Nc(v) v {v;}]

and
B} = G[V(Bj) u {v} u Ng(v)]

are new thread blocks with the same end vertices. Clearly, B;-_l is a thread block with the end vertices
vj—1 and v; because we just remove some vertices from V(B;_1)\{v;—1,v;}.
For B}, we define a linear layout ¢’ and a labeling ¢/ of B’ as follows. We take any linear layout o,
of the vertices of Ng(v) n (V(B;j-1)\{v;}). Let o; be the linear layout obtained from ¢; by removing v;
and vj4;. Let
a} = (vj,0) D0, Doy D (Vjt1)-

We define that

L £5(v;) == {R} and £}(vj11) := {L},

2. U}(v) := {L, R} or {R} depending on vv; € E or not,

3. for all neighbors w of v in B(v;_1,v;), £;(w) = {L}, and

4. for all w e V/(B;)\{vj,vj+1}, £5(w) = £;(w).

Since all vertices in V(B;)\{v;,v;+1} with a label {L} or {L, R} are adjacent to v, v has no conflict with
vertices in the linear layout o;. Since all neighbors w of v in B(v;_1,v;) are not adjacent to the vertices
in V(B;j)\{vj,vj+1} and are pairwise non-adjacent, we conclude that B’ is indeed a thread block with
the end vertices v; and v;1.

Since there are no edges between V(B’_;)\{v;-1,v;} and V(B})\{v;,v;+1}, we conclude that G is
a necklace graph whose underlying directed cycle is C. O
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Proof of Lemma[10.6. Suppose that M has at least two blocks.
If B(vj,vj+1) € M for some 1 < j < k and v is adjacent to a vertex in V(C)\{v;j—1,vj,vj41,v;42},
then by Lemma G contains an induced subgraph isomorphic to a graph in S. We may assume that

if B(vj,vj+1) € M for some 1 < j < k, then v has no neighbors in V(C)\{vj_1,v;j,vj41,vj+2}

Case 1. There exist two blocks B(vp, vpi+1), B(vg, vg41) € M such that B(vy, vpi1), B(vg, vg+1) are not
consecutive thread blocks.

Let z, € V(B,) and z, € V(By) such that z, and z, are neighbors of v in G. Since B(vp, vpt1)
and B(vg,vq41) are not consecutive, the distance between {vp,vp41} and {vg,vg41} on C is at least 1
and the longest possible distance between two vertices in C' is at most |k/2|. Thus, G\v has an induced
path from z, to z, of length ¢ where 3 < ¢ < |k/2] + 2. Since k > 9, by Lemma G contains
an induced subgraph isomorphic to a house, a gem, a domino, or an induced cycle of length ¢ where
5<U<|k/2|+4< k-1

Case 2. M contains exactly two blocks that are consecutive in G\v.

Suppose that M = {B(vp, vp+1), B(Vpt+1,Up+2)} . From the assumption, we may assume that v has
no neighbors on V(C)\{vp_1, Vp, Upt1, Upt2,Vpt3} in G. Also, if v is adjacent to both v, and vy, then
G contains an induced subgraph isomorphic to either a1 or ay. So, we may assume that v is not adjacent
to both of v, and vpia. Let 2,41 be the first vertex of V(Bpt1)\{vp+1, vpt+2} that is adjacent to v. Let
zp be a neighbor of v in V(B,)\{vp, vp+1}.

If v is adjacent to v, and not adjacent to v,49 in G, then since v has a neighbor on B(vp41,vp12), by
Lemma G contains an induced subgraph isomorphic to a graph in S. If v is adjacent to neither v,
nor vy in G, then since v has neighbors on B(vy, vp4+1) and B(vp41,vp12), by Lemma[10.10} G contains
an induced subgraph isomorphic to a graph in S. At last, if v is not adjacent to v, and adjacent to vp4o
in G, then

Ng(v) = V(By) 0 V(Bpi1)\{vp}

and by Lemma [10.11] either G contains an induced subgraph isomorphic to a graph in S, or G is a

necklace graph whose underlying directed cycle is C. O

Now we prove Lemma We will use structural properties of distance-hereditary graphs in this
proof. For detailed incremental characterization of distance-hereditary graphs, we refer to [104]. We

denote by G + v the graph obtained from G by adding a new vertex v and new edges incident with v.

Proof of Lemma[I0.7 Suppose that Ng(v) € V(B;) for some 1 < j < k, and G has no induced subgraph
isomorphic to a graph in S. If Ng(v) = {v;}, then we can extend the thread block B(v;_1,v;) into a
thread block containing v; by putting it as the last second vertex. Suppose that Ng(v) # {v;}.

We claim that G[V(B;) u {v}] is a thread block with the same end vertices v; and vji;. If it is
true, then it directly implies that G is a necklace graph because v has no neighbors on the other thread
blocks except the vertices of C.

We regard G[V(B;_1) v V(B;) v V(Bjt+1) u {v}] as a graph obtained from the union of three
consecutive thread blocks by adding a vertex v. If it is not a thread graph, then it should have an
induced subgraph isomorphic to an induced cycle H of length at least 9 that contains v. However,
since v; and vj4q are cut vertices in G[V(B,_1) v V(B;) u V(Bj4+1) v {v}] and v has no neighbors on
(V(Bj-1) uV(Bj+1))\V(By), H should be contained in B;. But then H\v is an induced path of length
at least 7, while the longest induced path in a thread block has length 3, it is a contradiction. Therefore,
G[V(Bj-1) v V(B;) uV(Bji1) u {v}] is a thread graph.

- 125 —



Let D; be the canonical split decomposition of G[V(B;_1) u V(B;) u V(Bj4+1)]. We use one vertex
incremental characterization of canonical split decompositions of distance-hereditary graphs, developed
by Gioan and Paul [104]. For a distance-hereditary graph G and v ¢ V', they characterize the conditions
for G + v being distance-hereditary. Since G[V(B;_1) u V(B;) u V(B,+1) u {v}] is a thread graph
(especially, distance-hereditary graphs), its canonical split decomposition can be modified from D;. The

new vertex v is placed in either
e (Case 1) a bag of D,
e (Case 2) a new bag put between two bags of D;, or
e (Case 3) a new bag put between two bags by splitting one bag of D;.

If v is placed in a bag of D;, then it implies that v and some vertex of B(v;,v;11) have the same
neighbors in G, and since Ng(v) = {v;}, v is not placed in the bag containing v,;. Thus, we can naturally
extend the linear layout and the labelling of B(v;,vj4+1) into G[V(B;) u {v}]. In Case 2 or 3, the new
bag containing v cannot be a star bag whose center is an unmarked vertex because G\v is connected.
Therefore, depending on the type of the bag containing v, we can also naturally extend the linear layout
and the labelling of B(vj,v;41) into G[V(B;) u {v}]. For instance, if the new bag is a star bag and the
center is adjacent to the previous bag, then we give a label {L} on v. This extends the thread block

B(vj_1,v;) with the vertex v, and G is again a necklace graph whose underlying cycle is C. O
Now we prove the main result of this section.

Proof of Theorem[10.3 Let G be a connected Qy-free graph and suppose that G is not a thread graph.
Since G is Qn-free and it is not a thread graph, by Theorem [5.22] G has an induced subgraph isomorphic
to Cy for some k > 9. We prove by induction on |V (G)| that if C is a shortest cycle among induced
cycles of length at least 9 in G, then G is a necklace graph whose underlying directed cycle is C'. Let
C := (v1,va,...,Vk,v1) be a shorest cycle among induced cycles of length at least 9 in G and we regard
it as a directed cycle where for each 1 < j < k, vjv;41 is an arc.

