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ABSTRACT

The linear rank-width of a graph is the minimum width over all possible linear layouts pv1, v2, . . . , vnq

of the vertex set of the graph, where the width of a linear layout is the maximum rank of the p0, 1q-

adjacency matrices induced by the vertex partitions ptv1, . . . , viu, tvi`1, . . . , vnuq. Linear rank-width is

the linearized variant of rank-width, just as path-width is the linearized variant of tree-width. Motivated

by numerous results on path-width, we investigate several properties of linear rank-width of graphs.

In Chapters 6, 7, and 8, we study structural properties of graphs related to linear rank-width. As a

corollary of known theorems by Oum [2008], for each k, there is a finite set of graphs such that a graph

G has linear rank-width at most k if and only if no vertex-minor of G is isomorphic to a graph in the

set. We show that the number of pairwise locally non-equivalent vertex-minor minimal graphs for the

class of graphs of linear rank-width at most k is at least 2Ωp3k
q.

For a fixed tree T , we ask whether every graph with sufficiently large linear rank-width contains a

vertex-minor isomorphic to T . We show that this question is true if it is true for prime graphs. Prime

graphs are graphs with no vertex partition pA,Bq with |A|, |B| ě 2 such that the set of edges joining A

and B induces a complete bipartite graph.

We also investigate a Ramsey type result for prime graphs. We prove that for each n, there exists

N such that every prime graph on at least N vertices contains a vertex-minor isomorphic to either a

cycle of length n or the line graph of the complete bipartite graph K2,n.

In Chapters 9, 10, and 11, we develop graph algorithms related to linear rank-width. We first

verify that computing linear rank-width on graphs is NP-hard, using the result on matroid path-width

by Kashyap [2008]. We then ask which graph classes admit a polynomial-time algorithm for computing

linear rank-width. For distance-hereditary graphs, we show that it is possible to compute the linear

rank-width in time Opn2 log2 nq. As a corollary, we can compute the path-width of n-element matroids

of branch-width at most 2 in time Opn2 log2 nq, provided that the matroid is given by an independent

set oracle.

We also discuss graph modification problems related to linear rank-width. We prove that for a

positive integer k and an input graph G with n vertices, we can decide in time 8k ¨ nOp1q whether G

contains a vertex subset S of size at most k such that GzS has linear rank-width at most 1. We also

show that this problem admits a polynomial kernel, which means that there exists a polynomial-time

algorithm to transform an input graph G and a positive integer k into another instance G1 and k1 such

that pG, kq is a Yes-instance if and only if pG1, k1q is a Yes-instance, and |V pG1q| is bounded by a

polynomial function in k. Additionally, for a positive integer k and an input graph G with n vertices,

we can decide in time 2Opk log2 kq ¨nOp1q whether G contains a vertex subset S of size at most k such that

GzS has rank-width at most 1.
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Chapter 1. Introduction

Linear rank-width is a width parameter of graphs that measures how much the given graph has a

path-like structure using the matrix rank function. Linear rank-width is the linearized variant of rank-

width [150], and it is similar to path-width which is the linearized variant of tree-width [169, 170]. It is

formulated as a graph layout problem, and is known to be equivalent to linear clique-width [62, 89] and

linear boolean-width [40, 158].

A linear layout of a graph is an ordering of the vertices of the graph. Graph layout problems are a

class of optimization problems where the goal is to find a linear layout of an input graph in such a way that

a certain objective function is optimized. Several width parameters are defined in terms of graph layout

problems, for instance, band-width [111, 122], cut-width [4, 141], vertex separation number [140, 139].

For motivations and applications of these parameters, we refer to the survey by Diaz [75].

Among these parameters, much less was known for linear rank-width and its equivalent parameters.

Together with the vertex-minor relation, we investigate several properties of linear rank-width. Our

works are mainly motivated from similar results for path-width [169, 58, 13, 182, 85, 23, 137, 67, 157].

We compare properties of linear rank-width and path-width in Table 1.1 and 1.2. We introduce linear

rank-width and vertex-minors in Section 1.1 and 1.2, respectively, and define basic notions in Section 1.3.

Vertex-minor obstruction sets for bounded linear rank-width

Tree-width and path-width have important roles in the Graph Minor Theorem, proved by Robertson

and Seymour [169, 171, 175, 176, 177]. They proved that for every infinite sequence G1, G2, . . . of

graphs, there exist Gi and Gj with i ă j such that Gi is isomorphic to a minor of Gj . In other words,

graphs are well-quasi-ordered under the minor relation. Surprisingly, this property yields polynomial-

time algorithms for many problems; for instance, testing whether an input graph can be embedded on a

fixed surface [172, 173], or testing whether an input graph can be embedded in R3 so that no two cycles

are linked [146, 88], or testing, for a fixed k and any minor-closed class F , whether an input graph G

contains at most k vertices whose removal makes it belong to F [88]. For each problem, the set of all

Yes-instances are closed under taking minors, and the Graph Minor Theorem implies that the number

of minor obstructions for each set is finite. Thus, testing whether an instance is a Yes-instance can be

done in time Opn3q using the minor testing algorithm by Robertson and Seymour [176, 166, 167].

Generally, well-quasi-orderings are useful to understand graph classes with forbidden structures. In

graphs, the following relations are usually considered as possible quasi-orderings: induced subgraphs

(vertex deletions), subgraphs (vertex or edge deletions), minors (vertex or edge deletions, and edge

contractions), induced minors (vertex deletions and edge contractions), and topological minors (a graph

H is called a topological minor of a graph G if a subdivision of H is isomorphic to a subgraph of G).

For instance, the class of all graphs with path-width at most k for some fixed k is characterized by a

finite list of minor obstructions because it is closed under taking minors and the minor relation is a

well-quasi-ordering on this graph class. For linear rank-width and its equivalent parameters, they do not

increase when taking induced subgraphs, among the aforementioned five relations. However mostly, a

class of graphs of bounded linear rank-width (or rank-width) is not well-quasi-ordered under the induced

– 1 –



subgraph relation. For instance, all of cycles have linear rank-width at most 2, but the infinite sequence

C3, C4, . . . of cycles contains no pair Ci, Cj with i ă j such that Ci is an induced subgraph of Cj .

Local complementation [131] is a useful operation when studying rank-width and linear rank-width.

When we apply a local complementation at some vertex in a graph, we swap the adjacency relation

between two vertices in the neighborhood of the chosen vertex. Local complementation was first intro-

duced by Kotzig [131] and further studied by Bouchet [28, 29, 30, 32]. Bouchet [32] observed that a local

complementation at some vertex preserves the rank of the matrix induced from each vertex partition,

and this implies that the rank-width or the linear rank-width of a graph is preserved when applying a

local complementation.

A graph G is a vertex-minor of a graph H if G can be obtained from H by a sequence of local

complementations and vertex deletions. From above observation, the rank-width or the linear rank-width

of a graph does not increase when taking vertex-minors. Moreover, Oum [151] showed that every class of

graphs with bounded rank-width is well-quasi-ordered under the vertex-minor relation (Theorem 1.11).

It implies that every class of graphs with bounded linear rank-width is also well-quasi-ordered under the

vertex-minor relation, and therefore for each k, the class of all graphs of linear rank-width at most k can

be characterized by a finite list of vertex-minor minimal graphs for the class [151].

Corollary 1.1. For each positive integer k, there exists a finite set Ok of graphs such that a graph has

linear rank-width at most k if and only if it has no vertex-minor isomorphic to a graph in Ok.

We can use this result to devise an algorithm to test whether an input graph has linear rank-width

at most k, by testing whether it has each graph in the obstruction set as a vertex-minor. Adler, Farley,

and Proskurowski [1] proved that the three graphs in Figure 1.1 form a vertex-minor obstruction set

for the class of graphs of linear rank-width at most 1. However, the well-quasi-ordered result does not

provide any bound on the size of the obstruction set and there were no known upper bound on the size

of a vertex-minor obstruction set when k ě 2.

In Chapter 6, we prove that for each integer k ě 2, there is a set of at least 2Ωp3k
q vertex-minor

minimal graphs for the class of graphs of linear rank-width at most k, where no two graphs in the set

are equivalent up to local complementations. Two graphs G and H are called locally equivalent if G can

be obtained from H by applying a sequence of local complementations.

Theorem 6.1. Let k ě 2 be an integer. There exist at least 2Ωp3k
q pairwise locally non-equivalent graphs

that are vertex-minor minimal graphs for the class of graphs of linear rank-width at most k.

There is a technical point in proving that a constructed set of graphs is indeed a minimal set, that is,

any two graphs in the set are not locally equivalent to each other. Bouchet [31] showed that no two locally

equivalent trees are isomorphic to each other. However, our constructions are not trees. For proving

Theorem 6.1, we extend the result on trees [31] into a special type of block graphs in Theorem 5.20.

We note that there is no general way to construct a vertex-minor obstruction set. If we know an

upper bound on the maximum number of vertices in a vertex-minor minimal graph for the class of graphs

of linear rank-width at most k, then in theory we can enumerate all of the obstructions. We ask an upper

bound on the size of vertex-minor minimal graphs for bounded linear rank-width as an open problem.

For path-width of graphs, the following are known.

Theorem 1.2. Let k be a positive integer.

• (Takahashi, Ueno, and Kajitani [182]; Ellis, Sudborough, and Turner [85]) The number of minor

obstructions for the class of graphs of path-width at most k is at least pk!q2.

– 2 –



Figure 1.1: A vertex-minor obstruction set for thread graphs.

• (Lagergren [137]) The number of edges in a minor obstruction for the class of graphs of path-width

at most k is at most 2Opk
4
q. (Since an obstruction is connected, the number of vertices is also

bounded.)

Vertex-minors in graphs of large linear rank-width

In the papers on Graph Minor Theorem, Robertson and Seymour proved that for a fixed r, every

graph of sufficiently large tree-width contains an r ˆ r-grid as a minor [171], and for a fixed forest F ,

every graph of large path-width contains F as a minor [169]. These results not only capture the essential

properties of those parameters, but also can be used to devise algorithms for some graph problems such

as the Disjoint Paths problem. For a given set of pairs of vertices ps1, t1q, . . . , psk, tkq in a graph, the

Disjoint Paths problem asks whether there exist k vertex-disjoint paths P1, . . . , Pk where each path Pi

links si to ti. Roughly speaking, if an input graph has sufficiently large tree-width, then it is possible to

find a large grid in the graph, and identify a vertex whose removal does not affect on whether the question

is yes or no [167]. By recursively removing such vertices until an input graph has tree-width bounded

by some function in k, we can finally obtain a graph of bounded tree-width where the problem can be

solved efficiently on the graph. Based on this argument, Robertson and Seymour [176, 167] showed that

the Disjoint Paths problem can be solved in time fpkq ¨n3 for some function f , where n is the number

of vertices in the input graph. Also, this grid theorem has been used to obtain meta-algorithmic results

for parameterized problems [71, 72, 81, 73, 93].

Oum [154] conjectured that for a fixed bipartite circle graph H, every graph with sufficiently large

rank-width contains a vertex-minor (originally, pivot-minor) isomorphic to H. Bipartite circle graphs

naturally appear because every fundamental graph of a planar matroid is bipartite circle [69]. (A planar

matroid is the graphic matroid of a planar graph.) This conjecture is still open, and it is true for bipartite

graphs [150], circle graphs [154], and line graphs [154].

Similar to this conjecture, for a fixed tree T , we ask whether every graph of sufficiently large linear

rank-width contains T as a vertex-minor. We remark that the bipartite version of this question was

already asked in [59]. Note that trees have unbounded linear rank-width [97, 133, 2].

Question 1.3. For any fixed tree T , does every graph of sufficiently large linear rank-width contain a

vertex-minor isomorphic to T?

In Chapter 7, we prove that it is true if it is true for prime graphs with respect to split decomposi-

tions [64]. We prove the following.

Theorem 7.1. Let p ě 3 be an integer and let T be a tree. Let G be a graph such that every prime

induced subgraph of G has linear rank-width at most p. If G has linear rank-width at least 30pp`4q|V pT q|,
then G contains a vertex-minor isomorphic to T .

Prime graphs are the graphs having no vertex partition pA,Bq with |A|, |B| ě 2 such that the set

of edges joining A and B induces a complete bipartite graph, in other words, the rank of the matrix
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ApGqrX,Y s is at most 1 where ApGq is the adjacency matrix of G. Split decompositions and prime graphs

were introduced by Cunningham [65, 64]. Prime graphs play an important role in the study of circle

graphs (intersection graphs of chords in a circle) and their recognition algorithms [29, 145, 96, 180, 56].

We will discuss basic properties of prime graphs in Chapter 4. We remark that the rank-width of a graph

is equal to the maximum rank-width over all its prime induced subgraphs.

To prove this theorem, we essentially prove that for a fixed tree T , every graph admitting a split

decomposition whose decomposition tree has sufficiently large path-width contains a vertex-minor iso-

morphic to T . The vertex-minor relation is indeed necessary because there is a cograph admitting a

split decomposition whose decomposition tree has sufficiently large path-width [57, 104]. See Section 5.1

for split decompositions of cographs. However, cographs have no path of length 3 as an induced sub-

graph [57].

A Ramsey type result for prime graphs

We further study prime graphs. Bouchet [29] proved several theorems for prime graphs from his

work on isotropic systems, which unify the properties of 4-regular graphs and binary matroids. For

instance, he [29] proved that every prime graph with n ą 5 vertices contains a prime graph with n ´ 1

vertices as a vertex-minor (Theorem 4.1). This is parallel to the Tutte’s wheel and whirl theorem [186]

for reducing 3-connected matroids. Using this result, Bouchet [29] also proved that every prime graph

contains a cycle of length 5 as a vertex-minor (Corollary 4.2), similar to that every 3-connected matroid

contains a wheel or a whirl matroid as a minor. Geelen [102, Corollary 5.11] developed a splitter theorem

for prime graphs with respect to the vertex-minor relation, which is a variant of the Seymour’s splitter

theorem [178] for matroids.

Ramsey’s theorem [161] states that for a fixed n, every sufficiently large graph contains either

a complete graph Kn or the complement of Kn as an induced subgraph. There are several variants of

Ramsey’s theorem with given some connectivity assumptions; for instance, for a fixed n, every sufficiently

large connected graph contains an induced subgraph isomorphic to either a complete graph Kn, or a

star graph K1,n or a path of length n [76]. We list similar Ramsey type theorems in the beginning of

Chapter 8. In particular, Ding, Oporowski, Oxley, and Vertigan [79, 80] investigated a Ramsey type

result for 3-connected matroids, and we are motivated from their result.

We prove the following in Chapter 8. The graph Kn a Kn is the graph obtained by joining two

copies of Kn by a matching of size n. See Figure 1.2. We remark that KnaKn is the line graph of K2,n.

Theorem 8.1. For every n, there exists an integer N such that every prime graph on at least N vertices

has a vertex-minor isomorphic to a cycle of length n or Kn aKn.

To prove Theorem 8.1, we will use the concept of blocking sequences developed by Geelen [102] to

construct certain vertex-minors, and further used by Bouchet, Cunningham, and Geelen [36] in the study

of delta-matroids. For a graph G, a vertex partition pX,Y q of the vertex set of G is called a split if

|X|, |Y | ě 2, and the rank of the matrix ApGqrX,Y s is at most 1 where ApGq is the adjacency matrix

of G. Note that prime graphs have no splits. If a prime graph G has an induced subgraph H which

admits a split pXH , YHq, then the blocking sequence is a certificate verifying the fact that this vertex

partition pXH , YHq cannot be extended to a split of G. For our purpose, we will develop a way to bound

the length of blocking sequences using local complementations, in Section 8.2.
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Figure 1.2: The line graph of K2,5 (K5 aK5).

Algorithms for computing linear rank-width

Tree-decompositions play an important role in many graph algorithms. Arnborg, Proskurowski [7]

and Bern, Lawler, Wong [12] and Bodlaender [17] independently developed efficient algorithms to solve

NP-complete problems on graphs of bounded tree-width. Later, Courcelle [58] proved a much generalized

theorem that every graph property expressible in a monadic second-order logic formula of the second

type (MSO2) can be decided in linear time on graphs of bounded tree-width. This can be applied to

many problems such as 3-coloring, Hamiltonian cycle, Dominating set problems.

Rank-width and linear rank-width have been studied in the context of generalizing these results

into bigger classes. Even for linear rank-width, graphs of bounded linear rank-width may contain dense

graphs such as all complete graphs, or all complete bipartite graphs, which cannot be contained in a

class of graphs of bounded tree-width. Courcelle, Makowsky, and Rotics [61] showed that every graph

property expressible in a monadic second-order logic formula of the first type (MSO1) can be decided in

cubic time on graphs of bounded rank-width. We remark that every MSO1 formula is an MSO2 formula,

but not vice versa. For instance, a graph property of having a cycle through all vertices can be written

as an MSO2 formula, but it cannot be written as an MSO1 formula. We will observe the difference of

two types of the logic formulas in Section 3.3.

We discuss algorithms for computing linear rank-width in Chapter 9. It is known that computing the

path-width of graphs is NP-hard [6]. For various restricted graph classes, computing the exact value of

path-width has been studied: forests [85], graphs of bounded tree-width [20, 23], split graphs [16, 109], the

complements of chordal graphs [98], permutation graphs [24], cographs [26], and circular-arc graphs [181].

We first prove that computing the linear rank-width of a graph is also NP-hard in Section 9.1 by

reducing from matroid path-width. Kashyap [123] proved that computing path-width of representable

matroids is NP-hard. Then we ask which graph classes admit a polynomial-time algorithm for computing

linear rank-width.

Ellis, Sudborough, and Turner [85] showed that the path-width of forests (graphs of tree-width 1)

can be computed in linear time. They used the characterization of path-width on forests, and this allows

to have a natural algorithm to compute it based on dynamic programming. Previously, the only known

polynomial-time algorithm to compute linear rank-width was for forests [2]. This follows from the fact

that the linear rank-width and the path-width of a tree are equal [133, 2].

In Chapter 9, we investigate a new Opn2 log2 nq-time algorithm to compute the linear rank-width of

distance-hereditary graphs. Distance-hereditary graphs are the graphs G where every connected induced

subgraph H of G and two vertices v, w in H, the distance between v and w in H is equal to the distance in

G [113, 9], and they include all forests, as well as complete graphs, complete bipartite graphs, threshold

graphs [54, 105], and cographs [37] that are not forests. Oum [150] showed that distance-hereditary

graphs are exactly the graphs of rank-width at most 1. We will discuss distance-hereditary graphs in
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Chapter 5.

Theorem 9.1. The linear rank-width of an n-vertex distance-hereditary graph can be computed in time

Opn2 ¨ log2 nq.

Since computing the path-width of distance-hereditary graphs is NP-hard [129], this class is the first

class which satisfies that it is NP-hard to compute path-width but linear rank-width can be computed in

polynomial time. To prove Theorem 9.1, we present a characterization of linear rank-width on distance-

hereditary graphs in Theorem 5.11, and devise a direct dynamic programming algorithm to compute

linear rank-width. As a corollary of Theorem 9.1, we also prove the following.

Corollary 9.2. The path-width of an n-element matroid of branch-width at most 2 with a given inde-

pendent set oracle can be computed in time Opn2 ¨ log2 nq.

Motivated from Theorem 9.1, for k ě 2, we ask whether there is a polynomial-time algorithm to

compute linear rank-width for the class of graphs of rank-width at most k.

Question 1.4. For a fixed k ě 2, is there a polynomial-time algorithm to compute linear rank-width on

graphs of rank-width at most k?

Bodlaender and Kloks [23] show the following for path-width.

Theorem 1.5 (Bodlaender and Kloks [23]). For fixed k, there is a polynomial-time algorithm to compute

path-width on graphs of tree-width at most k.

We discuss parameterized problems related to linear rank-width. For the definitions related to

parameterized algorithms, we refer to the book written by Downey and Fellows [84]. Parameterized

problems deal with an instance px, kq where k is a secondary measurement, called as the parameter, and

the main goal is to find whether a problem admits an algorithm with running time fpkq ¨ |x|Op1q where f

is a function depending on the parameter k alone, and |x| is the input size. As we study parameterized

problems where the unparameterized decision versions are NP-complete, the function f is generally super-

polynomial. A parameterized problem admitting such an algorithm is said to be fixed parameter tractable,

or FPT in short. For many natural parameterized problems, the function f is overwhelming [95] or even

non-explicit [176], especially when the algorithm is indicated by a meta-theorem. Therefore, researchers

focus mainly on designing FPT algorithms with affordable super-exponential part in the running time.

We are particularly interested in solving parameterized problems in single-exponential time, that is, in

time ck ¨ |x|Op1q for some constant c.

We consider the problem of determining whether an input graph has linear rank-width at most k for

some fixed k. For k “ 1, we can test whether an input graph G has linear rank-width at most 1 in time

Opn`mq using split decompositions [65, 68, 39, 3], where n and m are the number of the vertices and

edges in G, respectively. We will see the characterization of graphs of linear rank-width 1 in terms of split

decompositions in Section 5.6. Combined with the algorithm to compute the split decomposition of a

graph [65, 68], we can decide whether a graph has linear rank-width at most 1. However, for k ě 2, there

is no known simple characterization of graphs of linear rank-width at most k, and we need a different

approach.

Nagamochi [144] investigated testing algorithms for parameters defined in terms of linear layouts

in a general framework. Using his result, we can show that there is an Opn2k`4q-time algorithm to
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determine whether an n-vertex input graph G has linear rank-width at most k. This algorithm is valid for

parameters defined by any submodular function, such as cut-width and vertex separation number [144].

However, this algorithm is not a fixed parameter tractable algorithm.

Currently, the only known fixed parameter tractable algorithm for determining whether an input

graph has linear rank-width at most k is using the finite list of a vertex-minor obstruction set. Using

the obstruction set, we can test whether an input graph G with n vertices has linear rank-width at most

k in time fpkq ¨ n3 for some function f , combined with the vertex-minor testing algorithm by Courcelle

and Oum [63] and an algorithm to find an approximate rank-decomposition by Oum [153], for instance.

In this context, it is interesting to address an upper bound on the size of vertex-minor minimal graphs

for the class of graphs of linear rank-width at most k.

Vertex deletion problems related to linear rank-width

We now discuss graph modification problems related to linear rank-width. Generally, for an input

graph G and a fixed set O of elementary operations and a class Π of graphs, the objective is to transform

G into a graph in Π by applying at most k operations from O. Graph modification problems formulate a

number of interesting computational problems arising from both theory and its applications. They have

received a significant amount of attention from the perspective of parameterized complexity. We first

give some motivation for graph modification problems.

As an application to the real world, we consider a situation that a bank supervisor wants to place

automated teller machines (ATMs) in a city so that there is at least one ATM on each street, but also

want to place at most k ATMs, as each additional ATM is expensive. For efficiency, we may assume

that an ATM is always placed on the intersections. We can model this real world problem as a graph

modification problem where the streets of the city are edges of the graph, and each intersection is a

vertex of the graph, and ask whether there exists a vertex set S of size at most k such that S meets all

edges in G, that is, the remaining graph after removing the vertices in S has no edges. This problem

is called the Vertex Cover problem, and it is known to admit a fixed parameter tractable algorithm

when the parameter is the solution size k [83, 42, 8, 147, 51, 49, 148, 50]. In the Cluster Editing

problem, we allow k edge deletions and additions to make an input graph G a disjoint union of complete

graphs. This problem has been studied in different contexts, such as computational biology [11, 179, 189],

and machine learning problems [10]. This problem is also known to admit an FPT algorithm when the

parameter is the solution size k [106, 107, 15, 14].

The graph class Π with tree-width at most w is of particular interest as many problems become

tractable on graphs of small tree-width (Tree-width w Vertex Deletion). When w “ 0 and w “ 1,

the corresponding graph modification problem with O “ tvertex deletionu coincides with the Vertex

Cover problem and the Feedback Vertex Set problem, respectively. Since every Yes-instance of

the Tree-width w Vertex Deletion problem has tree-width at most w ` k, using the Courcelle’s

meta-theorem [58] on graphs of bounded tree-width, the Tree-width w Vertex Deletion problem

can be solved in fpkq ¨ n for some function f . Since the function f in the meta-theorem is huge, it

is natural to ask whether the exponential function in the running time can be made realistic. Recent

endeavor pursuing this question culminated in establishing that for any fixed w, the Tree-width w

Vertex Deletion problem admits an FPT algorithm that runs in time ck ¨ nOp1q for some constant

c [92, 127].
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We consider the problem to test whether an input graph G has a vertex subset of size at most

k whose removal makes G a graph of linear rank-width at most w (Linear rank-width w Vertex

Deletion). In particular, we state the problem when w “ 1. Graphs of linear rank-width 1 are called

thread graphs [97], and thus, we call this problem as the Thread Vertex Deletion problem for

convenience.

Thread Vertex Deletion (Linear rank-width 1 Vertex Deletion)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S Ď V pGq of size at most k such that GzS is a thread graph,

that is, GzS has linear rank-width at most 1?

We will see that the Linear rank-width w Vertex Deletion problem can be formulated as an

MSO1 formula [150, 63] in Section 3.3. We remark that every Yes-instance of Linear rank-width

w Vertex Deletion has linear rank-width (or rank-width) at most k ` w as linear rank-width can

decrease by at most one by removing a vertex. From the meta-theorem for graphs of bounded rank-width

by Courcelle, Makowsky and Rotics [61], it is possible to solve the Linear rank-width w Vertex

Deletion problem in time fpkq ¨nOp1q for some function f . However, the involved exponential function

is huge and it is not clear whether it can be solved significantly faster. In Chapter 10, we prove that the

Thread Vertex Deletion problem can be solved in time 8k ¨ nOp1q.

Theorem 10.1. For an input graph G with n vertices and a fixed k, we can test whether G has a vertex

subset S of size at most k such that GzS has linear rank-width at most 1 in time 8k ¨ nOp1q.

A powerful technique to handle parameterized problems is the kernelization algorithm. A kernel-

ization algorithm takes an instance px, kq and outputs an instance px1, k1q in time polynomial in |x|` k
satisfying that (1) px, kq is a Yes-instance if and only if px1, k1q is a Yes-instance, (2) k1 ď k, and (3)

|x1| ď gpkq for some function g. The reduced instance is called a kernel and the function g is called the

size of the kernel. It is folklore that admitting a kernel is equivalent to being fixed-parameter tractable.

See [84, Proposition 4.7.1]. Therefore, most kernelization research is focused on finding an algorithm

that yields a small-sized kernel, ideally of polynomial size.

We prove that the Thread Vertex Deletion problem admits a polynomial kernel.

Theorem 10.2. Let k be a fixed integer, and let G be a graph. Then there exists a polynomial-time

algorithm to generate a pair pG1, k1q such that

1. G has a vertex subset S of size at most k such that GzS has linear rank-width at most 1 if and only

if G1 has a vertex subset S1 of size at most k1 such that G1zS1 has linear rank-width at most 1, and

2. k1 ď k and |V pG1q| ď Opk33q.

We remark that a similar deletion problem for graphs of path-width at most 1 has been studied

recently, and we call it the Path-width 1 Vertex Deletion problem. Philip, Raman, and Vil-

langer [157] showed that Path-width 1 Vertex Deletion can be solved in time Op7kk ¨ n2q, and it

admits a kernel of size Opk4q. Later, Cygan, Pilipczuk, Pilipczuk, and Wojtaszczyk [67] improved the

running time by showing that Path-width 1 Vertex Deletion can be solved in time 4.65k ¨ nOp1q

and it admits a kernel of size Opk2q. Several graph classes with a certain path-like structure have been
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researched for vertex deletion problems. Proper interval graphs [90, 188], unit interval graphs [187], and

interval graphs [46] are some such classes.

Additionally, we consider a parameterized deletion problem related to distance-hereditary graphs.

The problem is formulated as followss.

Distance-Hereditary Vertex Deletion (Rank-width 1 Deletion)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S Ď V pGq of size at most k such that GzS is distance-hereditary,

that is, GzS has rank-width at most 1?

Similar to linear rank-width, we ask the following question.

Question 1.6. Can Distance-Hereditary Deletion be solved in time ck ¨ nOp1q for some constant

c?

We prove that this problem can be solved in time 2Opk log2 kq ¨ nOp1q.

Theorem 11.1. For an input graph G with n vertices and a fixed k, we can test whether G has a vertex

subset S of size at most k such that GzS has rank-width at most 1, in time 2Opk log2 kq ¨ nOp1q.

A similar deletion problem for graphs of tree-width at most 1 (forests) is called the Feedback

Vertex Set problem. This problem is one of the most intensively studied problems in parameterized

complexity. It was proved in the 1990’s that this problem admits an FPT algorithm by Bodlaender [18],

and by Downey and Fellows [82]. Then by a series of papers [160, 120, 159, 108, 70, 48, 44, 66], the running

time has been subsequently improved, and the current best running time is 3.619k ¨ nOp1q, proved by

Kociumaka and Pilipczuk [130]. Thomassè [183] proved that this problem admits a kernel of size 5k2`k.

1.1 Linear rank-width

Let ApGq be the adjacency matrix of a graph G, which is defined on the binary field. For a graph

G, we define a function ρG: V pGq Ñ Z such that ρGpXq:“ rankApGqrX,V pGqzXs for X Ď V pGq. We

call it the cut-rank function of G.

A linear layout σ of a set S is a bijective function from S to t1, . . . , |S|u, and for convenience, we

denote it as a sequence pσ´1p1q, σ´1p2q, . . . , σ´1p|S|qq. For a linear layout σ of S and a, b P S, we denote

a ďσ b or b ěσ a if σpaq ď σpbq, and we denote a ăσ b or b ąσ a if σpaq ă σpbq.

A linear layout of the vertex set of G is called a linear layout of G. The width of a linear layout L of

G is defined as the maximum over all values ρGptw : w ďL vuq for v P V pGq. We say that the width of

L is 0 if |V pGq| ď 1. The linear rank-width of G, denoted by lrwpGq, is the minimum width of all linear

layouts of G.

For some classes of graphs, the exact values of linear rank-width are known. Complete graphs have

linear rank-width 1 because for every H Ĺ S Ĺ V pGq, ρGpSq “ 1. Complete bipartite graphs Kn,m also

have linear rank-width 1 because we can put the vertices in one part first, and then put the vertices in

the other part in the ordering.

Graphs of linear rank-width at most 1 are characterized by Ganian [97], and Adler, Farley, and

Proskurowski [1]. Ganian [97] defined thread graphs using a linear layout satisfying a certain condition,

and showed that the class of thread graphs is equal to the class of graphs of linear rank-width at most
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Path-width Linear rank-width

The number of minor obstructions for The number of pairwise locally non-equivalent

path-width ď k is at least pk!q2 [182, 85]. vertex-minor minimal graphs

for linear rank-width ď k is at least 2Ωp3k
q. (Theorem 6.1)

The number of edges in a minor obstruction For k ě 2, an upper bound on the number of

for path-width ď k is at most 2Opk
4
q [137]. vertices in a vertex-minor minimal graph

for linear rank-width ď k is open.

For a fixed tree T , For a fixed tree T and an integer ` and a graph G

every graph of sufficiently large path-width whose prime induced subgraph has linear rank-width ď `,

contains a minor isomorphic to T [169, 13]. if G has sufficiently large linear rank-width, then

it contains a vertex-minor isomorphic to T . (Theorem 7.1)

Every connected graph with no K1,n minor Every graph with no K1,n vertex-minor

has path-width ď n´ 1 [13]. has ď 24n2
`1 vertices. (Theorem 8.4)

Every connected graph with no Pn minor For n ď 5, every graph with no Pn vertex-minor

has path-width ď n´ 2 [13]. has bounded linear rank-width. (Theorems 7.1 and 8.1)

For n ě 6, an upper bound on the linear rank-width of

a graph with no Pn vertex-minor is open.

Trees have unbounded path-width [182, 85]. Every graph with no Kn vertex-minor

has ď 24pn´1q2`1 vertices. (Theorem 8.4)

Table 1.1: Comparing properties of linear rank-width and path-width.

Path-width Linear rank-width

Forests Linear [85, 143] Linear [2]

Graphs of tree-width ď t Polynomial [23] Open

Distance-hereditary graphs NP-complete [129] Opn2 log2 nq (Theorem 9.1)

Graphs of rank-width ď t NP-complete [129] Open

An FPT algorithm for A constructive FPT algorithm [23] Only known FPT algorithm is

deciding whether width is ď k using the obstruction set [151]

An FPT algorithm for 4.65k ¨ nOp1q [67, 157] 8k ¨ nOp1q (Theorem 10.1)

k-vertex deletion to width 1

A polynomial kernel for Opk2q vertices [67, 157] Opk33q vertices (Theorem 10.2)

k-vertex deletion to width 1

Table 1.2: Algorithms for computing linear rank-width or path-width. If a parameterized problem with

an input x and a parameter k admits an algorithm with running time fpkq ¨ |x|Op1q, then the problem is

called fixed parameter tractable (shortly, FPT).
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Figure 1.3: A thread graph.

1. Adler, Farley, and Proskurowski [1] proposed a new definition of thread graphs. Here, we propose a

convenient form of the definition of thread graphs, motivated by Adler, Farley, and Proskurowski [1].

Thread graphs

A triple Bpx, yq “ pG, σ, `q, where x and y are two vertices of the graph G, σ is a linear layout of V pGq

whose first and last vertices are x and y, respectively, and ` is a function from V pGq to ttLu, tRu, tL,Ruu,

is a thread block if

1. `pxq “ tRu and `pyq “ tLu,

2. for v, w P V pGq with v ăσ w, vw P EpGq if and only if R P `pvq and L P `pwq,

3. `pσ´1p2qq ‰ tLu if σ´1p2q ‰ y.

The aim of the third condition is to guarantee a unique decomposition of thread graphs into thread

blocks.

For a digraph D “ pVD, ADq, a set of thread blocks tBpx, yq “ pGxy, σxy, `xyq : xy P ADu is said

to be mergeable with D if for any two arcs x1y1, x2y2 of AD, V pGx1y1q X V pGx2y2q “ tx1, y1u X tx2, y2u.

For a digraph D “ pVD, ADq and a mergeable set of thread blocks BD “ tBpx, yq “ pGxy, σxy, `xyq :

xy P ADu, the graph G “ D d BD has the vertex set V pGq “
Ť

xyPAD
V pGxyq and the edge set

EpGq “
Ť

xyPAD
EpGxyq.

A connected graph G is a thread graph if G is either the one vertex graph or G “ P d BP for some

directed path P , called the underlying directed path, and some set of thread blocks BP mergeable with

P . A graph is a thread graph if each of its connected components is a thread graph. See Figure 1.3 for

an example of a thread graph.

We prove the following in Section 5.6.

Theorem 1.7 (Ganian [97]; Adler, Farley, and Proskurowski [1]). A graph has linear rank-width at most

1 if and only if it is a thread graph.

Trees have unbounded linear rank-width [97, 133, 2]. Kwon proved in [133] that the rooted complete

binary tree of height n has linear rank-width rn2 s, where the height is the length from the root to any

leaf. Linear rank-width and path-width are equal on trees [133, 2].

Courcelle, Makowsky, and Rotics [61] showed that every graph property expressible in monadic

second order logic (MSO1) can be decided in cubic time on graphs of bounded rank-width, and thus for

– 11 –



a b

c

d
e

f

g

a b

c

d
e

f

g

Figure 1.4: Local complementation at a.

the class of graphs of bounded linear rank-width as well. Ganian [97] proved that for some problem,

there is a polynomial-time algorithm to solve it for thread graphs even though the problem is NP-hard

on other classes, for instance, there exists a polynomial-time algorithm to compute path-width of thread

graphs while it is NP-hard to compute the path-width of distance-hereditary graphs [129].