If G = C, then we are done because C' itself is a necklace graph with the underlying directed cycle
C. We may assume that |[V(G)| > |[V(C)|. We may choose a vertex v € V(G)\V(C) such that G\v is
connected. Clearly, G\v is again Qy-free graph, and C'is a shortest cycle among induced cycles of length
at least 9 in G\v. By the induction hypothesis, there exists some set of thread blocks B¢ mergeable with
C such that G\v = C ® Bo. We prove that G is a necklace graph whose underlying directed cycle is C.

For convenience, let vgiq := vy and vgio := ve. Let Bo := {B(z,y) : xy is an arc of C} such that
for each 1 < j < k, B(v;,v;4+1) is a thread block (Bj,0;,¢;) with a linear layout o; and a labelling ¢;.
We recall that

S = {house, gem, domino, Cs,Cs, . ..,Cr_1} L Qu,

M = {B(vj,v;41) : v has a neighbor in V(B;)\{vj, vj41}}.

Since G is connected, v has at least one neighbor. Since G is S-free, by Lemma v is adjacent
to at most two vertices of C' and if v has two neighbors on C', then they must be consecutive. Also, by
Lemma the number of indices j such that v has a neighbor on V(B;)\{vj,v;+1} is at most 1.

Suppose that v has a neighbor on V(B;)\{vj,vj41} for some 1 < j < k. If v has a neighbor on
V(C)\{vj—1,vj,vj41,vj42}, then by Lemma G contains an induced subgraph isomorphic to a graph

in S. So, we may assume that v has no neighbors on V(C)\{vj_1,v;,vj11,vj42}. If vv;_1 € E(G;), then
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w1 ¢ E(G;), and by Lemma G; contains an induced subgraph isomorphic to a graph in S. If
vj42 € E(G;), then vu;_q,vv; ¢ E(G;), and therefore,

Ng, (v) = V(B;j) v V(Bj41)\{v;}-

i

By Lemma [[0.11] either G contains an induced subgraph isomorphic to a graph in S, or G is a necklace
graph whose underlying directed cycle is C.

Therefore, we may assume that the neighbors of v on C' are contained in {v;,vj41}. So, Ng,(v) <
V(Bj) and by Lemma either G contains an induced subgraph isomorphic to a graph in S, or G is
a necklace graph whose underlying directed cycle is C.

We conclude that G is a necklace graph whose underlying directed cycle is C. O

10.2 A fixed parameter tractable algorithm for Thread Vertex

Deletion

We prove that THREAD VERTEX DELETION is fixed parameter tractable.

Theorem 10.12. For a given graph G with n vertices, THREAD VERTEX DELETION can be solved in
time O(8% - n®).

Our algorithm is a branching algorithm that reduces a given instance to an Q) y-free graph. For this,
it suffices to hit all induced subgraphs isomorphic to a graph in Qy by Theorem As each graph
of Qn has size at most 8, the announced complexity follows. It remains to prove that given an Qy-free
graph, a minimum thread vertex deletion set can be found in polynomial time. In fact, we prove that

such a set has size at most one per component and identifying such a vertex requires polynomial time.

Lemma 10.13. Let G be a necklace graph. Then there exists a vertex v such that G\v is a disjoint

union of connected thread graphs.

Proof. Let C be a directed cycle (v1,vg, ..., vk, v1) where for each 1 < j <k, vjv,41 is an arc. Suppose
that G = C © B¢ for some set of thread blocks Be where Bo = {B(v;,vj4+1) = (Bj,05,¢;) : 1 < j < k}.
Let vpyq :=v1.

We show that for each 1 < < k, G\v; is a disjoint union of a thread graph and one vertex graphs.
Without loss of generality, we assume that ¢ = 1. Let S be the set of all pendant vertices adjacent to v;
in G. We claim that G[V(G)\(S u {v1})] is a connected thread graph. Since S is a disjoint union of one
vertex graphs in G\vy, it is enough to show the claim. Since viv; is an arc of C, the vertices of S are
contained in B(vg,v1).

Suppose that V(Bg)\(S U {v1}) # {vg}. Since V(By)\S has no pendant vertices adjacent to v; in G,
the last vertex z in the linear layout oy, except S U {v1} must have a label either {L, R} or {L}. It is easy
to check that B(uvg,2) = (V(Br)\(S U {v1}),0},£}) is again a thread block where o}, is the restriction of
o on V(Bp)\(S u {v1}), and

0 (z) = { bp(z) ifx+#2z
{L} ifx==z
IfV(Bi)\(Su{v1}) = {v}, then we can regard B(v—_1, vi) as the last thread block of G[V(G)\(Su{vi})].

Similarly, if V(B1)\(S v {v1}) = {ve}, then we can regard B(va,vs) as the first thread block of

G[V(G)\(S U {v1})]. If otherwise, we regard B(vy, v2)[V (B1)\(S U {v1})] as the first thread block. Let y
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be the first vertex in the linear layout oy except V(B1)\(S U {v1}). We conclude that G[V (G)\(S v {v1})]
is a thread graph on a directed path P where

Va3 -+ * Uk if V(Br)\S\{v1} = {vr} and V(B1)\S\{v1} = {va},
YUU3 * - - Vg if V(Bg)\S\{v1} = {vr} and V(B1)\S\{v1} # {va},
VoUs3 -+ + Vg 2 if V(B)\S\{v1} # {vx} and V(B1)\S\{v1} = {v2},

YU2V3 -+ - VR Z otherwise.

P=

From Lemma [10.13] we can find a minimum thread vertex deletion set on necklace graphs in poly-

nomial time. To find such a set in polynomial-time, we use the following lemma.

Lemma 10.14. Let G be a necklace graph whose underlying directed cycle has length at least 9 and let
v € V(G). For a positive integer i, let N;(v) be the set of vertices z whose distance from v is exactly i in
G. Then G[{v} u N1(v) U Na(v) U N3(v)] is a thread graph containing two consecutive thread blocks of
G. Moreover, every cut vertez of G[{v} u N1(v) U Na(v) U N3(v)] is a vertex of the underlying directed

cycle.
Proof. Suppose that there exist a directed cycle C := (v1,v2, ..., v, v1) where for each 1 < j <k, vjvj41
is an arc, and some set of thread blocks B where Be = {B(vj,vj+1) = (Bj,05,¢;) : 1 < j < k}, such

that G = C' ® Be. Without loss of generality, we may assume that v € V(By).
First assume that v = v1. Then N;(v) contains all vertices with a label {L} or {L, R} in B;. Also,

Ns(v) contains all vertices with a label {R} in Bj, and therefore
B C {1)1} U Nl(vl) U NQ(Ul).

Similarly,
Bk c {Ul} ) Nl(Ul) ) NQ(’Ul).

So, G[{v1} U N1(v1) U Na(v1)] contains two consecutive thread blocks of G. By the same reason, it is
not hard to observe that G[{v2} U Ni(v2) U Na(v2)] contains two consecutive thread blocks By and Bs.

Now suppose that v € V(B1)\{v1,v2}. Since Ny(v) contains one of v; and ve, by the previous case,
we can observe that G[{v} U N1(v) U Na(v) U N3(v)] contains two consecutive thread blocks in G. Since
C has length at least 9, G[{v} U N1(v) U Na(v) U N3(v)] cannot contain all vertices of C, and it implies
that G[{v} U N1(v) U Na(v) U N5(v)] is a thread graph.

Now we claim that every cut vertex of G[{v} U Ni(v) U Na(v) U N3(v)] is a vertex of the underlying
directed cycle. Since G[{v} u N1(v) U Na(v) U N3(v)] is a thread graph with at least two thread blocks,
there exists a cut vertex w of it. Suppose that w € V(B;)\{vj,vj11} for some 1 < j < k. We first
show that vj,v;41 € V(G[{v} U N1(v) U Na(v) U N3(v)]). If v € V(Bj), then this is clear because
G[{v} U N1(v) U No(v)] contains B; as an induced subgraph. We may assume that v ¢ V(B;). Since
G[{v} U N1(v) U N2(v) U N3(v)] is connected, without loss of generality, G[{v} u Ni(v) U Na(v) U N3(v)]
contains v;. However, since G[{v} u Ni(v) U Na(v) U N3(v)] contains w, G[{v} u Ny (v) U N2(v)] contains
v, and it implies that G[{v} U N1(v) U Na(v) U N3(v)] contains v;41 as well. We conclude that both v,
and vj41 are contained in V(G[{v} u N1 (v) U Na(v) U N3(v)]).

The vertices v; and vj41 are on the same component of G[{v} U N1 (v) U Na(v) U N3(v)]\w as they are
adjacent. Then all vertices of V(Bj)\w are contained in the same component of G[{v} U Ni(v) U Na(v) U
N3 (v)\w, contradicting to the assumption that w is a cut vertex of G[{v} U Ny(v) U Na(v) U N3(v)].
Therefore, w € V(C). O
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Proposition 10.15. Let G be an Qpn-free graph with n vertices and m edges. We can compute the

minimum thread vertex deletion set of G in time O(n + m).

Proof. We remark that each component of G is either a thread graph or a necklace graph whose underlying
directed cycle has length at least 9. For each component H of GG, we test whether H is a thread graph
or not in time O(|V(H)| + |E(H)|) using Theorem If H is a thread graph, then we do not need to
remove any vertex from it. If H is a necklace graph, then we need to remove at least one vertex from it
to make G a thread graph. Also, by Lemma[I0.13] it is sufficient to remove one vertex on the underlying
cycle to make H a disjoint union of thread graphs. Thus, the number of non-thread components are
exactly the minimum size of thread vertex deletion set of G.

To identify a deletion set, let H be a necklace graph whose underlying cycle has length at least 9.
Choose any vertex v in H, and for a positive integer 4, let N;(v) the set of vertices z whose distance from
v is exactly ¢ in H. Then by Lemma[10.14] H[{v} U N1(v) U Na(v) U N3(v)] is a thread graph containing
two consecutive thread blocks of G, and its cut vertex is a vertex of the underlying directed cycle. We
compute H[{v} U Ni(v) u Na(v) u N3(v)] in time O(|]V(H)| + |E(H)|) using breadth-first search. Then
we can find a cut vertex of H[{v} u N1(v) U Na(v) U N3(v)] in time O(|V (H)| + |E(H)]); for instance
we use the algorithm by Hopcroft and Tarjan [112]. Since we proceed in time O(|V(H)| + |E(H)|) per
each component H, we can find a minimum thread deletion set in time O(|V(G)| + |E(G))). O

Proof of Theorem[10.12 Let (G,k) be an instance of the Thread Vertex Deletion problem. The first
phase of the algorithm is to find an induced subgraph of G that is isomorphic to a graph in Qy and
branch by removing one of the vertices in the subgraph. Because the maximum size of graphs in Qp is 8,
we can find such a vertex subset in time O(n®) if exists. If no such vertex subset is found, the remaining
graph is Qp-free and the algorithm proceeds to the next phase. After the branching algorithm, we
transform the given instance (G, k) into at most 8% sub-instances (G’,k’) such that each sub-instance
consists of an Qy-free graph G’ and a remaining budget k. It totally takes a time 8% -n8. Clearly, (G, k)
is a YEs-instance if and only if one of sub-instances (G’, k') is a YES-instance.

Let (G', k") be a sub-instance obtained from the branching algorithm. Since G’ is Qp-free, by
Theorem each connected component of G’ is either a connected thread graph or a necklace graph
on a directed cycle of length at least 9. By Proposition we can compute a minimum thread
vertex deletion set of G’ in time O(n + m). So, we can decide whether (G’, k') is a YES-instance in time
O(n +m). Since (G, k) is a YEs-instance if and only if one of sub-instances (G’, k') is a YES-instance,
by checking all sub-instances, we can decide whether (G,k) is a YEs-instance in time 8% - O(n + m).

Therefore, we conclude that the Thread Vertex Deletion problem can be solved in time 8% - O(n®). O

10.3 A polynomial kernel for Thread Vertex Deletion

In this section, we prove that THREAD VERTEX DELETION has a polynomial size kernel.

10.3.1 Hitting small obstructions

Let F be a family of sets over a universe U. A subset U’ < U is called a hitting set of F if for every
set Fe F, FnU' # . For a graph G and a family of graphs F, a set S € V(G) is also called a hitting
set for F if for every induced subgraph H of G that is isomorphic to a graph in F, V(H) n S # . The

following is a crucial ingredient for the polynomial kernel.
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Lemma 10.16 (Fomin, Saurabh and Villanger [90]). Let F be a family of sets of size at most d over a
universe U, and let k be a positive integer. Then there is an O(|F|(k + |F|)) time algorithm that finds
a nonempty set F' = F such that

1. for every U' € U of size at most k, U’ is a minimal hitting set of F if and only if U’ is a minimal

hitting set of F', and
2. |F| <dli(k+ 1)~
Let (G, k) be an instance of THREAD VERTEX DELETION. We apply Lemma [10.16|for the set F of

obstructions of size at most 8 in G.

Lemma 10.17. Let (G, k) be an instance of THREAD VERTEX DELETION. There is a polynomial time
algorithm that either concludes that (G, k) is a No-instance or finds a nonempty set T < V(G) such that

1. G\T is a thread graph,

2. for every set S € V(G) of size alt most k, S is a minimal hitting set for Qn in G if and only if it

is a minimal hitting set for Qn contained in G[T], and
3. |T| <8-8!(k+1)%+k.

Proof. Let F be the set of vertex sets S of G such that G[S] is isomorphic to a graph in Q. Since the
maximum size of a set in F is 8, using Lemma [10.16) we can find a subset F’ of F such that

1. for every vertex subset X < V of size at most k£, X is a minimal hitting set of F if and only if X

is a minimal hitting set of 7', and
2. |F'| < 8l(k+1)8.

Let T" := [Jgc 7 S. From the condition 1, G\T” has no induced subgraph isomorphic to a graph in
Qn and by Theorem G\T" is a graph whose component is either a necklace graph with underlying
directed cycle of length at least 9 or a thread graph. So, using Proposition we can find a minimum
thread vertex deletion set Y of G\T” in polynomial time. If |Y'| = k+ 1, then we conclude that (G, k) is a
No-instance. Otherwise, we add Y to T”, increasing its size by at most k. We conclude that T :=T' vY

is a required set. O

10.3.2 Bounding the Size of G\T

The goal now is to shrink G\T while preserving the solutions. Let us fix in this section an instance
(G, k) of THREAD VERTEX DELETION and also a subset 1" of V' satisfying the conditions in Lemma[10.17]
Let us remark that for every minimal hitting set S for Qy in G, we have that S < T.

A vertex v of G is called irrelevant if (G, k) is a YEs-instance if and only if (G\v, k) is a YEs-instance.

We first show that if a thread block in G\T is large, then we can always find an irrelevant vertex in there.