1.2 Vertex-minors

The local complementation at a vertex v of a graph is an operation to replace the subgraph induced

by the neighborhood of v with its complement. We write G ˚ v to denote the graph obtained from G by

applying a local complementation at v. See Figure 1.4 for an example. The graph obtained from G by

pivoting an edge uv is defined by G ^ uv:“ G ˚ u ˚ v ˚ u. To see how we obtain the resulting graph by

pivoting an edge uv, let V1 :“ NGpuq X NGpvq, V2 :“ NGpuqzNGpvqztvu, and V3 :“ NGpvqzNGpuqztuu.

One can easily verify that G ^ uv is identical to the graph obtained from G by complementing the

adjacency relations of vertices between distinct sets Vi and Vj , and swapping the vertices u and v [150].

See Figure 1.5 for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence of vertex

deletions and local complementations. A graph H is a pivot-minor of G if H can be obtained from G by

applying a sequence of vertex deletions and pivotings. A graph H is locally equivalent to G if H can be

obtained from G by applying a sequence of local complementations. A graph H is pivot equivalent to G

if H can be obtained from G by applying a sequence of pivotings.

The local complementation was introduced by Kotzig [131] on the study of 4-regular graphs. It

has been studied by Bouchet [28, 29, 30, 32, 34], in his papers on isotropic systems. Roughly speaking,

isotropic systems are linear algebraic objects that capture all graphs equivalent up to local complemen-

tations. The graphs associated with an isotropic system are called fundamental graphs (parallel with

fundamental graphs of matroids), and a certain minor notion of isotropic systems is related to the vertex-

minor of their fundamental graphs. Moreover, Bouchet [32] observed that a local complementation at a

vertex in a graph preserves the cut-rank function of the graph, and thus it preserves the rank-width and

linear rank-width of the graph as well. Recently, the local complementation has been used in quantum

information theory [190, 142, 117, 163, 38, 43].

Interestingly, for n ě 2, the complete graph Kn is a vertex-minor of a path of length 2n ´ 3. We

will see this in Theorem 8.4. This is not the case for graph minors because every minor of a path is the

disjoint union of paths. Since K1,n´1 is locally equivalent to Kn, every sufficiently large connected graph

has Kn as a vertex-minor (Theorem 8.4).

A vertex-minor or a pivot-minor H of G is elementary if |V pHq| “ |V pGq| ´ 1, and it is proper
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Figure 1.5: Pivoting an edge ab.

Figure 1.6: A vertex-minor obstruction set for circle graphs.

if |V pHq| ď |V pGq| ´ 1. For a class C of graphs closed under taking vertex-minors, a graph G is a

vertex-minor minimal graph for C if G R C and H P C for every elementary vertex-minor H of G. For

a class C of graphs closed under taking pivot-minors, a graph G is a pivot-minor minimal graph for C if

G R C and H P C for every elementary pivot-minor H of G.

The following lemma by Bouchet provides a key tool to investigate vertex-minors.

Lemma 1.8 (Bouchet [30]; see Geelen and Oum [103]). Let H be a vertex-minor of G and let v P

V pGqzV pHq. Then H is a vertex-minor of either Gzv, G ˚ vzv, or G^ vwzv for a neighbor w of v.

The choice of a neighbor w in Lemma 1.8 does not matter, because if x is adjacent to y and z, then

G^ xy “ pG^ xzq ^ yz by the following lemma.

Lemma 1.9 (Oum [150]). Let G be a graph and x, y, z P V pGq such that xy, xz P EpGq. Then G^xy “

pG^ xzq ^ yz.

For a fixed graph H, it is not known if there is a polynomial-time algorithm to decide whether an

input graph G has a vertex-minor isomorphic to H. Courcelle and Oum [63] showed that this testing

can be done in polynomial time when an input graph has bounded rank-width.

Theorem 1.10 (Courcelle and Oum [63]). Let ` be an integer and let H be a fixed graph. For an

input graph G with n vertices and rank-width at most `, we can test whether G contains a vertex-minor

isomorphic to H in time Opn3q.

We remark that it is possible to test in time Opn3q [33] whether two given graph G and H with n

vertices are locally equivalent without considering isomorphism.

For a class C of graphs closed under taking vertex-minors, a graph G is called a vertex-minor minimal

graph for C if G R C and H P C for every elementary vertex-minor H of G. We remark that if a graph

G is a vertex-minor minimal graph for a class C and G1 is locally equivalent to G, then G1 is also a

vertex-minor minimal graph for C. Therefore, we distinguish a minimal set of vertex-minor minimal

graphs for C from the set of all vertex-minor minimal graphs for C. For a vertex-minor closed class C, a

set OC of vertex-minor minimal graphs for C is called a vertex-minor obstruction set for C if

1. for every graph G, G P C if and only if G has no vertex-minor isomorphic to a graph in OC , and
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2. there are no two graphs G1, G2 in OC such that G1 and G2 are locally equivalent.

Oum [151] proved that for every infinite sequence G1, G2, . . . of graphs of bounded rank-width, there

exist Gi and Gj with i ă j such that Gi is isomorphic to a vertex-minor of Gj . This implies that for

every vertex-minor closed class C of graphs with bounded rank-width, a vertex-minor obstruction set for

C is finite.

Theorem 1.11 (Oum [151]). For every vertex-minor closed class C of graphs that has bounded rank-

width, there exists a finite set OC of graphs such that a graph is in C if and only if it has no vertex-minor

isomorphic to a graph in OC.

Kotzig [132] observed that for a vertex v in a graph G, G is a circle graph if and only if G ˚ v is

a circle graph. Bouchet [35] characterized circle graphs in terms of three vertex-minor minimal graphs.

See Figure 1.6 for the list of obstructions. The pivot-minor obstructions for circle graphs were classified

by Geelen and Oum [101].

1.3 Notation

In this thesis, all graphs have no loops and no parallel edges, and all graphs are undirected if not

stated. For a set A, we denote the power set of A by 2A. For a finite set X, we say that a function

f : 2X Ñ N is symmetric if for any S Ď X, fpSq “ fpXzSq, and f is submodular if for any S, T Ď X,

fpS Y T q ` fpS X T q ď fpSq ` fpT q.

A binary relation À on a set X is a quasi-ordering if it is reflexive and transitive. A quasi-ordering

À on a set X is a well-quasi-ordering if for any infinite sequence of elements x1, x2, . . . in X, there exists

i ă j such that xi À xj .

A graph G is a pair pV pGq, EpGqq where V pGq is the vertex set of G and EpGq is the edge set of

G. For S Ď V pGq, GrSs denotes the subgraph of G induced on S and GzS:“ GrV pGqzSs. A graph H is

an induced subgraph of G if H “ GrSs for some S Ď V pGq. For a vertex x of G, let Gzx:“ Gztxu. For

F Ď EpGq, let GzF be the graph on the vertex set V pGq with the edge set EpGzF q “ EpGqzF . For an

edge e of G, let Gze:“ Gzteu. For an edge e of G, we denote G{e to be the graph obtained from G by

contracting e. For a graph G, we denote by G the complement of G, that is, G and G have the same set

of vertices and two vertices in G are adjacent if and only if they are not adjacent in G.

For v P V pGq, we let NGpvq denote the set of the neighbors of v in G. Let degGpvq:“ |NGpvq|, and

we call it the degree of v in G. For X Ď V pGq, let δGpXq be the set of edges having one end in X and the

other end in V pGqzX. For two disjoint subsets S, T of V pGq, let GrS, T s“ GrSYT szpEpGrSsqYEpGrT sqq.

Two graphs G and H are isomorphic if there exists a bijection h : V pGq Ñ V pHq such that xy P EpGq

if and only if hpxqhpyq P EpHq. For a set F of graphs, a graph G is called F-free if G has no induced

subgraph isomorphic to a graph in F .

A graph G is connected if for each pair of vertices v, w P V pGq, there exists a path from v to w in

G. A graph G is 2-connected, if |V pGq| ě 3 and GzX is connected for every vertex set X Ď V pGq with

|X| ď 1. A vertex v of a graph G is a cut vertex if the number of components of Gzv increases. An edge

e of a graph G is a cut edge if the number of components of Gze increases. A block of a graph G is a

maximal connected subgraph of G without a cut vertex.

A vertex v in G is called a leaf if degGpvq “ 1. A vertex v is called a twin of another vertex w in a

graph if no vertex other than v and w is adjacent to exactly one of v and w. A twin w of a vertex v is

called a true twin if v and w are adjacent, and called a false twin otherwise.
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A graph H is a minor of G if H can be obtained from G by a sequence of deleting vertices, deleting

edges and contracting edges. For a class C of graphs closed under taking minors, a graph G is a minor

obstruction for C if G R C and for every minor H of G with |V pHq| ă |V pGq|, H P C.
For an XˆY matrix A, if X 1 Ď X and Y 1 Ď Y , then we write ArX 1, Y 1s to denote the submatrix of A

obtained by taking rows in X 1 and columns in Y 1. If X 1 “ Y 1, then we simply denote ArX 1s:“ ArX 1, X 1s.

The adjacency matrix of a graph G, which is a p0, 1q-matrix over the binary field, will be denoted by

ApGq.

Graph classes

A tree is a connected acyclic graph, and a forest is a disjoint union of trees. A tree is a path if every

vertex has degree at most 2. The length of a path is the number of its edges. A tree is a caterpillar if it

contains a path P such that every vertex of a tree has distance at most 1 to some vertex of P . A cycle

is a connected graph where every vertex has degree exactly 2. A hole is an induced cycle of length at

least 5. We write Pn and Cn to denote a graph that is a path and a cycle on n vertices, respectively.

A complete graph is the graph with all possible edges. We write Kn to denote a complete graph on n

vertices. A star is a tree with a distinguished vertex, called its center, adjacent to all other vertices. A

clique is a set of pairwise adjacent vertices. A stable set is a set of pairwise non-adjacent vertices. A

vertex is simplicial if the set of its neighbors is a clique.

A graph G is a bipartite graph with a bipartition pA,Bq if V pGq “ AY B and GrAs and GrBs has

no edges. We write Km,n to denote the complete bipartite graph with a bipartition pA,Bq such that

|A| “ m, |B| “ n. For a graph G, the line graph LpGq of G is a graph where V pLpGqq “ EpGq and two

vertices in e1, e2 P V pLpGqq are adjacent in LpGq if and only if the corresponding edges meet at some

vertex in G. A graph is a block graph if every its block is a complete graph.

A set Φ of chords in a circle are called a chord diagram. A graph G is an intersection graph of chords

in a chord diagram Φ if the vertex set of G is Φ and two vertices are adjacent in G if and only if the

chords are intersect in the circle. We say that Φ is a circle representation of G, and a graph G is a circle

graph if it has a circle representation. Circle graphs were independently introduced by several authors

in the 1970’s [27, 86, 132].

Matroids

We will use matroids. We refer to the book written by Oxley [156] for our matroid notations and

basic properties.

A pair pEpMq, IpMqq is called a matroid M if EpMq, called the ground set of M , is a finite set and

IpMq, called the set of independent sets of M , is a nonempty collection of subsets of EpMq satisfying

the following conditions:

(I1) if I P IpMq and J Ď I, then J P IpMq,

(I2) if I, J P IpMq and |I| ă |J |, then I Y tzu P IpMq for some z P JzI.

A maximal independent set in M is called a base of M . It is known that, if B1 and B2 are bases of M ,

then |B1| “ |B2|.

For a matroid M and a subset X of EpMq, we let pX, tI Ď X : I P IpMquq be the matroid denoted

by M X . The size of a base of M X is called the rank of X in M and the rank function of M is the
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function rM : 2EpMq Ñ N that maps every X Ď EpMq to its rank. The rank of EpMq is called the rank

of M .

If M is a matroid, then we define λM , called the connectivity function of M , such that for every

subset X of EpMq,

λM pXq “ rM pXq ` rM pEpMqzXq ´ rM pEpMqq ` 1.

It is known that the function λM is symmetric and submodular.

Let A be a binary matrix and let E be the column labels of A. Let I be the collection of all those

subsets I of E such that the columns of A with index in I are linearly independent. Then MpAq :“ pE, Iq
is a matroid. Any matroid isomorphic to MpAq for some matrix A is called a binary matroid and A is

called a representation of M over the binary field.

Let G be a graph. Let I be the collection of all subsets I of EpGq such that pV pGq, Iq is a forest.

Then MpGq :“ pEpGq, Iq is a matroid. Any matroid isomorphic to MpGq for some graph G is called a

graphic matroid.

For n ě r ě 1, the uniform matroid Ur,n is the matroid on a ground set E of size n where the

independent sets are all subsets of size at most r in E.

Here, we observe that every matroid of branch-width at most 2 is binary. We will use this fact

in Chapter 9. This can be observed from the known minor characterizations for binary matroids and

matroids of branch-width at most 2. For the definition of matroid minors, we refer to [156].

Theorem 1.12 (Tutte [184, 185]). A matroid is binary if and only if it has no minor isomorphic to

U2,4.

Theorem 1.13 (Dharmatilake [74]). A matroid has branch-width at most 2 if and only if it has no

minor isomorphic to U2,4 and MpK4q.

Corollary 1.14. Every matroid of branch-width at most 2 is binary.

Proof. This follows from Theorems 1.12 and 1.13.

Note. Chapter 6 is a joint work with Jisu Jeong and Sang-il Oum, and it is published in [119]. Chapter 8

is a joint work with Sang-il Oum, and it is published in [135]. Chapter 9 is a joint work with Isolde Adler

and Mamadou Moustapha Kanté, and its extended abstract appears in [3], and Chapter 7 is based on

the work for distance-hereditary graphs established in the same paper. Chapter 10 is a joint work with

Mamadou Moustapha Kanté, Eun jung Kim, and Christophe Paul [121]. Chapter 11 is a joint work with

Eun jung Kim and Sang-il Oum.
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Chapter 2. Cut-rank function

We discuss the cut-rank function of a graph and its properties. Let G be a graph. For two subsets

X,Y of V pGq, we define the function ρ˚GpX,Y q:“ rankApGqrX,Y s where ApGq is the adjacency matrix

of G. The cut-rank function ρG of a graph G is defined as

ρGpXq :“ ρ˚GpX,V pGqzXq “ rankApGqrX,V pGqzXs.

It was motivated from the matroid rank function [30, 150]. Bouchet [30] observed that the connectivity

function of a binary matroid is equal to the cut-rank function of its fundamental graph. We recall this

relation in Section 2.2.

The cut-rank function is invariant under taking local complementation, and it satisfies the submod-

ular inequality.

Lemma 2.1 (Bouchet [32]; See Oum [150]). If two graphs G and H are locally equivalent, then ρGpXq “

ρHpXq for all X Ď V pGq.

Lemma 2.2 (Oum and Seymour [155]). For a graph G and all A,B,A1, B1 Ď V pGq,

ρ˚GpA,Bq ` ρ
˚
GpA

1, B1q ě ρ˚GpAXA
1, B YB1q ` ρ˚GpAYA

1, B XB1q.

By Lemma 2.2, we have the submodular inequality:

ρGpAq ` ρGpBq ě ρGpAXBq ` ρGpAYBq

for all A,B Ď V pGq.

We will use the following lemmas.

Lemma 2.3 (Oum [150, Lemma 4.4]). Let G be a graph and v P V pGq. Let pX1, X2q, pY1, Y2q be vertex

partitions of V pGqztvu. Then we have

ρGzvpX1q ` ρG˚vzvpY1q ě ρGpX1 X Y1q ` ρGpX2 X Y2q ´ 1.

Similarly if w is a neighbor of v, then

ρGzvpX1q ` ρG^vwzvpY1q ě ρGpX1 X Y1q ` ρGpX2 X Y2q ´ 1.

Lemma 2.3 is equivalent to the following lemma, which we will use in Chapter 8.

Lemma 2.4. Let G be a graph and v P V pGq. Let X1, X2, Y1, Y2 be subsets of V pGqztvu such that

X1 YX2 “ Y1 Y Y2 and X1 XX2 “ Y1 X Y2 “ H. Then

ρ˚GpX1, X2q ` ρ˚G˚vpY1, Y2q ě ρ˚GpX1 X Y1, X2 Y Y2 Y tvuq ` ρ˚GpX1 Y Y1 Y tvu, X2 X Y2q ´ 1.

Similarly if w P X1 YX2 is a neighbor of v, then

ρ˚GpX1, X2q ` ρ˚G^vwpY1, Y2q ě ρ˚GpX1 X Y1, X2 Y Y2 Y tvuq ` ρ˚GpX1 Y Y1 Y tvu, X2 X Y2q ´ 1.

Proof. Apply Lemma 2.3 with G1 “ GrX1 YX2 Y tvus.
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2.1 Blocking sequences

Let A,B be two disjoint subsets of the vertex set of a graph G. By the definition of ρ˚G and ρG, it

is clear that

if A Ď X Ď V pGqzB, then ρ˚GpA,Bq ď ρGpXq.

What prevents us to achieve the equality for some X? We present a tool called a blocking sequence, that

is a certificate to guarantee that no such X exists. Blocking sequences were introduced by Geelen [102]

for studying binary even delta-matroids. Oum [153] used blocking sequences to implement an algorithm

for approximating rank-width. For a similar concept for matroids, we refer to [156, Section 13.3]. In

Chapter 8, we will widely use this concept to find certain vertex-minors in large prime graphs.

A sequence v1, v2, . . . , vm (m ě 1) is called a blocking sequence of a pair pA,Bq of disjoint subsets

A, B of V pGq if

(a) ρ˚GpA,B Y tv1uq ą ρ˚GpA,Bq,

(b) ρ˚GpAY tviu, B Y tvi`1uq ą ρ˚GpA,Bq for all i “ 1, 2, . . . ,m´ 1,

(c) ρ˚GpAY tvmu, Bq ą ρ˚GpA,Bq,

(d) no proper subsequence of v1, . . . , vm satisfies (a), (b), and (c).