Lemma 10.18. If G\T contains a thread block (Guy, 0wy, lay) of size at least (k + 2)((8 - 8!(k + 1)% +

k) +2)% + 1, we can find an irrelevant vertex in Gy in polynomial time.
To find an irrelevant vertex, we use the following lemma.

Lemma 10.19. Let G be a graph and let vivavsvavs be an induced path of length 4 in G. If two distinct
vertices wy, wy in V(G)\{v1,va,...,vs} have the neighbors vy and vy in G, then G\vs contains an induced

subgraph isomorphic to a graph in Qn.
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Wy V3
Figure 10.3: Cases in Lemma [10.19

Proof. See Figure for the following cases. If vy is adjacent to w; but not adjacent to ws, then
(v1vawavy, wy) is a bad pair in G\vs. Thus, by Lemma G\v3 has an induced subgraph isomorphic
to a graph in Qx. So, we may assume that for each v € {v1,v5}, v is adjacent to both wy,wy or neither
of them. Depending on the adjacency between {vy,vs} and {w;,ws}, and the adjacency between w; and

ws, we have one of the 6 graphs in Qp, which are ag,as, ..., aq. O

Proof of Lemma[10.18, Suppose that G\T contains a thread block of size at least (k+2)((8-8!(k+1)% +
k) +2)?+1. We compute the canonical decomposition of each component of G\T. Because thread blocks
are divided by unmarked vertices that are the centers of star bags, we can compute the size of each thread
block. Then we can find a thread block of size at least (k + 2)(8-8!(k + 1) + k + 2)? + 1 in polynomial
time. Let B := B(z,y) = (B,0,/) be a thread block of size at least (k + 2)(8-8!(k + 1) + k + 2)% + 1.
For convenience, let ¢’ be the linear layout obtained from o by removing the end vertices x and y.

In the following procedure, we mark some vertices of B in order to find an irrelevant vertex in B.
We set Z .= .

1. For each v of T, choose the first k + 2 vertices z of o’ that are neighbors of v with R € ¢(z), and
add them to Z. If there are at most k£ + 1 such vertices, then we add all of them into Z.

2. For each v of T, choose the last k + 2 vertices z of ¢’ that are neighbors of v with L € £(z), and
add them to Z. If there are at most k + 1 such vertices, then we add all of them into Z.

3. For each pair of two vertices v, v’ in T, choose k + 2 common neighbors of v and v’ in B, and add

them to Z. If there are at most k + 1 such vertices, then we add all of them into Z.

4. Choose the first k + 2 vertices z of ¢/ with R € £(z) and add them to Z. Choose the last k + 2
vertices z of o/ with L € £(z), and add them to Z.

Clearly, we can mark the set Z in polynomial time. The size of Z is bounded by

IT|(2k +4) + |T1*(k +2) + 2k + 4) = (k+ 2)(|T)? + 2|T| + 2)
< (k+2)8-8(k+1)%+k+2)2—2.

Since |V(B)| = (k +2)(8 - 8!(k + 1)® + k + 2)? + 1, there exists a vertex w in V(B)\Z\{x,y}. We claim
that w is an irrelevant vertex.

If (G, k) is a YES-instance, then there exists a vertex set X of size at most k in G such that G\X is a
thread graph. Since (G\w)\X is a thread graph, (G\w, k) is a YEs-instance. Now suppose that (G\w, k)
is a YES-instance and let X < V(G)\{w} such that |X| < k and G\(X v {w}) is a thread graph. We
may assume that G\X is not a thread graph. So, G\X must have an obstruction in Qr that contains
the vertex w.

Since X U {w} is a thread vertex deletion set of G, X U {w} hits all induced subgraphs of Qy in G.
Thus, there exists a vertex subset Y € X n T that hits all induced subgraphs of Qy contained in G[T].
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Figure 10.5: Case 3 in Lemma [10.18

From the property of T', this set Y also hits all induced subgraphs of Qu in G. Since Y € X, G\X must

have an induced cycle of length at least 9 that contains w.

Let C be an induced cycle of length at least 9 containing w in G\X. We will find an induced subgraph
of G\(X u {w}) that is isomorphic to a graph in Qy, which leads a contradiction. Let vy, va, w, v3,v4 be
the consecutive vertices on C. Clearly, v — va — w — v3 — vy is an induced path of length 4 in G\X. We

divide into cases depending on the places of vy and vs.

Case 1. vg,v3€T.

Since vy and v have a common neighbor w in V(B)\Z, Z contains k + 2 common neighbors of v9
and vs. Since | X| < k, there exist two vertices wy,wy € Z\X that are common neighbors of ve and v3.
By Lemma G\(X u {w}) has an induced subgraph isomorphic to a graph in Q.

Case 2. Ezxactly one of va and vs is contained in T.

From the symmetry, we may assume that vy € T and vz ¢ T. Since w ¢ {x,y}, vs is contained in B.

Case 2.1. Re l(w).

Since R € ¢(w), we have L € ¢(v3) and w <, vs, otherwise L € {(w) and we are in Case 2.2. From
the construction of Z, Z contains the first k + 2 vertices z of o’ that are neighbors of ve with R € £(2).
Since |X| < k, we can choose two such vertices wy, w2 contained in Z\X. Since w is not contained in
Z, we have w; <, w,wy <, w, and they must be adjacent to vs in G\X. Therefore, by Lemma
G\(X U {w}) has an induced subgraph isomorphic to a graph in Q.

Case 2.2. L e f(w).

Similar to Case 2.1, we may assume that vs <, w and using the last k + 2 vertices z of ¢’ that are
neighbors of vy with L € £(z), we can verify that G\(X u {w}) has an induced subgraph isomorphic to a
graph in Q.

Case 3. Neither vy nor vs is contained in T.
Since w ¢ {z,y}, va and vs are contained in B. If va <, w <, vs, then R € £(vy), L € £(v3) and it

implies that vsv3 € E. But this contradicts to the assumption that v; — v — w — v3 — v4 is an induced
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path. Similarly, we may assume that vs <, w <, v, and thus, both of v and vz appear either before
w in o or after w in o.

By the symmetry, we may assume that vy and v appear before w in . So, R € £(v3), R € £(v3),
and L € {(w).

Since Z contains the last k + 2 vertices z of o’ with L € ¢(z), there exist two vertices wy, ws from
those k + 2 vertices that are not in X. Since wj,wy appear after w and contain a label L, they are
adjacent to both vy and vs. Therefore, we have that G\(X v {w}) has an induced subgraph isomorphic
to a graph in Qy by Lemma [10.19

In all cases, G\(X u {w}) has an induced subgraph isomorphic to a graph in Q. It contradicts to
the assumption that X u {w} is a thread vertex deletion set of G. Therefore, G\X is a thread graph,
and we conclude that (G, k) is a YES-instance. O

We say that (G, k) is reduced with respect to Lemma if every thread block of G\T has size at
most (k +2)((8-8!(k +1)% + k) + 2)%.

We now focus on the connected components of G\T. By Lemma a connected component of
G\T is large if it contains a large number of thread blocks. We show that large components can be shrunk.
The idea is that if a component is formed by a large number of thread blocks, then we can identify a
sequence of consecutive thread blocks not touched by any obstruction. This allows us to contract one of
these “safe” thread blocks, say B(z,y), to a vertex v such that Ne\r(v) = (Nevr(z) U Nevr (y))\B(z, y),
hence reducing the input graph. We first prove that every obstruction in {1, 82, 83, B4}, see Figure

either does not hit 7" or hits T in at least two vertices.

Lemma 10.20. Let U < T such that for every u € U, there exists S, S V such that Sy 0T = {u}
and G[Sy] is a graph in {B1, e, Bs, Ba}. If |U| > k, then (G, k) is a No-instance; otherwise, (G, k) is a
YEs-instance if and only if (G\U,k — |U|) is a YES-instance.

Proof. We claim that every minimal thread vertex deletion set in G contains U. Let S be a minimal
thread vertex deletion set in G. Then there exists a vertex subset S’ = S such that S’ is a minimal
hitting set for graphs of Qx in G[T']. From the property of T', S’ is also a minimal hitting set for graphs
of Qn in G, and we must have U < S’ < S because S’ hits the sets S, for each u € U, that induces a
graph of {31, B2, B3, B4}. It also implies that if |U| > k, then (G, k) is a No-instance. Otherwise, since U
is always contained in any minimal thread vertex deletion set of G, we have that (G, k) is a YES-instance
if and only if (G\U, k — |U|) is a YES-instance. O

By Lemmas [10.18| and [10.20] we can assume now that each thread block has size at most (k + 2)((8-
8!(k 4+ 1)® + k) + 2)? and any obstruction from {31, B2, B3, B4} either does not hit T" or contains at least

two vertices from T'. We can with these assumptions prove that any connected component is small.

Lemma 10.21. If G\T has a connected component with at least 19(6(8-8!(k+1)® + k) +1) thread blocks,
then we can in polynomial time transform G into a graph G' with |V(G")| < |V(G)| such that (G, k) is
a YESs-instance if and only if (G',k) is a YES-instance.

Proof. Suppose that G\T has a component H such that H consists of at least 19(6(8-8!(k+1)® + k) + 1)
thread blocks. Let £ be the sequence By, Bo, ..., B; of thread blocks of H.

We claim that every vertex v of T' has neighbors in at most 6 thread blocks of H. Let v € T" and
for contradiction, suppose that v has neighbors in at least 7 thread blocks. Then we can choose three
thread blocks By, , Bt,, B, having a neighbor of v in G such that
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1. By,, B:,, Bi, appear in this order in £, and
2. tg—t1 23,13 —t2 = 3.

So, every vertex in By, has no neighbors on By, in H, and every vertex in B, has no neighbors on By,
in H. For each i € {1,2,3}, let p; be a neighbor of v in By,. Since each thread block of H has at least
two vertices, we can choose a neighbor ¢; of p; in By, for each i € {1,2,3}. Depending on the adjacency
between v and the vertices ¢, g2, q3, we have an induced subgraph of G that is isomorphic to a graph in
{B1, B2, B3, B4} such that it has exactly one vertex of T. This contradicts to the assumption that (G, k)
is an instance reduced with respect to Lemma [10.20]

Now, for each vertex v of T', we mark the thread blocks B of H if it has a neighbor in B. Since the
number of thread blocks in H is at least 19(6(8 - 8!(k + 1)% + k) + 1) and 19(6(8 - 8!(k + 1)8 + k) + 1) —
6(8-8!(k+1)% + k) > 18(6(8 - 8!(k + 1) + k) + 1), there exist consecutive non-marked thread blocks
B(vi,,viy), B(vig, vig)s - .-, B(vi,,, vi,,,,) in £ where m > 18.

We choose a thread block B(v;,,vi,,,) = (Bi,,0i,,%,) where d —1 > 8 and m —d > 9. Note
that since m > 18, such a thread block exists. We transform the graph G into a smaller graph G’ by
removing the vertices of V(B;,) and adding a new vertex z such that Ng/(z) = Ng(z) u Ng(y). Let H’
be the component of G'\T that is modified from the component H of G\T'. Since we remove at least two
vertices from G and add one vertex, we have |V (G')| < |V(G)|.

Now, we show that (G, k) is a YEs-instance if and only if (G’, k) is a YES-instance. Suppose that G
has a minimal thread vertex set X. We first assume that X nV(B;,) # & and let g € X nV(B;,). Since
X is a minimal thread vertex deletion set and all small obstructions of {2y are contained in G\V(B;,), ¢
must hit an induced cycle of length at least 9 in G, and the cycle must pass through the vertices = and
y. Thus, (X\V(B;,)) u {2z} is a thread vertex deletion set of G’ with |(X\V(B;,)) u {z}| < k.

Let us assume that X n V(B;,) = &J. Suppose G'\X is not a thread graph, otherwise, (G', k) is a
YEs-instance. Then G\ X must have an induced cycle C of length at least 9 intersecting the new vertex
z. The cycle obtained from C by replacing z with the edge zy is also an induced cycle of length at least
9 in G\X. It contradicts to the assumption that G\X is a thread graph.

Now suppose that G’ has a minimal thread vertex deletion set X. If z € X, then z hits an induced
cycle of length at least 9 in G’ because of the minimality of X and the distance from z to the vertices of
T. Because x hits all induced cycles of length at least 9 in G having a vertex of V(B;,), (X\{z}) u {z}
is again a thread vertex deletion set of G.

Assume that z ¢ X. Suppose G\X is not a thread graph, otherwise, (G, k) is a YEs-instance. So,
G\X has an induced subgraph isomorphic to an induced cycle C of length at least 9 passing through z
and y. Let C’ be the cycle obtained from C' by replacing the edge xy with the vertex z. This cycle C’
clearly exists in G'\X and it has length at least 9 because it should contain at least one vertex from the
thread blocks d —1 > 8 and m —d > 9. This contradicts to the assumption that G\ X is a thread graph.
We conclude that (G, k) is a YEs-instance if and only if (G’ k) is a YEs-instance. O

We can now assume that every connected component of G\T has size bounded by
19(48 - 8!(k +1)8 + 6k + 1) - (k +2)(8-8!(k +1)% + k +2)%
It remains now to bound the number of connected components which we show in the next two lemmas.

Lemma 10.22. If G\T has at least 2(8 - 8!(k + 1)® + k) + 1 connected components containing at least

two vertices, then we can find an irrelevant vertex in polynomial time.
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Proof. If a component H of G\T contains no vertices having a neighbor in T, then we do not need to
remove any vertex of H because H is a thread graph. Thus, (G, k) is a YEs-instance if and only if
(G\V(H), k) is a YES-instance. So, we may assume that every component of H contains a vertex having
a neighbor in 7.

Let C be the set of components of G\T which consist of at least two vertices. Since every component
of H has a vertex having a neighbor in T, if |C| > 2(8 - 8!(k + 1) + k), then there exists a vertex
u € T such that u has neighbors in three distinct components of C. Since each component of C has at
least two vertices, there exists a vertex subset S of G such that S induces a graph in {81, 82, 083, 84}
and S N T = {u}. It contradicts to the assumption that (G, k) is an instance reduced with respect to
Lemma O

Lemma 10.23. If G\T has at least (8 - 8!(k + 1)® + k)2 - (k + 2) + 1 isolated vertices, then we can find

an wrrelevant vertex in polynomaial time.

Proof. Let S be the union of isolated vertices in G\T. If a vertex in S has no neighbors in T, then it is
an irrelevant vertex. We may assume that every vertex in S has a neighbor in T

We define a set Z, similarly in the proof of Lemma For each pair of two vertices in T, choose
k + 2 common neighbors in S, and add them to Z. If there are at most k + 1 common neighbors, then
we add all of them into Z. Since |S| > (8- 8!(k + 1)® + k)2 - (k + 2), there is a vertex w in S\Z.