The condition (d) is essential for the following standard lemma.

Lemma 2.5. Let v1, v2, . . . , vm be a blocking sequence for pA,Bq in a graph G. Let X, Y be disjoint

subsets of tv1, v2, . . . , vmu such that if vi P X and vj P Y , then i ă j. Then

ρ˚GpAYX,B Y Y q “ ρ˚GpA,Bq

if and only if v1 R Y , vm R X, and for all i P t1, 2, . . . ,m´ 1u, either vi R X or vi`1 R Y .

Proof. The forward direction is trivial. Let us prove the backward implication. Let k “ ρ˚GpA,Bq. It is

enough to prove ρ˚GpAYX,B Y Y q ď k. Suppose that v1 R Y , vm R X, and for all i P t1, 2, . . . ,m´ 1u,

either vi R X or vi`1 R Y and yet ρ˚GpA Y X,B Y Y q ą k. We may assume that |X| ` |Y | is chosen

to be minimum. If |X| ě 2, then we can partition X into two nonempty sets X1 and X2. Then

by the hypothesis, ρ˚GpA Y X1, B Y Y q “ ρ˚GpA Y X2, B Y Y q “ k. By Lemma 2.2, we deduce that

ρ˚GpA Y X1, B Y Y q ` ρ˚GpA Y X2, B Y Y q ě k ` ρ˚GpA Y X,B Y Y q and therefore we deduce that

ρ˚GpA YX,B Y Y q ď k. So we may assume |X| ď 1. By symmetry we may also assume |Y | ď 1. Then

by the condition (d), this is clear.

The following proposition states that a blocking sequence is a certificate that ρGpXq ą ρ˚GpA,Bq for

all A Ď X Ď V pGqzB. This appears in almost all applications of blocking sequences. The proof uses the

submodular inequality in Lemma 2.2.

Proposition 2.6 (Geelen [102, Lemma 5.1]; see Oum [153]). Let G be a graph and A, B be two disjoint

subsets of V pGq. Then G has a blocking sequence for pA,Bq if and only if ρGpXq ą ρ˚GpA,Bq for all

A Ď X Ď V pGqzB.
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2.2 Matroid rank function

We discuss the direct relation between the rank function of a binary matroid and the cut-rank

function of its fundamental graph, observed in [30, 150]. This relation will be used to show that the

computation of linear rank-width is NP-hard in Section 9.1. Also, we will use the fundamental graph

of a binary matroid in Section 9.3 to provide an algorithm to compute the path-width of a matroid of

branch-width 2, provided that the matroid is given by an independent set oracle.

We define a fundamental graph of a binary matroid. Let G be a bipartite graph with a bipartition

pS, T q. We define MpG,S, T q as the binary matroid represented by the S ˆ V pGq matrix

pIS ApGqrS, T sq

where IS is the |S|ˆ |S| identity matrix. If M “MpG,S, T q, then we call G a fundamental graph of M .

We remark that |EpMq| “ |V pGq|.
If a binary matroid M is given with an independent set oracle, then we can compute a fundamental

graph of M in time Op|EpMq|2q as follows. We first run a greedy algorithm to find a base B of M

in time Op|EpMq|q [156, Section 1.8]. After choosing one base B, for each e P B and e1 P EpMqzB,

we test whether pBzteuq Y te1u is again a base in time Op|EpMq|2q. We create a bipartite graph GM

on the bipartition pB,EpMqzBq where for each e P B and e1 P EpMqzBq, ee1 P EpGM q if and only if

pBzteuq Y te1u is again a base. It is not hard to check that

pIB ApGM qrB,EpMqzBsq

is a representation of the matroid M , and thus GM is a fundamental graph of M .

The following relation is observed by Bouchet [30]; see also Oum [150].

Proposition 2.7 (Bouchet [30]; Oum [150]). Let G be a bipartite graph with a bipartition pS, T q and let

M :“MpG,S, T q. For every X Ď V pGq, ρGpXq “ λM pXq ´ 1.

A binary matroid may have many fundamental graphs, but it is known that two different fundamental

graphs of a binary matroid are pivot-equivalent [30, 150]. Roughly speaking, the new fundamental graph

that corresponds to a new base obtained from a given base by removing an element e and adding an

element e1, can be obtained by pivoting the edge ee1 in the original fundamental graph.
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Chapter 3. Width parameters

We introduce graph width parameters, such as rank-width, tree-width, and path-width.

Rank-width is a graph parameter introduced by Oum and Seymour [155, 150] for efficiently ap-

proximating the clique-width [62] of a graph. Linear rank-width can be seen as a linearized variant of

rank-width. We survey known theorems of rank-width in Section 3.1.

Tree-width and path-width are graph parameters introduced by Robertson and Seymour, in their

papers on the Graph Minor Theorem [169, 171, 175, 176, 177]. We define these parameters in Section 3.2,

and compare basic properties of them with the properties of rank-width and linear rank-width.

Since the branch-width and the path-width of a matroid are related to rank-width and linear rank-

width of its fundamental graph, we introduce those parameters in the last section. This relation will be

used to obtain a polynomial-time algorithm to compute the path-width of a matroid of branch-width at

most 2 in Section 9.3.

3.1 Rank-width and linear rank-width

For the definition of rank-width, we refer to the papers by Oum [155, 150]. A tree is subcubic if it

has at least two vertices and every inner vertex has degree 3. A rank-decomposition of a graph G is a

pair pT, Lq, where T is a subcubic tree and L is a bijection from the vertices of G to the leaves of T . For

an edge e in T , T ze induces a partition pXe, Yeq of the leaves of T . The width of an edge e is defined

as ρGpL
´1pXeqq. The width of a rank-decomposition pT, Lq is the maximum width over all edges of T .

The rank-width of G, denoted by rwpGq, is the minimum width over all rank-decompositions of G. If

|V pGq| ď 1, then G admits no rank-decomposition and rwpGq “ 0.

Oum [151] proved that the vertex-minor relation is a well-quasi-ordering on the class of graphs of

bounded rank-width.

Theorem 3.1 (Oum [151]). For a positive integer k and an infinite sequence G1, G2, . . . of graphs of

rank-width at most k, there exist Gi and Gj with i ă j such that Gi is isomorphic to a vertex-minor of

Gj.

We briefly mention how Theorem 3.1 implies that every vertex-minor closed class of graphs with

bounded rank-width can be characterized by a finite set of vertex-minor minimal graphs (Theorem 1.11).

Let C be a vertex-minor closed class of graphs with bounded rank-width, and let OC be a vertex-minor

obstruction set for C. If OC is infinite, then Theorem 3.1 implies that there exist two graphs G, G1

in OC such that G is a vertex-minor isomorphic to G1, contradicting to the fact that there are no two

locally equivalent graphs in OC and both G and G1 are vertex-minor minimal graphs for C. Therefore,

we conclude that OC is finite.

From Theorem 1.11, for a fixed k, the class of graphs with rank-width at most k can be characterized

by a finite list of vertex-minor minimal graphs. Oum [150] establishs an upper bound on the number of

vertices in a vertex-minor minimal graph for the class of graphs of rank-width at most k.
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Theorem 3.2 (Oum [150]). For k ě 1, the number of vertices in a vertex-minor minimal graph for the

class of graphs of rank-width at most k is at most 6k`1
´1

5 .

From Theorem 3.2, we can enumerate all vertex-minor minimal graphs from graphs up to the bound

on the obstructions.

There are some developments on algorithms for testing whether an input graph has rank-width at

most k and compute a rank-decomposition if it has rank-width at most k. Oum and Seymour [155] first

provided an algorithm to find a rank-decomposition of width at most 3k ` 1 or confirm that the input

n-vertex graph has rank-width larger than k in time Op8k ¨ n9 log nq. Later, Oum [153] improved the

running time into Op8k ¨ n4q, and in the same paper, he remarked that it is possible to find a rank-

decomposition of width 3k´ 1 or confirm that the rank-width is bigger than k in time Opfpkq ¨ n3q with

some function f .

As a structural result, Oum proved the following.

Theorem 3.3 (Oum [150, 154]). For a fixed bipartite circle graph H, every bipartite (or line, or circle)

graph of sufficiently large rank-width contains a pivot-minor isomorphic to H.

Robertson and Seymour [171] proved that for a fixed planar graph H, every graph of sufficiently

large tree-width contain a minor isomorphic to a planar graph (Thoerem 3.14). Later, Geelen, Gerards,

and Whittle [100] generalize this theorem into representable matroids, which states that for a fixed finite

field F and a fixed planar matroid M , every matroid representable over the finite field F of sufficiently

large branch-width must contain a minor isomorphic to M .

Linear rank-width is a variation of rank-width by restricting its tree to a caterpillar. However, we

mostly use the following alternative definition of linear rank-width for convenience. We will observe that

this definition is equivalent to the definition using rank-decompositions that are caterpillars.

A linear layout σ of a set S is a bijective function from S to t1, . . . , |S|u, and for convenience,

we denote it as a sequence pσ´1p1q, σ´1p2q, . . . , σ´1p|S|qq. For a linear layout σ of S and a, b P S, we

denote by a ďσ b or b ěσ a if σpaq ď σpbq, and we denote by a ăσ b or b ąσ a if σpaq ă σpbq. For

two linear layouts σ1 : S1 Ñ t1, . . . , |S1|u and σ2 : S2 Ñ t1, . . . , |S2|u, we define the sum σ1 ‘ σ2 as

a bijective mapping from S1 Y S2 to t1, . . . , |S1| ` |S2|u such that pσ1 ‘ σ2qpxq “ σ1pxq if x P S1 and

pσ1 ‘ σ2qpxq “ σpxq ` |S1| if x P S2.

A linear layout of the vertex set of G is called a linear layout of G. The width of a linear layout L

of G is defined as

max
vPV pGq

pρGptw : w ďL vuq.

We say that the width of L is 0 if |V pGq| ď 1. The linear rank-width of G, denoted by lrwpGq, is the

minimum width over all linear layouts of G.

We clarify that this definition is the same as defining with caterpillar subcubic trees.

Lemma 3.4. For a graph G, the minimum width over all rank-decompositions pT, Lq of G where T is a

caterpillar tree, is equal to the linear rank-width of G.

Proof. Let t be the minimum width over all rank-decompositions pT, Lq of G where T is a caterpillar

tree. If G has no edges, then clearly, t “ lrwpGq “ 0. We may assume that G has at least one edge.
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Suppose G has a linear layout L of G of width k. From the assumption k ě 1. Let T be a caterpillar

subcubic tree with |V pGq| leaves and let P be the longest path in T . Clearly, |V pP q| “ |V pGq|, and for

each internal vertex p of P , there is one leaf p1 in V pGqzV pP q that is adjacent to p. Let P “ p1p2 ¨ ¨ ¨ p|V pGq|

and we define the function LG from V pGq to the leaves of T such that

1. LGpL
´1p1qq “ p1, LGpL

´1p|V pGq|qq “ p|V pGq|, and

2. for each 2 ď j ď |V pGq|, LGpL´1pjqq “ p1j .

For each edge pipi`1 in the path P , the width of it is the same as

ρ˚GptL
´1pjq : 1 ď j ď iu, tL´1pjq : i` 1 ď j ď |V pGq|uq.

Since G has at least one edge, there exists i such that pipi`1 has width at least one. Since every edge in

P incident with a leaf has width at most 1, we conclude that t ď k.

The other direction is trivial because we can just take a linear layout from the caterpillar subcubic

tree.

If two graphs G and H are locally equivalent, then rwpGq “ rwpHq and lrwpGq “ lrwpHq by

Lemma 2.1. It follows that if H is a vertex-minor or a pivot-minor of G, then rwpHq ď rwpGq and

lrwpHq ď lrwpGq. Clearly, rwpGq ď lrwpGq for any graph G.

We prove an upper bound on the linear rank-width of a graph. The following bound will be used to

obtain an Opn2 log nq-time algorithm to compute the linear rank-width of n-vertex distance-hereditary

graphs in Chapter 9. Bodlaender, Gilbert, Hafsteinsson and Kloks [22] proved a similar relation between

tree-width and path-width (Lemma 3.8).

Lemma 3.5. Let k be a positive integer and let G be a graph of rank-width k such that |V pGq| ě 2.

Then lrwpGq ď ktlog2|V pGq|u.

Proof. Let pT, Lq be a rank-decomposition of G having width k. For convenience, we choose an edge e

of T and subdivide it with introducing a new vertex x, and regard x as the root of T . For each internal

vertex t of T with two subtrees T1 and T2 of T zt not containing x, let `ptq :“ T1 and rptq :“ T2 if the

number of leaves of T in T1 is at least the number of leaves of T in T2. Let S be a linear layout of G

satisfying that

• for each v1, v2 P V pGq with the first common ancestor w of v1 and v2 in T , Lpv1q ăS Lpv2q if

Lpv1q P V p`pwqq.

We can construct such a linear layout inductively.

We show that S has width at most ktlog2|V pGq|u. Let w be a vertex of G that is not the first vertex

of S and let Sw :“ tv : v ăS wu. Let Pw be the path from Lpwq to the root x in T . Note that for each

t P V pPwqztLpwqu and the subtree T 1 of T zt not containing x and Lpwq,

• if rptq “ T 1, then all leaves of T in T 1 are not contained in Sw, and

• if `ptq “ T 1, then all leaves of T in T 1 are contained in Sw.

Let Q be the set of all vertices t in Pw except w such that the subtree `ptq does not contain x and Lpwq.
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rank-width tree-width

tree 1 1

cycle of length ě 5 2 2

nˆ n grid n´ 1 (Jeĺınek [118]) n (Robertson, Seymour [175])

complete graphs Kn 1 n´ 1 (Robertson, Seymour [175])

complete bipartite Km,n 1 mintm,nu (Bodlaender, Möhring [26])

Table 3.1: Rank-width and tree-width.

Let q1, q2, . . . , qm be the sequence of all vertices in Q such that for each 1 ď j ď m ´ 1, qj is a

descendant of qj`1 in T , and let Qi be the set of all leaves of T contained in `pqiq. Clearly, Sw “

Q1 YQ2 Y ¨ ¨ ¨ YQm and V pGqzSw ‰ H. Therefore, we have

|V pGq| “ |Q1|` ¨ ¨ ¨ ` |Qm|` |V pGqzSw|

ě 1` 2` 4` ¨ ¨ ¨ 2m´1 ` 1

“ 2m.

Thus, m ď tlog2|V pGq|u.
Note that for each 1 ď j ď m, ρ˚GpQi, V pGqzSwq ď k. Therefore, we have that

ρGpSwq “ ρ˚GpQ1 Y ¨ ¨ ¨ YQm, V pGqzSwq ď km ď ktlog2|V pGq|u.

Since w was arbitrarily chosen, it implies that lrwpGq ď ktlog2|V pGq|u.

3.2 Tree-width and path-width

For the definitions of tree-width and path-width, we refer to the book by Diestel [76]. A tree-

decomposition of a graph G is a pair pT,Bq of a tree T and a family B “ tBtutPV pT q of vertex sets

Bt Ď V pGq, called bags, satisfying the following three conditions:

(T1) V pGq “
Ť

vPV pT qBt.

(T2) For every edge uv of G, there exists a vertex t of T such that u, v P Bt.

(T3) For t1, t2 and t3 P V pT q, Bt1 XBt3 Ď Bt2 whenever t2 is on the path from t1 to t3.

The width of a tree-decomposition pT,Bq is maxt|Bt|´ 1 : t P V pT qu. The tree-width of G, denoted

by twpGq, is the minimum width over all tree-decompositions of G. A path-decomposition of a graph G is

a tree-decomposition pT,Bq where T is a path. The path-width of G, denoted by pwpGq, is the minimum

width over all path-decompositions of G. It is known that tree-width and path-width do not increase

when taking minors.

We compare values of the rank-width and the tree-width of some graphs in Table 3.1. As we discussed

before, the big difference appear at dense graphs, such as complete graphs and complete bipartite graphs.

A rooted binary tree is a tree with a root vertex such that the root has degree 2 and all other internal

vertices have degree 3. For a positive integer n, the complete rooted binary tree of height n is denoted by

Tn. We also compare values of the linear rank-width and the path-width of some graphs in Table 3.2. An
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linear rank-width path-width

path 1 1

complete binary trees Tn rn2 s (Kwon [133]) rn2 s (Ellis et al. [85]; Takahashi et al. [182])

cycle of length ě 5 2 2

nˆ n grid n´ 1 or n (Jeĺınek [118]) n (Robertson, Seymour [175])

complete graphs Kn 1 n´ 1 (Robertson, Seymour [175])

complete bipartite Km,n 1 mintm,nu (Bodlaender, Möhring [26])

Table 3.2: Linear rank-width and path-width.

interesting fact is that path-width and linear rank-width are the same on trees [2, 133]. This is because

the exactly same lemmas hold for both parameters.

Lemma 3.6 (Kwon [133]). Let T be a tree and let k ě 1. Then T has linear rank-width at most k if

and only if for all vertices x in T at most two of the subtrees of T zx have linear rank-width k and all

other subtrees have linear rank-width at most k ´ 1.

Lemma 3.7 (Ellis, Sudborough, and Turner [85]; Takahashi, Ueno and Kajitani [182]). Let T be a tree

and let k ě 1. Then T has path-width at most k if and only if for all vertices x in T at most two of the

subtrees of T zx have path-width k and all other subtrees have path-width at most k ´ 1.

We generalize Lemma 3.6 to distance-hereditary graphs in Section 5.3.

Similar to Lemma 3.5 the following relation is known.

Lemma 3.8 (Bodlaender, Gilbert, Hafsteinsson and Kloks [22]). Let k be a positive integer and let G

be a graph of tree-width k. Then pwpGq ď pk ` 1q log2|V pGq|.

Oum [152] proved the following relation between rank-width and tree-width.