We claim that w is an irrelevant vertex of the problem. If (G, k) is a YES-instance, then there exists
a vertex subset X of size at most k in G such that G\X is a thread graph. Since G\(X v {w}) is also a
thread graph, (G\w, k) is a YES-instance.

Suppose that (G\w, k) is a YES-instance. We choose a minimal vertex set X in G\w such that
|X| < k and G\(X u {w}) is a thread graph. We may assume that G\X is not a thread graph. Let
X' € X u {w} be a hitting set for Qn in G[T]. Then by the property of T', X’ also hits all induced
subgraphs in G that are isomorphic to a graph of Q. Since X already hits all small obstructions in G,
there exists an induced cycle C of length at least 9 in G\ X containing w.

Let wy, wo be the neighbors of w on the cycle C'. Since wy, w2 have k + 2 common neighbors in Z, we
may choose two vertices 21, zo € Z\X that are common neighbors of w; and wy. By Lemma we have
that G\(X u {w}) has an induced subgraph isomorphic to a graph in 2, which implies that G\(X u {w})

is not a thread graph. It is a contradiction, and we conclude that (G, k) is a YEs-instance. O

10.3.3 Kernel size

Let us now piece everything together and analyze the kernel size.

Proof of Theorem[10.3 Let (G, k) be an instance of THREAD VERTEX DELETION. We may safely assume
that G has at most k& connected components and that none of them is a thread graph. Let T < V be a
vertex subset satisfying Lemma

By Lemma we may assume that for every vertex subset S € V such that G[S] is a graph
of {1, B2, B3, B4}, |S n T| = 2. Combining Lemma and Lemma we can assume that every
connected component of G\T has size at most (k+2)(8-8!(k+1)8 +k+2)2-19(6(8-8!(k +1)% + k) + 1)
(otherwise the instance can be reduced in polynomial time). Finally by Lemma and Lemma

we can assume that the number of non-trivial components of G\T' is at most 2(8-8!(k + 1)® + k) and the
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number of isolated vertices in G\T is at most (8- 8!(k + 1)® + k)?(k + 2). It follows that

VAT <2(8-8(k+1)% +k)-19(6(8-8/(k+1)®+k) +1)-(E+2)((8-81(k+ 1)+ k) +2)?
+(8-81(k+ 1)+ k)?- (k+2) = O(k*?)

Considering the number of components of G, we conclude that the kernel size is O(k33).
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Chapter 11. Rank-width 1 vertex deletion

We discuss a graph modification problem related to distance-hereditary graphs. We recall the

problem.

DISTANCE-HEREDITARY VERTEX DELETION (RANK-WIDTH 1 DELETION)
Input : A graph G, an integer k

Parameter : &k

Question : Is there a vertex subset S € V(G) of size at most k such that G\S is distance-hereditary?

We investigate a fixed parameter tractable algorithm for DISTANCE-HEREDITARY VERTEX DELE-
TION.

Theorem 11.1. For fized k and an input graph G with n vertices, the DISTANCE-HEREDITARY VERTEX

DELETION problem can be solved in time 20(k108k) . nO1)
Because the following sets are frequently used, we let
e Qp := {house, gem, domino, hole}.

We recall that G is distance-hereditary if and only if G has no induced subgraph isomorphic to a graph
in Qp. For a graph G, a set S € V(G) is called a DH deletion set if G\S is distance-hereditary.

We use the technique, called iterative compression. The iterative compression tool was firstly devel-
oped for the Odd Cycle Transversal problem (vertex deleting to bipartite graphs) by Reed, Smith and
Vetta [I64], and further developed for various problems [48] [62] [70, [T08, 116l OT]. Especially, we use
a similar idea of Cao and Marx [45] to prove that Chordal Vertex Deletion (vertex deleting to chordal
graphs) can be solved in time 20(kloghk) . ,O1),

We formulate a new problem, usually called a compression problem, as follows.

DISTANCE-HEREDITARY COMPRESSION (G, t, S)

Input : A graph G, an integer t < k, S € V(@) of size at most k+ 1 where G\S is distance-hereditary
PARAMETER : k

Question : Is there a vertex subset S’ < V(G)\S of size at most ¢ such that G\S’ is distance-

hereditary?

We prove the following.

Theorem 11.2. The DISTANCE-HEREDITARY COMPRESSION problem can be solved in time 2€(k10gk) .

nPW) where n is the number of vertices of G.

We first prove Theorem [I1.1] assuming Theorem

Proof of Theorem[11.1} Let G be a graph such that V(G) = {vy,vs,...,v,} and let k be a positive
integer. For each 1 < i < n, let G; := G[{v1,vs,...,v;}]. Note that ¢J is a DH deletion set of G; because

(G is distance-hereditary.
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Assume S; is a DH deletion set of size at most k for G;. Then clearly G;+1\(S; U {vi+1}) is also
distance-hereditary. If there exists a DH deletion set of size at most k in G, then G;; must have a DH
deletion set of size at most k. We show how to find one for G, 1, if exists.

We guess a subset S’ of S; U {v;11} that will be included in a DH deletion set of size at most & for
Gi+1. This means that we will not remove the vertices of (S; U {v;41})\S’. We have at most 2**! many
branchings from this point, and for each subset S’, we solve the DISTANCE-HEREDITARY COMPRESSION
problem with the instances

(Giga\S' k= [S'], (S U {via \S).

We can easily see that G has a DH deletion set of size at most k& if and only if one of the DISTANCE-
HEREDITARY COMPRESSION problems is a YES-instance.
Since the DISTANCE-HEREDITARY COMPRESSION problem is solved in time 20(klogk) . nO) 1y

assumption, the DISTANCE-HEREDITARY VERTEX DELETION problem can be solved in time n - 25+ .
(QO(k:logk) . nO(l)) _ 2(9(k:logk) . 77,0(1). O

From now on, we concentrate on the DISTANCE-HEREDITARY COMPRESSION problem. For each
compression, we will branch at most O(k*) subproblems of the DISTANCE-HEREDITARY COMPRESSION
problem with smaller k. Since each branching will decrease k, these branchings appear (O(k?%))**! in

total. Therefore, we can solve the DISTANCE-HEREDITARY COMPRESSION problem in time (O(k*))*+!.
20(k log k) . nO(l) — 20(k logk) . nO(l).

We have three steps to design an algorithm for the DISTANCE-HEREDITARY COMPRESSION problem.
Let k be a positive integer and let ¢ < k + 1, and let G be a graph with n vertices and let S € V(G) of

size at most ¢ where G\S is distance-hereditary,

1. We first search a house, a gem, or a domino in G in time O(n°) and if we find one of the subgraph,
then we branch by removing one of the vertices in the subgraph, that are not contained in S.
Since we are not allowed to remove vertices in S, if the obstruction is contained in S, then it is a

No-instance. By this preprocessing, we may assume that G is {house, gem, domino}-free.

2. We find a shortest hole X in G, and branch by removing some vertex on the hole. To do this,
we pick some vertices of X, and we will call them junctions. We find a shortest hole X in time
O(n*(n +m)) as follows. We guess four consecutive vertices vy, vs,v3,v4 in G and find a shortest

path from vy to vy in

G\{v2, v3}\((N (v2) U N(v3))\{v1, va}).

3. We show that the number of junctions in the hole is bounded by O(k3). If each interval has
length at most 6, then we branch along all vertices of H. Otherwise, we have some intervals with
length longer than 6. For such a long interval, we will show that we can find a same solution
from other solution by replacing the part on that interval with some vertex separator between two
end junctions. We will show that in a distance-hereditary graph, we can find a minimum vertex
separator of two distinct vertices in polynomial time. We branch along a minimum vertex separator

for each long interval to have a smaller instance. This finalizes the algorithm.