Theorem 3.9 (Oum [152]). For a graph G, rwpGq ď twpGq ` 1.

Adler and Kanté [2] announced the following relation between linear rank-width and path-width.

For completeness, we add a proof for it. It is easy to show this using the fact that the vertex separation

number is equal to the path-width of a graph [128]. Let G be a graph and let L be a linear layout of G.

For each v P V pGq, we define

VLpvq :“ tu P V pGq : u ďL v, and there is a vertex w where u ăL w and uw P EpGqu.

The vs-width of the linear layout L is the maximum over all VLpvq for v P V pGq. The vertex separation

number is the minimum vs-width over all linear layouts of G, and we denote it by vspGq.

Theorem 3.10 (Kinnersley [128]). For a graph G, vspGq “ pwpGq.

Theorem 3.11 (Adler and Kanté [2]). For a graph G, lrwpGq ď pwpGq.

Proof. Let k “ pwpGq. By Theorem 3.10, vspGq “ k. Let L be a linear layout of G with vs-width k.

It is easy to see that L also has width at most k with respect to linear rank-width. By the definition
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of vs-width, for each v P V pGq, tu P V pGq : u ďL vu has at most k vertices that has a neighbor on

tu P V pGq : u ąL vu. Thus the matrix

ApGqrtu P V pGq : u ďL vu, tu P V pGq : u ąL vus

has rank at most k. Since v is arbitrary, L has width at most k, and thus lrwpGq ď k.

We cannot hope to bound tree-width or path-width in terms of a function of rank-width or linear

rank-width because of complete graphs. However, as a reverse direction, Kwon and Oum [134] proved

the following relationship.

Theorem 3.12 (Kwon and Oum [134]). 1. Every graph of rank-width k is a pivot-minor of a graph

of tree-width at most 2k.

2. Every graph of linear rank-width k is a pivot-minor of a graph of path-width at most k ` 1.

The following two theorems give obstructions for graphs of large tree-width or path-width. For

r ě 1, the r ˆ r-grid is the graph with the vertex set tvi,j : 1 ď i, j ď ru such that vi,j and vi1,j1 are

adjacent if |i´ i1|` |j ´ j1| “ 1. Note that the r ˆ r-grid has tree-width r [175].

Theorem 3.13 (Robertson and Seymour [169]; Bienstock, Robertson, Seymour and Thomas [13]). For

a fixed forest T , every graph of path-width at least |V pT q|´ 1 contains a minor isomorphic to T .

Note that for every forest T , the bound |V pT q| ´ 1 is best possible, because the complete graph

K|V pT q|´1 has path-width |V pT q| ´ 2 but it does not contain a minor isomorphic to T . We will use

Theorem 3.13 in Chapter 7 for finding a tree as a vertex-minor.

Theorem 3.14 (Robertson and Seymour [171]; Robertson, Seymour, Thomas [168]). For every r ě 1,

every graph of tree-width at least 202r5 contains a minor isomorphic to the r ˆ r-grid.

Diestel, Jensen, Gorbunov, and Thomassen [77] discovered a simpler proof of Theorem 3.14. Also,

there have been many attempts to improve this theorem. This bound was improved into 2Opr
2 log2 rq

by Kawarabayashi and Kobayashi [124], and into 2Opr log2 rq by Leaf and Seymour [138]. Chekuri and

Chuzhoy [47] proved that the function can be taken to be Oprcq for some constant c, which is polynomial

in r.

Theorem 3.14 has many applications on graph algorithms. One of the remarkable applications is for

the Disjoint Paths problem, which was studied by Robertson and Seymour [176]. Given a graph G and

pairs of vertices px1, y1q, . . . , pxk, ykq, the Disjoint Paths problem asks whether there exist pairwise

vertex-disjoint paths P1, . . . , Pk such that for each 1 ď i ď k, the first and last vertices of Pi are xi and

yi. In the contexts of VLSI layout design and virtual circuit routing in high-speed internet, the Disjoint

Paths problem has been focused as a central problem [94, 174]. Based on Theorem 3.14, Robertson and

Seymour [176] showed that the Disjoint Paths problem can be solved in time Opn3q. Kawarabayashi,

Kobayashi, Reed [125] improved this running time into Opn2q.

There have been several works on developing algorithms that either outputs that the tree-width of

an input graph has tree-width larger than k or gave an approximate tree-decomposition [6, 176, 136,

165, 20, 23, 5, 87, 21]. Arnborg, Corneil, Proskurowski [6] first gives an algorithm to compute tree-

decomposition of width k in time Opnk`2q if exists. Bodlaender [20] improved this running time into

– 25 –



OpkOpk3qq ¨ n. Later, Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk [21] proved that there

exists an algorithm that in time 2Opkq ¨n either outputs that the tree-width of an input graph G is larger

than k, or gives a tree-decomposition of G of width at most 5k ` 4.

We will review meta-algorithmic results for graphs of bounded tree-width in the next subsection.

For further algorithmic applications, we refer to papers [7, 12, 17, 25].

3.3 Meta-theorems for graphs of bounded width

We describe known meta-algorithmic results for the class of graphs of bounded tree-width and

bounded rank-width. For clear description, we define monadic second-order logic formulas. We refer

to the book [60] written by Courcelle and Engelfriet for intensive study on logic formulas and graph

decompositions.

Let D be a finite set. A function F : Dm Ñ ttrue, falseu is a relation symbol on D with arity m. A

function F : p2Dqm Ñ ttrue, falseu is a set predicate on D with arity m. A pair S “ pD, tF1, . . . , Fkuq is

called a relational structure if

1. D is a finite set, and

2. for each i, Fi is either a relation symbol or a set predicate on D.

For instance, we can give an adjacency relation adj on the vertex set of a graph G, where for v, w P V pGq,

adjpv, wq is true if and only if v and w are adjacent in G. Also, we can give an incidency relation inc on

V pGq YEpGq in G, where for v, e P V pGq YEpGq, incpv, eq is true if and only if v P V pGq, e P EpGq and

v is incident with e in G.

Now, we define logic formulas. Let pD, tF1, . . . , Fkuq be a relational structure. A variable is a first-

order variable if it denotes an element of D, and is a set variable if it denotes a set of elements of D. A

logic formula on the relational structure is called a monadic second-order logic formula if it is written by

using D,@,^, ,_, P, true and Fi, with first-order variables and set variables.

Let G be a graph and we denote by adj the adjacency relation on V pGq (or V pGq Y EpGq), and

we denote by inc the incidency relation on V pGq Y EpGq. A monadic second-order logic formula on

pV pGq, tadjuq is called a monadic second-order logic formula of the first type pMSO1q, and a monadic

second-order logic formula on pV pGq Y EpGq, tinc, adjuq is called a monadic second-order logic formula

of the second type pMSO2q.

We give some examples of logic formulas for some properties of graphs.

1. (G has a 3-coloring on the vertices such that adjacent vertices have different colors. (3-coloring))

DX,Y rX Ď V pGq ^ Y Ď V pGq ^ @u, vt adjpu, vq_

pp pu P Xq _  pv P Xqq ^ p pu P Y q _  pv P Y qq ^ ppu P X _ u P Y q _ pv P X _ v P Y qqqus
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2. (G has a cycle containing all vertices. (Hamiltonian cycle))

DXrX Ď EpGq

^ @vt pv P V pGqq _ De1De2pe1 P X ^ e2 P X ^ pe1 “ e2q ^ incpv, e1q ^ incpv, e2qq^

@ep pincpv, eq ^ e P Xq _ pe “ e1 _ e “ e2qqu

^ @Y t pY Ď V pGq ^ Dxpx P Y q ^ Dx1 px1 P Y qq

_ Depe P X ^ Dvpv P Y ^ incpv, eqq ^ Dwp pw P Y q ^ incpw, eqqqus

We remark that the property of 3-colorability is represented by the MSO1 formula, and the property of

having a cycle containing all vertices is represented by the MSO2 formula. It is known that the property

of having a cycle containing all vertices cannot be written in an MSO1 formula [60]. Note that every

MSO1 formula for a graph property is also an MSO2 formula, but not vice versa.

Courcelle [58] provided the following algorithmic meta-theorem.

Theorem 3.15 (Courcelle [58]). Every graph property expressible in a monadic second-order logic for-

mula of the second type (MSO2) can be decided in linear time on graphs of bounded tree-width.

As we can observe from the relation of rank-width and tree-width, graphs of bounded rank-width is

bigger than graphs of bounded tree-width. Courcelle, Makowsky and Rotics [61] proved a meta-theorem

on graphs of bounded rank-width as well.

Theorem 3.16 (Courcelle, Makowsky and Rotics [61]). Every graph property expressible in a monadic

second-order logic formula of the first type (MSO1) can be decided in cubic time on graphs of bounded

rank-width.

3.4 Matroid branch-width and path-width

We define the notion of the branch-width of a matroid and the path-width of a matroid using the

connectivity function of a matroid. Let M be a matroid, and let λM be the connectivity function of M .

We remind that for every subset X of EpMq,

λM pXq “ rM pXq ` rM pEpMqzXq ´ rM pEpMqq ` 1.

A branch-decomposition of M is a pair pT, Lq, where T is a subcubic tree and L is a bijection from

EpMq to the leaves of T . For an edge e in T , T ze induces a partition pXe, Yeq of the leaves of T .

The width of an edge e is defined as λM pL
´1pXeqq. The width of a branch-decomposition pT, Lq is the

maximum width over all edges of T . The branch-width of M , denoted by bwpMq, is the minimum width

of all branch-decompositions of M . If |EpMq| ď 1, then bwpMq “ 0.

An ordering e1, . . . , en of the ground set EpMq is called a linear layout of M . The width of a linear

layout e1, . . . , en of M is

max
1ďiďn´1

tλM pte1, . . . , eiuqu.

The path-width of M , denoted by pwpMq, is defined as the minimum width over all linear layouts of M .

The following relation is obtained from Proposition 2.7.

Proposition 3.17 (Oum [150]). Let G be a bipartite graph with a bipartition pA,Bq and let M :“

MpG,A,Bq. Then rwpGq “ bwpMq ´ 1 and lrwpGq “ pwpMq ´ 1.

– 27 –



Similar to the case of linear rank-width, there is no known polynomial-time algorithm to compute

the path-width of a matroid of bounded branch-width. Using Proposition 3.17, we prove in Section 9.3

that we can compute in polynomial time the path-width of a matroid of branch-width at most 2, provided

that the matroid is given with an independent set oracle.
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Chapter 4. Split decompositions

Split decompositions are graph decompositions, introduced by Cunningham [65, 64]. A split of a

graph G is a vertex partition pX,Y q of G such that |X|, |Y | ě 2 and ρGpXq ď 1. In other words, pX,Y q

is a split in G if |X|, |Y | ě 2 and there exist X 1 Ď X and Y 1 Ď Y such that txy P EpGq : x P X, y P

Y u “ txy : x P X 1, y P Y 1u. Splits are also called as 1-joins, or joins [96]. A connected graph is called a

prime graph if it has no split.

Roughly speaking, split decompositions of a graph G can be obtained by successively decomposing

a graph along splits. Split decompositions have been used to design efficient algorithms to solve graph

problems. A usual approach to design an algorithm with a certain decomposition is to recursively

decompose an input graph into smaller graphs, until there are no decomposable graphs. Then we solve

for these small graphs, and recursively combine the solutions to find a solution for the original graph.

In this direction, there are several results which show that a problem can be solved in polynomial-time

for each bag of the split decomposition, then the solution for whole graph can be merged in polynomial-

time. For instance, such relations were established for Independent Set [64, 162], Clique Number,

Dominating Number [162] problems. Using those relations, Rao [162] showed that above problems

can be solved in polynomial time on graphs whose prime induced subgraphs have bounded size, and the

Independent Set problem can be solved in polynomial time on parity graphs [41, 55].

Circle graphs are deeply related to split decompositions. One circle graph may have different circle

representations, but Bouchet [29], Naji [145], and Gabor, Hsu, and Supowit [96] independently showed

that every prime circle graph has a unique chord diagram. Based on this, they gave a polynomial-time

algorithm to recognize circle graphs. Later Spinrad [180] developed an Opn2q time algorithm to recognize

circle graphs, and Corneil, Gioan, Paul, and Tedder [56] developed an Opn`mqαpn`mq time algorithm

for the same problem, where α is the inverse Ackermann function, and n, m are the number of vertices

and edges in an input graph.

The class of distance-hereditary graphs is equal to the class of graphs totally decomposable with

respect to the split decomposition [9, 31, 110]. We approach many problems based on this structure.

Bouchet [31] developed the concept of local complementations in split decompositions. We further develop

local complementations and vertex-minors in split decompositions, and investigate the characterization of

linear rank-width on distance-hereditary graphs in Chapter 5. Bouchet [31] proved that any two locally

equivalent trees are isomorphic, and we extend this result in Chapter 5 into a certain type of block

graphs. We also use split decompositions of distance-hereditary graphs for Thread Vertex Deletion

and Distance-Hereditary Vertex Deletion in Chapter 10 and 11.

4.1 Prime graphs

We recall that a prime graph is a connected graph having no split. Since every connected graph G

with at most 3 vertices cannot have vertex partitions pA,Bq with |A|, |B| ě 2, it is prime. We remark

that every connected graph with 4 vertices has a split; see Figure 4.1. Note that every cycle of length at

least 5 is prime. If a connected graph G has a cut vertex x such that Gzx has components G1, G2, . . . , Gm,
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Figure 4.1: Connected 4-vertex graphs. Dashed edges represent splits.

then pV pG1q Y txu, V pGqzpV pG1q Y txuqq is a split. Therefore, every prime graph of at least 5 vertices

is 2-connected.

Bouchet showed useful properties of prime graphs. From the definition of prime graphs, every graph

locally equivalent to a prime graph is prime.

Theorem 4.1 (Bouchet [29]). Let G be a prime graph with |V pGq| ě 6. Then there exist a vertex v and

a neighbor w of v such that one of Gzv, G ˚ vzv and G^ vwzv is prime.

We remark that every prime graph of 5 vertices is locally equivalent to C5. As a corollary of

Theorem 4.1, we obtain the following.

Corollary 4.2 (Bouchet [29]). Every prime graph on at least 5 vertices must contain a vertex-minor

isomorphic to C5.

The following lemma is natural, and will be used in Chapter 8.

Lemma 4.3. If a prime graph H on at least 5 vertices is a vertex-minor of a graph G, then G has a

prime induced subgraph G0 such that G0 has a vertex-minor isomorphic to H.

Proof. We may assume that G is connected. It is enough to prove the following claim: if G has a split

pA,Bq, then there exists a vertex v such that H is isomorphic to a vertex-minor of Gzv. Let G1 be a

graph locally equivalent to G such that H is an induced subgraph of G1. We have ρHpV pHq X Aq “

ρ˚G1pV pHq XA, V pHq XBq ď ρ˚G1pA,Bq ď 1 and therefore |V pHq XA| ď 1 or |V pHq XB| ď 1 because H

is prime. By symmetry, let us assume |V pHq XB| ď 1. Let us choose x P B such that x has a neighbor

in A and x P V pHq if V pHq XB is nonempty.

Let H 1 be a vertex-minor of G on AYtxu such that H is isomorphic to a vertex-minor of H 1. Then

H 1 “ G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vnzpBztxuq for some sequence v1, v2, . . . , vn of vertices. We may choose H 1 and n

so that n is minimized.

Suppose n ą 0. Then vn P Bztxu. Let H0 “ G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn´1zpBztx, vnuq. Since pA, tx, vnuq is

a split of H0, one of the following holds.

1. The two vertices vn and x have the same set of neighbors in A.

2. The vertex vn has no neighbors in A.

3. The vertex x has no neighbors in A.

If we have the case (i), then pH0zvnq ˚x “ H 1 and therefore H is isomorphic to a vertex-minor of H0zvn,

contradicting our assumption that H is chosen to minimize n. If we have the case (ii), then H0zvn “ H 1,

contradicting the assumption too. Finally if we have the case (iii), then x is adjacent to vn in G because

G is connected. Then H0 ˚ vnzvn is isomorphic to H0 ˚ vnzx. Then H0zx has a vertex-minor isomorphic

to H, contradicting our assumption that n is minimized.
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Figure 4.2: Two operations on a split decomposition.

4.2 Split decompositions

For the definitions related to split decompositions, we will follow the notations used by Bouchet [31].

A marked graph D is a connected graph D with a distinguished set of edges MpDq, called marked edges,

that form a matching such that every edge in MpDq is a cut edge. The ends of the marked edges

are called marked vertices, and the components of DzMpDq are called bags of D. Edges and vertices

that are not marked are called unmarked. If pX,Y q is a split in G, then we construct a marked graph

D with the vertex set V pGq Y tx1, y1u for two distinct new vertices x1, y1 R V pGq and the edge set

EpGrXsq Y EpGrY sq Y tx1y1u Y E1 where we define x1y1 as marked and

E1 :“ tx1x : x P X and there exists y P Y such that xy P EpGquY

ty1y : y P Y and there exists x P X such that xy P EpGqu.

The marked graph D is called a simple decomposition of G. We remark that pD ^ x1y1qztx1, y1u “ G.

A split decomposition of a connected graph G is a marked graph D defined inductively to be either G

or a marked graph defined from a split decomposition D1 of G by replacing a component H of D1zMpD1q

by a simple decomposition of H. For a marked edge xy in a split decomposition D, the recomposition of D

along xy is the split decomposition D1 :“ pD^xyqztx, yu. See Figure 4.2 for an example of decomposing

or recomposing a split decomposition. For a split decomposition D, let pD denote the connected graph

obtained from D by recomposing all marked edges. Note that if D is a split decomposition of G, then

pD “ G. Since marked edges of a split decomposition D are cut edges and form a matching, if we contract

all the unmarked edges in D, then we obtain a tree and we call it the decomposition tree of D and denote

it by TD. Obviously, the vertices of TD are in bijection with the bags of D. To distinguish the vertices

of a split decomposition tree from the vertices of the original graph, we call a vertex of TD as a node of

it.