For easier discussion, we introduce one notion in canonical split decompositions. A walk in a graph
G is a nonempty sequence vivs - - v of vertices in G such that v;v;11 € E(G) for each 1 < i <k — 1.

Let D be the canonical split decomposition of a connected graph G. For two unmarked vertices v, w in
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D, a walk in D from v to w is called a semi-alternating walk W in D if there are no two consecutive
marked edges in W. We sometimes remove vertices to break a certain structure, and it makes a given
decomposition disconnected. Note that two vertices are connected by a path in the original graph, then
there exists a semi-alternating walk between the two vertices (they can use the same edges even if the
corresponding structure in the original graph is a path), and if two vertices are disconnected, then there

is no semi-alternating walk between the vertices.

We prove that a shortest hole in {house, gem, domino}-free graphs has a special property that for
every vertex v outside the hole, the number of the neighbors of v on this hole is at most 3 and they
are close to each other. This is an essential property to obtain an FPT algorithm for the DISTANCE-
HEREDITARY VERTEX DELETION problem. We again use Lemma[I0.4] to show it.

Lemma 11.3. Let G be a {house, gem, domino}-free graph and let X be a shortest hole in G. If
ve V(G\V(X), then v has at most 3 neighbors on X that have pairwise distance at most 2 on X.

Proof. Let X = vivg---vvy and let I = {i : vv; € E(G)}. Suppose there exist two vertices v;,v; in I
such that one of the two paths from v; to v; in C has length ¢ where 3 < £ <t — 3. By Lemma
G contains an induced subgraph isomorphic to either a house, a gem, a domino, or an induced cycle of
length ¢ where 5 < ¢ < t—1. It contradicts to that G is {house, gem, domino}-free and X is the shortest
hole of G. O

Let X be a shortest hole in G. Since we are solving the DISTANCE-HEREDITARY COMPRESSION
problem, we have V(X) n S # ¢J, and V(X) n S forms a disjoint union of induced paths in G. Note
that the number of paths of V(X) n S is at most k + 1 because |S| < k + 1.

In the next section, we define junctions on V(X) n S.

11.1 Junctions on the shortest hole

As we discussed before, we will mark some vertices of the hole to divide it into intervals, and call
them junctions. We first analyze general properties of induced paths between two vertices in a distance-

hereditary graph using its canonical split decomposition, and we will adapt those properties into G\S.

11.1.1 Induced paths between two vertices in a distance-hereditary graph

Let H be a connected distance-hereditary graph with at least two vertices and let Dy be the
canonical split decomposition of H, and z,y be two distinct vertices of H.
Let B, By be the bags of H such that = € B, and y € B,. Then there is a path P of bags

B, = By,Bs,...,B: = By
of D connecting B, and By, because H is connected. In the order of bags from B; to B; on P, let
B|,Bj,...,B.

be the star bags whose centers are neither adjacent to a vertex of the previous bag nor the next bag.
For each 1 < i < r, we let w; be the center of B] and let U; be the set of unmarked vertices of Dy
represented by w;.

We characterize induced paths from z to y in H.
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Lemma 11.4. Let QQ be an induced subgraph of H. Then the following are equivalent.
1. @ is an induced path from x toy in H.
2. Foreach 1 <i<r, |[V(Q)nUi| =1 and V(Q\(U,<,<, Ui) = {z,y}

Proof. For convenience, let qp := x and ¢,.41 := y. First suppose that for each 1 < i <7, V(Q)nU; = {q;}
and V(Q)\(U,<i<, Ui) = {z,y}. Note that for each 0 < i <, ¢; is adjacent to all vertices in U; 11 because
they are linked by alternating paths in Dy. Thus, it is easy to observe that xqi1qs - - - ¢,y is an induced
path in H.

If @ is an induced path from z to y in H, then |V(Q) n U;| = 1 otherwise, there is no semi-
alternating walk from « to y in D, which means that z and y are disconnected in H. If [V(Q) nU;| = 2
for some 1 < j < r, then two vertices in V(Q) n U; will be adjacent to at least two of z, y, a vertex
of V(Q) nU;_1 and a vertex of V(Q) n Uj4+1. It implies that @) contains a subgraph isomorphic to Cj.
Thus, |V(Q) nU;| =1 for each 1 < i < r, and since the set

( U v@n U») O f.y)

1<i<r

already forms an induced path from x to y in H, there are no other vertices of @ in H. O

As a corollary, we can easily determine the distance from x to y in H, and minimal separators of x

and y in H.
Lemma 11.5. The distance from x toy in H is r + 1.
Proof. This is clear from Lemma [11.4] O

Lemma 11.6. A vertex set S of H is a minimal separator between x and y if and only if S = U; for

some 1l <1< m.

Proof. 1If S = U, then there is no semi-alternating walk from z to ¢ in Dy, and therefore, S is a separator
between z and y in H. For S’ & S, we can choose a vertex s in S\S’ so that we can link from z to y by
a semi-alternating walk using s. This means that S is a minimal separator between = and y in H.
Suppose S is a minimal separator between x and y in H. If |[V/(G\S)nU;| = 1 for each 1 <4 < r, then
by Lemma there exists an induced path from z to y in G\S, which contradicts to the assumption.
Thus, U; < S for some i, and by the above argument, U; = S. O

Note that (|, <i<r U,) separates H into several connected components, where two of them, say C,
and C,, contain z and y, respectively. Since each component of H\(|J,,<, Ui) may connect at most
two sets U; directly, we can naturally partition the components C' of H\(|J;,<, Ui) except C, and C,

as follows.

1. For each 1 <i <, let C; be the set of components C' of H\({J,¢;<, Us) such that C has a vertex

linked to a vertex of U;, and no vertex linked to a vertex of U; where j # i.

2. For each 1 < j < r — 1, let D; be the set of components C' of H\(|, <<, Ui) such that C has a

vertex linked to a vertex of U; or U;;1, and no vertex linked to a vertex of U; where j # 7,7 + 1.

It is not hard to observe that for 1 <i <r and C € C;, Ny(C) € U;.
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11.1.2 Junctions

We recall that we are solving the DISTANCE-HEREDITARY COMPRESSION problem with an instance
(G,t,S) where t < k and G is {house, gem, domino}-free, and X is a shortest hole of G. Let D be the
canonical split decomposition of G\S. We remind that (G\S)[X] is a disjoint union of paths.

Let P := pop1 -+ - Pm+1 be one of the paths of (G\S)[V(X)]. Consider the two end vertices py and
Pm+1 in G\S, and let B, By, ., be the bags of G\S such that py € B, and p,, € B, In the order
in D, let

m+1°

of bags from By, to B

Dt
B|,Bj,...,B.

be the star bags whose centers are neither adjacent to a vertex of the previous bag or the next bag. For

each 1 < i < r, we let w; be the center of B and let U; be the set of unmarked vertices of D represented

by w;, and we define sets C;, D; for each 1 < i < r similarly in the previous section. From Lemma [11.5)

we can easily deduce that r = m.

For each 1 <i <r — 1, we define

Mi::U,.u<Uc>u(Uc),

CECi CEDi

and
M, :=U, v (U C’).
CeC,.
Note that if ¢ # j, then M; n M; = .
A vertex p on the path P is called a junction if p = pg, or p,,11, or there exists a vertex v € M;
having a neighbor in S where 1 < i < m. We say a vertex s € S witnesses a junction p; if either s is
adjacent to pg or p;, 41, or there exists a vertex v € M; such that v is adjacent to s.