We can observe that a complete graph or a star has many different ways to decompose it because

every non-trivial vertex partition of it is a split. Cunningham and Edmonds [65] developed a canonical

way to decompose a graph into a split decomposition. A split decomposition D of G is called a canonical

split decomposition if each bag of D is either a prime graph, a star graph, or a complete graph, and D is

not the refinement of a split decomposition with the same property. The following is due to Cunningham

and Edmonds [65], and Dahlhaus [68].
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Theorem 4.4 (Cunningham and Edmonds [65]; Dahlhaus [68]). Every connected graph G has a unique

canonical split decomposition, up to isomorphism, and it can be computed in time Op|V pGq| ` |EpGq|q.

For convenience, a tree T is called a decomposition tree of G if it is a split decomposition tree of

D where D is the canonical split decomposition of G. Note that all split decomposition trees of G are

isomorphic by Theorem 4.4.

Canonical split decompositions can be characterized as follows. Let D be a split decomposition of

G with bags that are either primes, or complete graphs or stars (it is not necessarily a canonical split

decomposition). The type of a bag of D is either P , K, or S depending on whether it is a prime, a

complete graph, or a star, respectively. The type of a marked edge uv is AB where A and B are the

types of the bags containing u and v respectively. If A “ S or B “ S, then we can replace S by Sp or

Sc depending on whether the end of the marked edge is a leaf or the center of the star.

Theorem 4.5 (Bouchet [31]). Let D be a split decomposition of a connected graph with bags of types P,

K, or S. Then D is a canonical split decomposition if and only if it has no marked edge of type KK or

SpSc.

We now relate two vertices in different bags of in a split decomposition D. A vertex v of D represents

an unmarked vertex x (or is a representative of x) if either v “ x or there is a path of even length from v

to x in D starting with a marked edge such that marked edges and unmarked edges appear alternately

in the path. Two unmarked vertices x and y are linked in D if there is a path from x to y in D such that

marked edges and unmarked edges appear alternatively in the path.

The following lemma characterizes when two unmarked vertices of D are adjacent in the original

graph G.

Lemma 4.6. Let D be a split decomposition of a connected graph G. Let v1 and w1 be two vertices in

a same bag of D, and let v and w be two unmarked vertices of D represented by v1 and w1, respectively.

The following are equivalent.

1. v and w are linked in D.

2. vw P EpGq.

3. v1w1 P EpDq.

Proof. It is not hard to show that v1 and w1 are adjacent in D if and only if there is an alternating path

from v to w in D. Now the proof follows from this and the definition of representativity.

We sometimes remove vertices from a given split decomposition and obtain several components. The

following notations are useful to call marked vertices, and especially, we will use them when characterizing

the linear rank-width of distance-hereditary graphs in Chapter 5. For a bag B of a split decomposition

D and a component T of DzV pBq,

1. let ζbpD,B, T q, ζtpD,B, T q be the marked vertices of D such that ζbpD,B, T q P V pBq, ζtpD,B, T q P

V pT q and ζbpD,B, T qζbpD,B, T q is the marked edge connecting B and T in D.
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Figure 4.3: From a split decomposition D of a graph G, we obtain a split decomposition D ˚ v2 of G ˚ v2.

Note that v2 is represented by v2, a, f in D.

The subscript ‘b’ means the marked vertex that is in the removed bag, and the subscript ‘t’ means the

marked vertex that is in a component after removing the bag.

A subgraph of a split decomposition is called a subdecomposition. We consider T as a subdecom-

position of D. Note that ζtpD,B, T q is not incident with any marked edge in T . When we take a

subdecomposition T from D, we regard ζtpD,B, T q as an unmarked vertex of T . It can be viewed as

choosing one unmarked vertex which is represented by ζtpD,B, T q in D. If the split decomposition D is

clear from the context, then we remove D from the notation ζbpD,B, T q or ζtpD,B, T q.

The following is an easy lemma.

Lemma 4.7. Let D be a split decomposition of a connected graph G. If B is a bag of D, then G has an

induced subgraph isomorphic to B.

Proof. For each vertex in the bag B, we can choose one unmarked vertex represented by it. Then the

set of unmarked vertices induces a subgraph isomorphic to B in G.

4.3 Local complementations in split decompositions

We now discuss how split decompositions change when we apply a local complementation at a vertex

in the original graph.

Let D be a split decomposition of a connected graph G. A local complementation at an unmarked

vertex v in a split decomposition D, denoted by D˚v, is the operation that replaces each bag B containing

a representative w of v with B ˚ w. See Figure 4.3 for an example of applying a local complementation

in a split decomposition. We observe that if D is a split decomposition of G, then D ˚ v is a split

decomposition of G ˚ v, and therefore MpDq “ MpD ˚ vq [31]. Two split decompositions D and D1

are locally equivalent if D can be obtained from D1 by applying a sequence of local complementations.

Moreover, we obtain a relation for canonical split decompositions.

Lemma 4.8 (Bouchet [31]). Let D be the canonical split decomposition of a connected graph G. If v is

an unmarked vertex of D, then D ˚ v is the canonical split decomposition of G ˚ v.

From Lemma 4.8 if D is a split decomposition and D1 “ D ˚ x, then TD1 and TD are isomorphic

because MpDq “MpD1q. For every node v of TD associated with the bag B in D, its corresponding node

v1 in TD1 is associated in D1 either with the bag B if x has no representative in B or with the bag B ˚w

where w is the representative of x in B. Hence for each X Ď V pDq, DrXs induces a bag in D if and only

if D1rXs induces a bag in D1. To avoid tracking bags as graphs when we apply local complementations,

for each node v of a split decomposition tree T and each canonical split decomposition D with T as a
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D ˚ v ˚ w

v w

D ˚ v ˚ w ˚ v

v w

Figure 4.4: The split decomposition D ˚ v ˚ w ˚ v, which is the same as D ^ vw.

split decomposition tree we write bagpD,T qpvq to denote the bag of D with which it is in correspondence.

If the split decomposition tree T is clear, then we remove it from the notation.

Let v and w be linked unmarked vertices in a split decomposition D, and let Bv and Bw be the bags

containing v and w, respectively. Note that if B is a bag of type S in the path from Bv to Bw in TD, then

the center of B is a representative of either v or w. Pivoting vw of D, denoted by D ^ vw, is the split

decomposition obtained as follows: for each bag B on the path from Bv to Bw in TD, if v1, w1 P V pBq

represent v and w in D, respectively, then we replace B with B ^ v1w1. (Note that by Lemma 4.6, we

have v1w1 P EpBq, hence B ^ v1w1 is well-defined.)

Lemma 4.9. Let D be a split decomposition of a connected graph G. If xy P EpGq, then D ^ xy “

D ˚ x ˚ y ˚ x “ D ˚ y ˚ x ˚ y.

Proof. Since xy P EpGq, by Lemma 4.6, x and y are linked in D. It is easy to see that by the operation

D ˚ x ˚ y ˚ x, only the bags in the path from x to y are modified, and they are modified according to the

definition of D ^ xy. See Figure 4.4.

As a corollary of Lemmas 4.8 and 4.9, we get the following.

Corollary 4.10. Let D be the canonical split decomposition of a graph G. If xy P EpGq, then D ^ xy

is the canonical split decomposition of G^ xy.

We introduce some useful lemmas on local complementations and their canonical split decomposition

versions.

Lemma 4.11. Let G be a graph and x, y P V pGq such that xy R EpGq. Then G ˚ x ˚ y “ G ˚ y ˚ x.
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Proof. We define vertex sets W1 :“ NGpxq X NGpyq, W2 :“ NGpxqzNGpyq, and W3 :“ NGpyqzNGpxq.

The graph G ˚x ˚ y is obtained from G by flipping the adjacency between two vertices in W2 and in W3,

respectively, and flipping the adjacency between W1 and W2 YW3. From the symmetry, the resulting

graph is the same as G ˚ y ˚ x.

Lemma 4.12. Let G be a graph and x, y, z P V pGq such that xy, xz R EpGq and yz P EpGq. Then

G ˚ x^ yz “ G^ yz ˚ x.

Proof. By the definition of pivoting, G ˚ x^ yz “ G ˚ x ˚ y ˚ z ˚ y. Note that xy R EpGq, xz R EpG ˚ yq,

and xy R EpG˚y ˚ zq. Therefore, by Lemma 4.11, G˚x˚y ˚ z ˚y “ pG˚yq ˚x˚ z ˚y “ pG˚y ˚ zq ˚x˚y “

pG ˚ y ˚ z ˚ yq ˚ x “ G^ yz ˚ x.

The followings can be easily verified using the proofs of Lemmas 1.9, 4.11, and 4.12.

Lemma 4.13. Let D be the canonical split decomposition of a connected graph. The following are

satisfied.

1. If x, y are unmarked vertices of D that are not linked, then D ˚ x ˚ y “ D ˚ y ˚ x.

2. If x, y, z are unmarked vertices of D such that x is linked to neither y nor z, and y and z are linked,

then D ˚ x^ yz “ D ^ yz ˚ x.

3. If x, y, z are unmarked vertices of D such that y is linked to both x and z, then D^xy^xz “ D^yz.
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Chapter 5. Distance-hereditary graphs

We discuss structures of distance-hereditary graphs. A graph G is distance-hereditary if for every

connected induced subgraph H of G and v, w P V pHq, the distance between v and w in H is equal

to the distance in G. Distance-hereditary graphs were first introduced by Howorka [113]. Bandelt and

Mulder [9] provided several characterizations of distance-hereditary graphs. Oum [150] showed that

distance-hereditary graphs are exactly the graphs of rank-width at most 1, and thus, these characteriza-

tions of distance-hereditary graphs are useful when discussing graphs of rank-width at most 1.

We characterize the linear rank-width of distance-hereditary graphs in Section 5.3. This char-

acterization will be used to devise a polynomial-time algorithm to compute the linear rank-width of

distance-hereditary graphs in Chapter 9. We present an extension of Bouchet’s theorem about locally

equivalent trees in Section 5.5, which will be used to obtain a lower bound on the number of graphs in a

vertex-minor obstruction set for the class of graphs of linear rank-width at most k. In the last section,

we survey characterizations of thread graphs, which will be used to obtain an FPT algorithm for the

Thread Vertex Deletion problem in Chapter 10.

5.1 Characterizations of distance-hereditary graphs

We summarize useful characterizations of distance-hereditary graphs. The induced subgraph ob-

structions for distance-hereditary graphs are depicted in Figure 5.1.

Theorem 5.1 (Howorka [113]; Bandelt and Mulder [9]; Bouchet [31]; Oum [150]; Kwon and Oum [134]).

Let G be a graph. The following are equivalent.

1. G is distance-hereditary.

2. G has rank-width at most 1.

3. G is thouse, gem, domino, holeu-free.

4. G has no vertex-minor isomorphic to C5.

5. G has no pivot-minor isomorphic to C5 and C6.

6. Every bag of the canonical split decomposition of each connected component of G is either a complete

bag or a star bag.

house gem domino hole

Figure 5.1: The induced subgraph obstructions for distance-hereditary graphs.
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Figure 5.2: A canonical split decomposition of a tree.

Figure 5.3: A canonical split decomposition of a cograph.

7. G can be constructed from a vertex by a sequence of adding a false twin, a true twin, or a pendant

vertex.

8. G is a vertex-minor of a tree.

The structure of canonical split decompositions of distance-hereditary graphs is widely used in this

thesis. To help understanding the structure of distance-hereditary graphs, we provide some examples

here. Bouchet [31] provided a characterization of trees in terms of canonical split decompositions.

Theorem 5.2 (Bouchet [31]). A connected graph is a tree if and only if each bag of its canonical split

decomposition is a star bag whose center is an unmarked vertex.

See Figure 5.2 for an example of the canonical split decomposition of a tree. Using this character-

ization, Bouchet [31] proved that two locally equivalent trees must be isomorphic. We will extend this

result in Section 5.5.

Cographs [57, 37] are one of the interesting subclasses of distance-hereditary graphs. Cographs are

exactly P4-free graphs. See Figure 5.3 for an example of the canonical split decomposition of a cograph.

Roughly speaking, the star bags of a canonical split decomposition of a connected cograph are directed

towards one bag, if we regard the center vertex as the direction of each star bag [57, 104]. We remark

that for every vertex v in a distance-hereditary graph, the neighborhood of v induces a cograph because

a distance-hereditary graph is tgemu-free.
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A graph is a block graph [126, 114, 9] if all of its blocks are complete graphs. A diamond graph is the

graph obtained from K4 by removing one edge. Bandelt and Mulder [9] showed that a graph is a block

graph if and only if it has no induced subgraph isomorphic to a diamond graph or Ck for k ě 4. We can

regard them as tdiamond, C4u-free distance-hereditary graphs. We characterize block graphs from their

canonical split decompositions.

Lemma 5.3. Let D be the canonical split decomposition of a connected graph G. Then G is a block

graph if and only if every bag of D is either a star or a complete bag, and the center of each star bag of

D is unmarked.

Proof. We may assume that G is distance-hereditary because otherwise D has a bag that is neither star

nor complete, and G is not a block graph.

We first suppose that D has a star bag B having a marked center w. There exists a marked edge

ww1 joining B with a bag B1. Since D is a canonical split decomposition, B1 is either complete or star

with the center w1. If B1 is complete, then by recomposing ww1 we obtain a bag which has an induced

subgraph isomorphic to a diamond graph. Thus G has an induced subgraph isomorphic to a diamond

graph by Lemma 4.7. Since a diamond graph is not a block graph, we deduce that G is not a block

graph. If B1 is a star bag with the center w1, then by recomposing ww1, we obtain a bag which has an

induced subgraph isomorphic to C4. By Lemma 4.7, G should have an induced subgraph isomorphic to

C4, and therefore G is not a block graph.

To prove the converse, we claim a stronger statement: if D is a split decomposition of a connected

graph G whose bags are star or complete and no center of a star bag in D is marked, then G is a block

graph. We proceed by induction on |V pDq|. We may assume that D has a star bag B because otherwise

G is a complete graph. Let v be the center of B. If B has another unmarked vertex w, then let G1 be

a graph obtained by recomposing all marked edges in Dzw. Here G is obtained from G1 by adding a

pendant vertex w to v. By the induction hypothesis, G1 is a block graph and so is G. We may now assume

that every vertex in B other than v is marked. Let B “ tv, v1, v2, . . . , vnu and let v1w1, v2w2, . . . , vnwn

be the marked edges incident with B. Let Di be the component of DzV pBq containing wi. By the

induction hypothesis, the graph Gi obtained by recomposing all marked edges in Di is a block graph.

The graph G is obtained from G1, G2, . . . , Gn by identifying w1, w2, . . . , wn with a new vertex v. Since

each block of G is a block of Gi for some i, we deduce that G is a block graph.

Parity graphs [41, 55] are graphs G where for every u, v P V pGq and two induced paths from u to

v in G, the parity of the length of paths are the same. Cicerone and Stefano [55] show that a graph G

is a parity graph if and only if every bag of its canonical split decomposition is bipartite or complete.

Ptolemaic graphs [126, 115, 9] are exactly tgem, C4,holeu-free graphs, and we can regard ptolemaic graphs

as C4-free distance-hereditary graphs. We provide a hierarchy of related graph classes in Figure 5.4.

The incremental characterization of distance-hereditary graphs

Lastly, we introduce the incremental characterization of distance-hereditary graphs, given by Gioan

and Paul [104]. For a vertex subset S of a graph G and x R V pGq, we denote by G ` px, Sq the graph

obtained fromG by adding a vertex x and adding edges between x and the vertices in S. Given a canonical

split decomposition of a connected distance-hereditary graph G, Gioan and Paul [104] characterize when

G`px, Sq is again distance-hereditary, and they describe how to put the new vertex to make a canonical

split decomposition of G ` px, Sq. Since the definition of canonical split decompositions used by Gioan
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Figure 5.4: A hierarchy of graph classes.

and Paul is slightly different, we rephrase their result into our notation. We will use this incremental

characterization in Section 6.4 to generate vertex-minor minimal graphs for the class of graphs of linear

rank-width at most k, and in Section 10.1 to analyze necklace graphs which extend thread graphs.

Let D be the canonical split decomposition of a connected distance-hereditary graph G. For S Ď

V pGq and a vertex v in D with a bag B containing v, v is accessible with respect to S if either v P S, or

the component of DzV pBq having a neighbor of v contains a vertex in S. For S Ď V pGq and a bag B of

D,

1. B is fully accessible with respect to S if all vertices in B are accessible with respect to S,

2. B is singly accessible with respect to S if B is a star bag of D, and exactly two vertices of B

including the center of B are accessible with respect to S, and

3. B is partially accessible with respect to S if otherwise.

A star bag B of D is oriented towards a bag B1 (or a marked edge e) in D if the path from the center

of B to a vertex of B1 (or to end vertices of e) contain the marked edge incident with the center of B.

For S Ď V pGq, we define DpSq as the minimal connected subdecomposition of D such that

1. DpSq is induced by a union of bags of D, and

2. DpSq contains all vertices of S.

Theorem 5.4 (Gioan and Paul [104]). Let D be the canonical split decomposition of a connected distance-

hereditary graph G, and let S Ď V pGq with |S| ě 2. Then G ` px, Sq is distance-hereditary if and only

if
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1. at most one bag of DpSq is partially accessible in D,

2. every complete bag of DpSq is either fully accessible or partially accessible in D, and

3. (a) if there is a partially accessible bag B in DpSq, then each star bag B1 ‰ B in DpSq is oriented

towards B if and only if it is fully accessible,

(b) otherwise, there exists a marked edge e of DpSq such that each star bag B in DpSq is oriented

towards e if and only if it is fully accessible.