The following lemma gives a bound on the number of junctions.

Lemma 11.7. If a vertex s € S witnesses at least 5k + 5 junctions on P, then G has k + 1 holes where

the intersection of them is exactly s. This implies that (G,t,S) is a NO-instance.

Proof. Let s € S, and let pj,,pj,,--.,pj, be the junctions on P in the order that are witnessed by s. We
assume that ¢ > 5k + 5. For each 1 < m < ¢, we choose a vertex w;,, € M;  adjacent to s.

For each 0 < m < k, we choose an induced path P, from wj, ., to wj, ., in G\S. Since the
smez a0d Bjg
Wy, s> Dy Lemma this path P,, has length at least 3. Note that for each 0 < m < k — 1,
V(Pm) N V(Pry1) = &, because B
i # j, then V(P;)) n V(P;) # .

Since G is {house, gem, domino}-free, by Lemma [10.4] each graph G[V(P,,) U {s}] contains a hole

having s. So, G has k+1 holes whose pairwise intersection is exactly the vertex s. Since we are solving the

two bags B; are on the path from the bag containing wj;,, ., to the bag containing

smss 1S & separator between V(P,,) and V(P,,+1), and moreover, if

DiISTANCE-HEREDITARY COMPRESSION problem, it is not allowed to remove this vertex s, and therefore,
(G,t,S) is a No-instance. O

From Lemma[11.7] we may assume that the total number of junctions on P is at most (5k+4)(k+1)
because |S| < k+ 1. Since (G\S)[X] has at most k + 1 components, the total number of junctions on X
is at most (5k + 4)(k + 1)2.

Now we describe the branching step based on these junctions. If we do not break the hole using the

vertices near junctions, we need to remove some minimum separator between two consecutive junctions,
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otherwise, we still have a hole of same size. Lemma [11.6| gives a way to find a minimum separator

between two vertices in G\S.

11.1.3 Breaking long intervals

Lemma 11.8. Let p; and p; be two consecutive junctions on P such that j — ¢ = 4. Ewvery hole in
G containing a vertex of Uy for some i + 2 < £ < j — 2 also contains one vertex from each Uy for

1<l <j—1.

Proof. Let Y be a hole in GG, and suppose that Y contains a vertex of Uy for some i +2 < ¢ < j — 2, but
does not contain a vertex from Uy for some i +1 < £/ < j — 1. Since Uy is a separator between U; 1 and
Uj—1 in G\S and the hole Y cannot end inside of G\S, this hole Y should intersect on one of U; ;1 and
U,;_1 with at least two vertices. By symmetry, we may assume that £ < ¢ and thus [V (Y) n U;41| = 2.

If |Y n M;| < 1, then Y is contained in G\S, which is a contradiction. Therefore, we may choose two
vertices x,y in U;y1 that have distinct two neighbors 2’,3' in M;. However, by the definition of splits,
z,y should be completely adjacent to 2,4, which contradicts that they are vertices on an induced cycle.

It is clear that Y cannot have two vertices from some Uy, otherwise, H contains a subgraph isomor-

phic to a cycle of length 4 with two vertices in Up_1 and Up 1. O

From the previous lemma, if we do not remove some vertex on X that has distance < 1 from
junctions, we need to remove some minimal separator between two junctions in G\S. Therefore, we
guess one of the intervals between two consecutive junctions p; and p; to clear, and for that interval, it is
enough to find a minimal separator between U; 41 and U;_; in G\S, and remove it. Note that if (G, ¢, 5)
is a YES-instance, then the number of total intervals is at most (5% + 5)(k + 1) by Lemmam

11.2 Distance-Hereditary Compression problem

Now we prove the main result of this chapter.

Proof of Theorem[I1.2. Let (G,t,S) be an instance of the DISTANCE-HEREDITARY COMPRESSION prob-
lem. We first search an induced subgraph isomorphic to either a house, a gem, or a domino and if we find
one, then we branch into instances (G\v,t — 1, S\{v}) by removing one of the vertices v in the subgraph.
It takes O(n®) time. By this processing, we may assume that G is {house, gem, domino}-free. We find
a canonical split decomposition D of G\S in time O(n + m). Next, we find a shortest hole X of G in
time O(n* - (n +m)) as follows. We guess four consecutive vertices vy, vs,v3,v4 as a part of X and find
a shortest path from vy to vy in G\{va, v3}\((N(v2) U N(v3))\{v1,v4}).

Now we mark the junctions of the hole X. Let P := pgp1 - pm+1 be a component of (G\S)[X].
Let Bp,, Bp,,., be the bags of G\S such that py € B, and p,, € B,
to B in D, we mark all bags

Pm+1

In the order of bags from B,

m+1 m+1"

B,,B,, ..., B

s

that are the star bags whose centers are neither adjacent to a vertex of the previous bag or the next bag.
It can be done in time O(n). For each 1 < i < 7, we let w; be the center of B} and let U; be the set of
unmarked vertices of D represented by w;, and we define sets C;, D;, M; for each 1 < i < m as defined
in Sections [11.1.1} and [11.1.2} Since the set of components of (G\S)\(|J;<;<,, Ui) can be computed

in polynomial time, we can also compute all of C;, D;, M; in polynomial time, for each component

(G\S)[X]. If M; contains a neighbor of some vertex of S, then we mark p; as a junction. If the number
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of all junctions in X is at least (5k + 4)(k + 1)2 + 1, then there exists a vertex s that witnesses at least
5k + 5 junctions on one of the components of (G\S)[X], and by Lemma [I1.7] it is a No-instance. Thus,
we may assume that X contains at most (5k + 4)(k + 1)? junctions.

We first branch along all vertices on X that have distance at most 1 from some junction in X. Since
the number of all junctions on X is at most (5k + 4)(k + 1)2, it needs O(k?) branchings. Now we may
assume that any solution of the instance (G,t,S) does not contain a vertex in X that has distance at
most 1 from some junction in X.

Let S’ be a minimum DH deletion set of (G,t,S) where S € V(G)\S. If S’ does not contain any
vertex separator fully between two junctions p and p’ of X for all pairs of two consecutive junctions of
X, then G\S’ contains another hole by choosing remaining vertices from each U;. It implies that S’
should contain at least one vertex separator T between two consecutive junctions p and p’. Let T” be a
minimum separator between p and p’ in G\S. Note that it can be computed easily from Lemma m

We claim that S\T v T" is again a minimum DH deletion set of (G,t,S). Let t be the vertex of
T nV(X). Since S’ is a minimum DH deletion set of (G, t,S), G\(S'\{t}) contains a hole X’ having the
vertex t. From our assumption, ¢ has distance at least two from p and p’. By Lemma this hole X’
should contain a vertex from each set U; between p and p’ in G\S. However, X' n T’ # & because T"
is a separator between p and p’ in G\S, thus (S'\T') u T" is again a DH deletion set of (G,t,S). Since
|T'| < |T|, (S"\T') v T is a minimum DH deletion set of (G, ¢, S).

So, we choose one of the intervals between two consecutive junctions that have distance at least
4 and find a minimum separator T between them, and branch into instances (G\T,t — |T|,S\T') by
removing it. Since the number of intervals are at most O(k?), it needs O(k3) branchings.

Each branching decrease k by at least 1, and the number of all subproblems will be at most O (k3)F*1.
This would give that total running time OQ(k3)*+1 . 20(klogk) . nO(1) — 9O(klogk) . nO1), O
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