Now we describe how we update canonical split decompositions when adding a vertex. Let S Ď V pGq

with |S| ě 2 and x R V pGq such that x and S satisfy the condition of Theorem 5.4 and thus, G` px, Sq

is distance-hereditary. Let DpSq be the minimal connected subdecomposition of D induced by a union

of bags of D that contains all vertices of S. From Condition 3 in Theorem 5.4, the subdecomposition

DpSq contains a bag or a marked edge which has a special role. To identify this bag or edge, we define

an orientation among bags in DpSq.

We define an orientation g on DpSq which maps a bag of DpSq to itself or its adjacent bag in D,

such that

1. gpBq “ B implies gpB1q “ B for every adjacent bag B1 of B, and

2. gpBq “ B1 implies gpB2q “ B for every adjacent bag B2 ‰ B1 of B.

It is not hard to check that one of the following is satisfied:

1. There exists a unique bag B with gpBq “ B. We call it the root bag with respect to g.

2. There exists a unique marked edge connecting two bags B and B1 with gpBq “ B1 and gpB1q “ B.

We call it the root edge with respect to g.

We define an orientation g on the bags of DpSq as follows:

1. Let B be a star bag of DpSq. If B is partially accessible in D, then gpBq :“ B. If B is singly

accessible in D, then let gpBq be the unique adjacent bag B1 of B such that a leaf of B is adjacent

to B1. If B is fully accessible in D, then let gpBq be the adjacent bag B1 of B such that the center

of B is adjacent to B1.

2. Let B be a complete bag of DpSq. If B is partially accessible in D, then gpBq :“ B. Otherwise, B

is fully accessible and its adjacent bags are star bags. If gpB1q “ B for every adjacent bag B1 of B

then gpBq :“ B. If gpB1q “ B for every adjacent bag B1 of B but one, say B2, then gpBq :“ B2.

We first preprocess a partially accessible bag with respect to S if exists, and analyze three cases.

Note that we take an orientation after preprocessing.

Preprocessing. There is a partially accessible bag B with the set AB of all accessible vertices in B such

that |AB | ě 2, |V pBqzAB | ě 2.

We replaceB with a simple decomposition obtained by decomposingB along the split pAB , V pBqzABq

of B. Now the new bag containing AB consists of exactly AB with one more marked vertex.

Case 1. The root bag B of DpSq with respect to g is partially accessible.

Let B1 be its adjacent bag in D that does not belong to DpSq. Then we put a new star bag of size

3 on the marked edge linking B and B1, whose center is adjacent to the root bag. The unmarked vertex

in the new bag is x.
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Case 2. The root bag B of DpSq with respect to g is not partially accessible.

By the definition of the orientation g, the bag B is a complete bag, and we add a new unmarked

vertex x in B so that the new bag becomes a complete bag.

Case 3. The root edge of DpSq with respect to g is a marked edge linking B and B1.

In this case, we put a new complete bag of size 3 on the marked edge linking B and B1. The

unmarked vertex in the new bag is x.

5.2 Limbs in canonical split decompositions

We define the notion of limb, which is a key ingredient in the characterization of the linear rank-width

of canonical split decompositions of distance-hereditary graphs.

Let D be the canonical split decomposition of a connected distance-hereditary graph G. We recall

from Theorem 4.5 that marked edges of types KK or SpSc do not occur in D. For an unmarked vertex y

in D and a bag B of D containing a marked vertex that represents y, let T be the component of DzV pBq

containing y, and let w be the marked vertex of B adjacent to a vertex of T , and let v be the neighbor

of w in T . We define the limb L :“LDrB, ys with respect to B and y as follows:

1. if B is of type K, then L :“ T ˚ vzv,

2. if B is of type S and w is a leaf, then L :“ T zv,

3. if B is of type S and w is the center, then L :“ T ^ vyzv.

Since v becomes an unmarked vertex in T , the limb is well-defined and it is a split decomposition.

While T is a canonical split decomposition, L may not be a canonical split decomposition at all, because

deleting v may create a bag of size 2. We analyze the cases when such a bag appears, and describe how

to transform it into a canonical split decomposition.

Suppose that a bag B1 of size 2 appears in L by deleting v. If B1 has no adjacent bags in L, then

B1 itself is a canonical split decomposition. Otherwise we have two cases.

1. (B1 has one adjacent bag B1)

If v1 P V pB1q is the marked vertex adjacent to a vertex of B1 and r is the unmarked vertex of B1

in L, then we can transform the limb into a canonical split decomposition by removing the bag B1

and replacing v1 with r.

2. (B1 has two adjacent bags B1, B2)

If v1 P V pB1q and v2 P V pB2q are the two marked vertices that are adjacent to the two marked

vertices of B1 respectively, then we can first transform the limb into another split decomposition by

removing B1 and adding a marked edge v1v2. If the new marked edge v1v2 is of type KK or SpSc,

then by recomposing along v1v2, we finally transform the limb into a canonical split decomposition.

Let rL :“ rLDrB, ys be the canonical split decomposition obtained from LDrB, ys and we call it the

canonical limb. Let pL :“ pLDrB, ys be the graph obtained from LDrB, ys by recomposing all marked edges.

See Figure 5.5 for an example of a canonical limb. If the original canonical split decomposition D is clear

from the context, then we remove the subscript D in the notations LDrB, ys, rLDrB, ys and pLDrB, ys.

Lemma 5.5. Let B be a bag of D. If an unmarked vertex y of D is represented by a marked vertex of

B, then LrB, ys is connected.
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B

paq pbq pcq

Figure 5.5: In paq, we have a canonical split decomposition D of a distance-hereditary graph and a bag B

of D. The dashed edges are marked edges of D. In pbq, we have limbs L associated with the components

of DzV pBq. The canonical limbs rL associated with limbs L are shown in pcq.

Proof. Let T be the component of DzV pBq containing y, and v :“ ζtpB, T q, and B1 be the bag of D

containing v. Since local complementations maintain connectedness, it suffices to verify that V pB1qzv

induces a connected subgraph in LrB, ys. This is not hard to see for each of the three cases.

Lemma 5.6. Let B be a bag of D. If two unmarked vertices x and y are represented by a marked vertex

w P V pBq, then LrB, xs is locally equivalent to LrB, ys.

Proof. Since x and y are represented by the same vertex w of B in D, they are contained in the same

component of DzV pBq, say T . Let v :“ ζtpB, T q.

If B is a complete bag or a star bag having w as a leaf, then by the definition of limbs, LrB, xs “
LrB, ys. So, we may assume that w is the center of the star bag B. Since v is linked to both x and y in

T , by Lemma 4.13, T ^vx^xy “ T ^vy. So, we obtain that pT ^vxzvq^xy “ T ^vx^xyzv “ T ^vyzv.

Therefore LrB, xs is locally equivalent to LrB, ys.

For a bag B of D and a component T of DzV pBq, we define fDpB, T q as the linear rank-width of

pLDrB, ys for some unmarked vertex y P V pT q. In fact, by Lemma 5.6, fDpB, T q does not depend on

the choice of y. As in the notation LDrB, xs, if the canonical split decomposition D is clear from the

context, then we remove the subscript D in the notation fDpB, T q.

Proposition 5.7. Let B be a bag of D and y be an unmarked vertex represented in D by w P V pBq.

Let x P V p pDq. If an unmarked vertex y1 is represented by w in D ˚ x, then pLDrB, ys is locally equivalent

to pLD˚xrpD ˚ xqrV pBqs, y1s. Therefore, fDpB, T q “ fD˚xppD ˚ xqrV pBqs, Txq where T and Tx are the

components of DzV pBq and pD ˚ xqzV pBq containing y, respectively.

Before proving it, let us recall the following by Geelen and Oum.

Lemma 5.8 (Geelen and Oum [103]). Let G be a graph and x, y be two distinct vertices in G. Let

xw P EpG ˚ yq and xz P EpGq.

1. If xy R EpGq, then pG ˚ yqzx, pG ˚ y ˚ xqzx, and pG ˚ yq ^ xwzx are locally equivalent to Gzx,

G ˚ xzx, and G^ xzzx, respectively.

2. If xy P EpGq, then pG ˚ yqzx, pG ˚ y ˚ xqzx, and pG ˚ yq ^ xwzx are locally equivalent to Gzx,

G^ xzzx, and pG ˚ xqzx, respectively.

– 42 –



Proof of Proposition 5.7. By Lemma 5.6, it is enough to show the first statement because a local com-

plementation preserves the linear rank-width of a graph. Let v :“ ζtpD,B, T q and B1 :“ pD ˚ xqrV pBqs.

Let T and Tx be the components of DzV pBq and pD ˚ xqzV pBq containing y, respectively. Note that

V pT q “ V pTxq.

We claim that pLDrB, ys is locally equivalent to pLD˚xrB1, y1s for some unmarked vertex y1 represented

by w in D ˚ x. We divide into cases depending on the type of the bag B and whether x P V pT q.

Case 1. x P V pT q and x is not linked to v in T .

Since x is not linked to v in T , B1 “ B and v is still linked to y in T ˚ x. In this case, let y1 :“ y.

Case 1.1. B is of type S and w is a leaf of B.

Since v is not linked to x in T , by Lemma 5.8, pT zv is locally equivalent to pT ˚ xzv.

Case 1.2. B is of type S and w is the center of B.

Since v is linked to y in T ˚ x, by Lemma 5.8, pT ^ vyzv is locally equivalent to pT ˚ x^ vyzv.

Case 1.3. B is of type K.

Since v is not linked to x in T , by Lemma 5.8, pT ˚ vzv is locally equivalent to pT ˚ x ˚ vzv.

Case 2. x P V pT q and x is linked to v in T .

Note that x is linked to v in T ˚ x. Let y1 :“ x for this case.

Case 2.1. B is of type S and w is a leaf of B.

Applying local complementation at x does not change the type of the bag B. Since v is linked to x

in T , by Lemma 5.8, pT zv is locally equivalent to pT ˚ xzv.

Case 2.2. B is of type S and w is the center of B.

Applying local complementation at x changes the bag B into a bag of type K, and the component

T into T ˚ x. Since v is linked to x in T , by Lemma 5.8, pT ^ vyzv is locally equivalent to pT ˚ x ˚ vzv.

Case 2.3. B is of type K.

Applying local complementation at x changes the bag B into a bag of type S such that the center

of B is w. Since v is linked to x in T , by Lemma 5.8, pT ˚ vzv is locally equivalent to pT ˚ x^ vxzv.

Case 3. x R V pT q.

If x has no representative in the bag B, then applying local complementation at x does not change

the bag B and the component T . Therefore, we may assume that x is represented by some vertex in B,

necessarily adjacent to w. In this case, v is still a representative of y in D ˚ x, and we let y1 :“ y.

Case 3.1. B is of type S and w is a leaf of B.

Applying local complementation at x changes B into a bag of type K, and T into T ˚ v. We have

LD˚xrB1, y1s “ pT ˚ vq ˚ vzv “ T zv “ LDrB, ys.

Case 3.2. B is of type S and w is the center of B.

Since w is the center of B, x is represented by a leaf of the bag B. Applying local complementation

at x does not change the bag B, but it changes T into T ˚ v. We have LD˚xrB1, y1s “ pT ˚ vq ^ vyzv.

Since ppT ˚ vq ^ vyzvq ˚ y “ T ˚ y ˚ v ˚ yzv “ T ^ vyzv, LDrB, ys and LD˚xrB1, y1s are locally equivalent.

Case 3.3. B is of type K.

After applying local complementation at x in D, B becomes a star such that w is a leaf of B, and

T becomes T ˚ v. Therefore, we have LD˚xrB1, y1s “ T ˚ vzv “ LDrB, ys.

The following lemma will be used widely to reduce cases in several proofs.
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Lemma 5.9. Let B1 and B2 be two distinct bags of D and for each i P t1, 2u, let Ti be the components

of DzV pBiq such that T1 contains the bag B2 and T2 contains the bag B1. Then there exists a canonical

split decomposition D1 locally equivalent to D such that for each i P t1, 2u, D1rV pBiqs is a star whose

leaf is adjacent to a vertex in Ti.

Proof. Let vi :“ ζbpD,Bi, Tiq for i “ 1, 2. It is easy to make B1 into a star bag having v1 as a leaf by

applying local complementations. We can assume without loss of generality that v1 is a leaf of B1 in D.

If v2 is a leaf of B2, then we are done. If B2 is a complete bag, then choose an unmarked vertex w2 of

D that is represented by a vertex of B2 other than v2. Then applying a local complementation at w2

makes B2 into a star bag having v2 as a leaf without changing B1. Therefore, we may assume that v2 is

the center of the star bag B2. If B1 and B2 are adjacent bags in D, then the marked edge connecting

B1 and B2 is of type SpSc, contradicting to the assumption that D is a canonical split decomposition.

Thus, B1 and B2 are not adjacent bags in D.

Let T :“ DrV pT1q X V pT2qs and w2 :“ ζtpD,B2, T2q. By the definition of a canonical split decom-

position, w2 is not a leaf of a star bag in D. Therefore, there exists an unmarked vertex y P V pT q of D

such that y is linked to w2 in T . Choose an unmarked vertex y1 of D represented by w2 in D. Since y

is linked to y1 and the alternating path from y to y1 in D pass through B2 but not B1, pivoting yy1 in

D makes B2 into a star bag having v2 as a leaf without changing B1. Thus, each vi is a leaf of Bi in

D ^ yy1, as required.

We conclude the section with the following.

Proposition 5.10. Let B1 and B2 be two distinct bags of D and T1 be a component of DzV pB1q such

that T1 does not contain the bag B2, and T2 be the component of DzV pB2q such that T2 contains the bag

B1. If y1 and y2 are two unmarked vertices in T1 and T2 that are represented by some vertices in B1

and B2, respectively, then pLDrB1, y1s is a vertex-minor of pLDrB2, y2s. Therefore fpB1, T1q ď fpB2, T2q.

Proof. Let u2 :“ ζtpB2, T2q and v2 :“ ζbpB2, T2q. By Lemma 5.9, there exists a canonical split decompo-

sition D1 locally equivalent to D such that B2 is a star bag in D1 and v2 is a leaf of B2. For each i P t1, 2u,

let T 1i :“ D1rV pTiqs, B
1
i :“ D1rV pBiqs and let y1i be an unmarked vertex in T 1i that is represented by some

vertex in B1i.

Since v2 is a leaf of B12 in D1, we have LD1rB12, y12s “ T 12zv2. Because T 11 is a subgraph of T 12zv2, we

can easily observe that pLD1rB11, y11s is a vertex-minor of pLD1rB12, y12s. Since for each i, LDrBi, yis is locally

equivalent to LD1rB1i, y1is, pLDrB1, y1s is a vertex-minor of pLDrB2, y2s. We conclude that fpB1, T1q ď

fpB2, T2q.

5.3 Linear rank-width of distance-hereditary graphs

Now, we present the main result of this chapter characterizing the linear rank-width of distance-

hereditary graphs using limbs.

Theorem 5.11. Let k be a positive integer and let D be the canonical split decomposition of a connected

distance-hereditary graph G. Then lrwpGq ď k if and only if for each bag B of D, at most two components

T of DzV pBq induce limbs L where pL has linear rank-width exactly k, and all other component T 1 of

DzV pBq induce limbs L1 where pL1 has linear rank-width at most k ´ 1.

Let k be a positive integer and let D be the canonical split decomposition of a connected distance-

hereditary graph G. We first prove the forward direction.
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Figure 5.6: We realize a limb without removing the bag in Theorem 5.11. Since B is a complete bag,

the limb LDrB, u2s “ pD ˚ u1qrV pT2qzw2s.

Proof of the forward direction of Theorem 5.11. Suppose that there exists a bagB ofD such thatDzV pBq

has at least three components T which induce limbs L where pL has linear rank-width k.

We claim that lrwpGq ě k ` 1. We may assume that DzV pBq has exactly three components T1, T2

and T3, where each component Ti satisfies fDpB, Tiq “ k. For each 1 ď i ď 3, let wi :“ ζtpB, Tiq, and Ni

be the set of the unmarked vertices in Ti linked to wi. Choose a vertex ui in Ni and let Di :“ LDrB, uis.
We remark that Ni is exactly the set of the vertices in V pxDiq that have a neighbor in V p pDqzV pxDiq.

Since removing a vertex from a graph does not increase the linear rank-width, we assume that B

consists of exactly three marked vertices that are adjacent to one of T1, T2 and T3. Now, every unmarked

vertex of D is contained in one of T1, T2 and T3.

Note that by Proposition 5.7 and Lemmas 2.1 and 4.8, for any canonical split decomposition D1

locally equivalent to D, we have lrwp pDq “ lrwpxD1q and fDpB, Tiq does not change. So, we may assume

that B is a complete bag of D.

We first claim that D2 “ pD ˚ u1qrV pT2qzw2s. Since the bag B is complete, by definition, D2 “

T2 ˚ w2zw2. Since u1 is linked to w1 in T1 and there is an alternating path from w1 to w2 in D, by

concatenating alternating paths it is easy to see that pD ˚u1qrV pT2qzw2s “ T2 ˚w2zw2 “ D2, as claimed.

See Figure 5.6.

Towards a contradiction, suppose that pD has a linear layout L of width k. Let a and b be the

first vertex and the last vertex of L, respectively. Since B has no unmarked vertices, without loss of

generality, we may assume that a, b P V pxD1q Y V pxD3q. With this assumption, we will prove that xD2 has

linear rank-width at most k ´ 1.

Let v P V pxD2q and Sv :“ tx P V p pDq : x ďL vu and Tv :“ V p pDqzSv. Since v is arbitrary, it is

sufficient to show that ρ
yD2
pSv X V pxD2qq ď k ´ 1.

We divide into three cases. We first check two cases that are either (N1XSv ‰ H and N3XTv ‰ H)

or (N1 X Tv ‰ H and N3 X Sv ‰ H). If both of them are not satisfied, then we can easily deduce that

N1 YN3 Ď Sv or N1 YN3 Ď Tv.

Case 1. N1 X Sv ‰ H and N3 X Tv ‰ H.

Let x1 P N1 X Sv and x3 P N3 X Tv. We claim that

ρ
yD2
pSv X V pxD2qq “ ρ

pDrV pyD2qYtx1,x3us
ppSv X V pxD2qq Y tx1uq ´ 1.

Because ρ
pDrV pyD2qYtx1,x3us

ppSvXV pxD2qqYtx1uq ď ρ
pDpSvq ď k, the claim implies that ρ

yD2
pSvXV pxD2qq ď

k ´ 1.

Note that x1 and x3 have the same neighbors in pDrV pxD2q Y tx1, x3us because they are in N1 and

N3, respectively. Since x1 is adjacent to x3 in pDrV pxD2q Y tx1, x3us, x3 becomes a leaf in pDrV pxD2q Y
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tx1, x3us ˚ x1 having exactly one neighbor, x1. Since pD ˚ x1qrV pT2qzw2s “ D2, we have

pDrV pxD2q Y tx1, x3us ˚ x1zx1zx3 “ p pD ˚ x1qrV pxD2qs “ xD2.

Therefore,

ρ
pDrV pyD2qYtx1,x3us

ppSv X V pxD2qq Y tx1uq

“ ρ
pDrV pyD2qYtx1,x3us˚x1

ppSv X V pxD2qq Y tx1uq

“ rank

¨

˚

˚

˚

˝

x3 Tv X V pxD2q
˜ ¸

x1 1 ˚

Sv X V pxD2q 0 ˚

˛

‹

‹

‹

‚

“ rank

¨

˚

˚

˚

˝

x3 Tv X V pxD2q
˜ ¸

x1 1 0

Sv X V pxD2q 0 ˚

˛

‹

‹

‹

‚

“ ρ
pDrV pyD2qYtx1,x3us˚x1zx1zx3

pSv X V pxD2qq ` 1

“ ρ
yD2
pSv X V pxD2qq ` 1,

as claimed.

Case 2. N1 X Tv ‰ H and N3 X Sv ‰ H.

We can prove ρ
yD2
pSv X V pxD2qq ď k ´ 1 in the same way as for Case 1.

Case 3. N1 YN3 Ď Sv or N1 YN3 Ď Tv.

We can assume without loss of generality that N1 Y N3 Ď Sv because N1 Y N3 Ď Tv is similar.

Since a, b P V pxD1q Y V pxD3q and the graph pDrV pxD1q Y V pxD3qs is connected, there exists a vertex

t P Tv X pV pxD1q Y V pxD3qq such that t is adjacent to a vertex of N1 YN3. Let x P N
pDptq X pN1 YN3q.

Since t cannot have a neighbor in N2, we have

ρ
pDpSvq ě rank

¨

˚

˚

˚

˝

t Tv X V pxD2q
˜ ¸

x 1 ˚

Sv X V pxD2q 0 ˚

˛

‹

‹

‹

‚

“ ρ
yD2
pSv X V pxD2qq ` 1.

Therefore, we conclude ρ
yD2
pSv X V pxD2qq ď k ´ 1.

Thus, xD2 has linear rank-width at most k ´ 1, which yields a contradiction.

To prove the converse direction, we use the following lemmas.

Lemma 5.12. Let B be a bag of D of type S having two unmarked vertices x and y such that x is the

center and y is a leaf of B. If fpB, T q ď k´ 1 for every component T of DzV pBq, then the graph pD has

a linear layout of width at most k whose first and last vertices are x and y, respectively.

Proof. Let T1, T2, . . . , T` be the components of DzV pBq and for each 1 ď i ď `, let wi :“ ζtpB, Tiq and

let yi be a vertex in Ti represented by a vertex of B. Since each wi is adjacent to a leaf of B, Tizwi is

the limb of D with respect to B and yi.
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Suppose that fpB, T q ď k ´ 1 for every component T of DzV pBq. We may assume without loss of

generality that B has only two unmarked vertices x and y. For each 1 ď i ď `, let Li be a linear layout

of {Tizwi of width at most k ´ 1. We claim that

L :“ pxq ‘ L1 ‘ L2 ‘ ¨ ¨ ¨ ‘ L` ‘ pyq

is a linear layout of pD of width at most k. It is sufficient to prove that for every w P V p pDqztx, yu,

ρ
pDptv : v ďL wuq ď k.

Let w P V p pDqztx, yu, and let Sw :“ tv : v ďL wu and Tw :“ V p pDqzSw. Then w P Lj for some

1 ď j ď ` and

ρ
pDpSwq “ rank

¨

˚

˚

˚

˚

˚

˚

˝

y Tw X V pxTjq TwztyuzV pxTjq
¨

˚

˝

˛

‹

‚

x 1 ˚ ˚

Sw X V pxTjq 0 ˚ 0

SwztxuzV pxTjq 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

“ rank

¨

˚

˚

˚

˚

˚

˚

˝

y Tw X V pxTjq TwztyuzV pxTjq
¨

˚

˝

˛

‹

‚

x 1 0 0

Sw X V pxTjq 0 ˚ 0

SwztxuzV pxTjq 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

“ ρ
{Tjzwj

pSw X V pxTjqq ` 1 ď pk ´ 1q ` 1 “ k.

Therefore, L is a linear layout of pD of width k whose first and last vertices are x and y, respectively.

Proposition 5.13. Let B be a bag of D with two unmarked vertices x and y. If fpB, T q ď k ´ 1 for

every component T of DzV pBq, then the graph pD has a linear layout of width at most k whose first and

last vertice are x and y, respectively.

Proof. Suppose that fpB, T q ď k´ 1 for every component T of DzV pBq. If B is a complete graph, then

let D1 :“ D ˚ x, and if B is a star such that x is the center, then let D1 :“ D, and if x is not the center

then let D1 :“ D ^ xy if y is the center, otherwise let D1 :“ D ^ xz where z is an unmarked vertex

represented by the center of B. It is clear that DrV pBqs is a star with x the center. By Proposition 5.7,

for each component T of DzV pBq, fDpB, T q “ fD1pD
1rV pBqs, D1rV pT qsq. Since xD1 is locally equivalent

to pD, by Lemma 5.12, we conclude that pD has a linear layout of width at most k whose first and last

vertice are x and y, respectively.

Lemma 5.14. If

1. for each bag B of D, there are at most two components T of DzV pBq satisfying fpB, T q “ k, and

2. for every other component T 1 of DzV pBq, fpB, T 1q ď k ´ 1, and

3. P is the set of nodes v in TD such that exactly two components T of DzV pbagDpvqq satisfy

fpbagDpvq, T q “ k,

then either P “ H or TDrP s is a path.

Proof. Suppose that P ‰ H. If v1 and v2 are in P , then there exists a component T1 of DzV pbagDpv1qq

not containing V pbagDpv2qq such that fpbagDpv1q, T1q “ k, and there exists a component T2 ofDzV pbagDpv2qq
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not containing V pbagDpv1qq such that fpbagDpv2q, T2q “ k. By Proposition 5.10, for every node v on

the path from v1 to v2 in TD, v must be contained in P . Thus P forms a connected subtree in TD.

Suppose now that P contains a node v having three neighbors v1, v2, and v3 in P . Then, again

by Proposition 5.10, D must have three components T of DzV pbagDpvqq such that fpbagDpvq, T q “ k,

which contradicts the assumption. Therefore, P forms a path in TD.

Lemma 5.15. If

1. for each bag B of D, there are at most two components T of DzV pBq satisfying fpB, T q “ k, and

2. fpB, T 1q ď k ´ 1 for all the other components T 1 of DzV pBq,

then TD has a path P such that for each node v in P and each component T of DzV pbagDpvqq not

containing a bag bagDpwq with w P V pP q, fpB, T q ď k ´ 1.

Proof. Let P 1 be the set of nodes v in TD such that exactly two components T of DzV pbagDpvqq satisfy

fpbagDpvq, T q “ k. By Lemma 5.14, either P 1 “ H or TDrP
1s is a path.

We first assume that P 1 ‰ H. Let TDrP
1s “ v1v2 ¨ ¨ ¨ vn, and let Bi :“ bagDpviq. By the definition,

there exists a component T1 of DzV pB1q such that T1 does not contain a bag of P 1 and fpB1, T1q “ k. Let

v0 be the node of TD such that bagDpv0q is the bag of T1 that is the adjacent bag of B1 in D. Similarly,

there exists a component Tn of DzV pBnq such that Tn does not contain a bag of P 1 and fpBn, Tnq “ k.

Let vn`1 be the node of TD such that bagDpvn`1q is the bag of Tn that is the adjacent bag of Bn in D.

Then P “ v0v1v2 ¨ ¨ ¨ vnvn`1 is the required path.

Now we assume that P 1 “ H. We choose a node v0 in TD and let B0 :“ bagDpv0q. If D has no

component T of DzV pB0q such that fpB0, T q “ k, then P :“ v0 satisfies the condition. If not, we take

a maximal path P :“ v0v1 ¨ ¨ ¨ vn`1 in TD such that (with Bi :“ bagDpviq)

• for each 0 ď i ď n, DzV pBiq has one component Ti such that fpBi, Tiq “ k, and Bi`1 is the bag

of Ti that is the adjacent bag of Bi in D.

By the maximality of P , P is a path in TD such that for each bag B in P and a component T of

DzV pBq not containing a bag of P , fpB, T q ď k ´ 1.

We are now ready to prove the converse direction of the proof of Theorem 5.11.

Proof of the backward direction of Theorem 5.11. Suppose that for each bag B of D, at most two com-

ponents T of DzV pBq induce limbs L where pL has linear rank-width exactly k, and all other component

T 1 of DzV pBq induce limbs L1 where pL1 has linear rank-width at most k´ 1. We claim that lrwpGq ď k.

Let P “ v0v1 ¨ ¨ ¨ vnvn`1 be a path in TD such that for each node v in P and a component T of

DzV pbagDpvqq not containing a bag bagDpwq with w P V pP q, fpbagDpvq, T q ď k´ 1 (such a path exists

by Lemma 5.15). For each 0 ď i ď n ` 1, let Bi :“ bagDpviq. If P consists of one vertex, then by

Proposition 5.13, lrwpGq “ lrwp pDq ď k. Thus, we may assume that n ě 0.

By adding unmarked vertices on B0 and Bn`1 if necessary, we assume that B0 and Bn`1 have

unmarked vertices a0 and bn`1 in D, respectively.

For each 0 ď i ď n, let bi be a marked vertex of Bi and let ai`1 be a marked vertex Bi`1 such that

biai`1 is the marked edge connecting Bi and Bi`1.

Let D0 be the component of DzV pB1q containing the bag B0. Let Dn`1 be the component of

DzV pBnq containing the bag Bn`1. For each 1 ď i ď n, let Di be the component of DzpV pBi´1q Y

V pBi`1qq containing the bag Bi. Notice that the vertices ai and bi are unmarked vertices in Di.
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Since every component T of DizV pBiq satisfies that fDi
pBi, T q ď k´ 1, by Proposition 5.13, xDi has

a linear layout L1i of width k whose first and last vertices are ai and bi, respectively. For each 1 ď i ď n,

let Li be the linear layout obtained from L1i by removing ai and bi. Let L0 and Ln`1 be obtained from

L10 and L1n`1 by removing b0 and an`1, respectively, and also a0 and bn`1 if they were added. Then we

can easily check that L “ L0‘L1‘¨ ¨ ¨‘Ln`1 is a linear layout of pD having width at most k. Therefore

lrwpGq “ lrwp pDq ď k.

5.4 Canonical limbs

We now prove two statements on canonical limbs which will be useful to design the algorithm for

computing the linear rank-width of distance-hereditary graphs. Let D be the canonical split decompo-

sition of a connected distance-hereditary graph G.

Proposition 5.16. Let B1 and B2 be two distinct bags of D and T1, T2 be the component of DzV pB1q,

DzV pB2q respectively, such that T1 contains the bag B2 and T2 contains the bag B1, and V pT1q X V pT2q

has at least two unmarked vertices of D. For each i “ 1, 2, let wi :“ ζbpD,Bi, Tiq and yi be an unmarked

vertex in D represented by wi. We define that

1. B11 :“ rLDrB2, y2srV pB1qs,

2. B12 :“ rLDrB1, y1srV pB2qs,

3. y11 is an unmarked vertex in rLDrB2, y2s represented by w1, and

4. y12 is an unmarked vertex in rLDrB1, y1s represented by w2.

Then rLr rLDrB1, y1s, B
1
2, y

1
2s is locally equivalent to rLr rLDrB2, y2s, B

1
1, y

1
1s.

Proof. For each i “ 1, 2, let vi :“ ζtpD,Bi, Tiq. By Lemma 5.9, there exists a canonical split decomposi-

tion D1 locally equivalent to D such that for each i P t1, 2u, wi is a leaf of D1rV pBiqs in D1.

For each i “ 1, 2, let Pi :“ D1rV pBiqs, T
1
i :“ D1rV pTiqs, and zi be an unmarked vertex represented

in D1 by wi. Let T 1 :“ D1rV pT 11q X V pT
1
2qs, and we define

1. P 11 :“ rLD1rP2, z2srV pP1qs,

2. P 12 :“ rLD1rP1, z1srV pP2qs,

3. let z11 be an unmarked vertex in rLD1rP2, z2s represented by w1,

4. let z12 be an unmarked vertex in rLD1rP1, z1s represented by w2.

Since D is locally equivalent to D1, by Proposition 5.7, rLDrB1, y1s is locally equivalent to rLD1rP1, z1s.

Again, since rLDrB1, y1s is locally equivalent to rLD1rP1, z1s, by Proposition 5.7,

rL
rLDrB1,y1s

rB12, y
1
2s is locally equivalent to rL

rLD1 rP1,z1s
rP 12, z

1
2s.

Similarly, we obtain that

rL
rLDrB2,y2s

rB11, y
1
1s is locally equivalent to rL

rLD1 rP2,z2s
rP 11, z

1
1s.

Since each vi is a leaf of Pi in D1,

LLD1 rP1,z1srP
1
2, z

1
2s “ T 1zv1zv2 “ LLD1 rP2,z2srP

1
1, z

1
1s,
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and it implies that

rL
rLD1 rP1,z1s

rP 12, z
1
2s “

rL
rLD1 rP2,z2s

rP 11, z
1
1s.

Therefore, rL
rLDrB1,y1s

rB12, y
1
2s is locally equivalent to rL

rLDrB2,y2s
rB11, y

1
1s.

Proposition 5.17. Let B1 and B2 be two distinct bags of D. Let T1 be a component of DzV pB1q that

does not contain B2 and T2 be the component of DzV pB2q containing the bag B1. For i “ 1, 2, let

wi :“ ζbpD,Bi, Tiq, and yi be an unmarked vertex in D represented by wi. If V pB1q induces a bag B11 of

rLDrB2, y2s, then rLDrB1, y1s is locally equivalent to rL
rLDrB2,y2s

rB11, y
1
1s, where y11 is an unmarked vertex

in rLDrB2, y2s represented by w1.

Proof. Suppose V pB1q induces a bag B11 of rLDrB2, y2s and y12 is an unmarked vertex in rLDrB2, y2s

represented by w1. By Lemma 5.9, there exists a canonical split decomposition D1 locally equivalent to

D such that w2 is a leaf of a star bag P2 “ D1rV pB2qs in D1. We define

• P1 :“ D1rV pB1qs,

• zi is an unmarked vertex in D1 represented by wi,

• P 11 :“ rLrD1, P2, z2srV pB1qs, and

• z11 is an unmarked vertex in rLrD1, P2, z2s represented by w1.

Since D is locally equivalent to D1, by Proposition 5.7, rLDrB1, y1s is locally equivalent to rLD1rP1, z1s.

Similarly, we obtain that rLDrB2, y2s is locally equivalent to rLD1rP2, z2s. Since rLDrB2, y2s is locally

equivalent to rLD1rP2, z2s, by Proposition 5.7,

rL
rLDrB2,y2s

rB11, y
1
1s is locally equivalent to rL

rLD1 rP2,z2s
rP 11, z

1
1s.

Since w2 is a leaf of P2 in D1, rLD1rP1, z1s “ rL
rLD1 rP2,z2s

rP 11, z
1
1s, and therefore, rLDrB1, y1s is locally

equivalent to rL
rLDrB2,y2s

rB11, y
1
1s, as required.

We conclude this section with the following which more or less says that when taking limbs succes-

sively, the chosen order is not matter since they are all locally equivalent.

Proposition 5.18. Let B be a bag of D, let T be a component of DzV pBq and let y be an unmarked vertex

in V pT q represented by a marked vertex of B. A canonical split decomposition L1 is locally equivalent to

rLDrB, ys if and only if there exists D1 locally equivalent to D and y1 P V pT q represented by a marked

vertex in V pBq such that L1 “ rLD1rD1rV pBqs, y1s.

Proof. If L1 “ rLD1rD1rV pBqs, y1s for some canonical split decomposition D1 locally equivalent to D with

y1 P V pT q represented by some vertex in V pBq, then by Lemma 4.8 and Proposition 5.7 we can conclude

that L1 is locally equivalent to rLDrB, ys.
Let us now prove the other direction. It is enough to show it when L1 :“ rLDrB, ys ˚ x for some

unmarked vertex x of rLDrB, ys. Observe that x is necessarily in V pT q. From the definition of canonical

limb, rLDrB, ys is obtained from D1 :“ LDrB, ys, and then L1 is obtained in the same way from D2 :“

D1 ˚ x. So, it is sufficient to prove that D2 “ LD1rD1rV pBqs, y1s where D1 is locally equivalent to

D and y1 P V pT q is represented in D1 by some marked vertex of V pBq. Let v :“ ζtpD,B, T q and

w :“ ζbpD,B, T q. We divide into cases depending on the type of B.

Case 1. B is of type S and w is a leaf of B.
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In this case, D1 “ T zv and D2 “ pT zvq ˚ x. Now, LD˚xrB, ys “ pT ˚ xqzv “ pT zvq ˚ x “ D2.

Case 2. B is of type K.

Note that D1 “ pT ˚ vqzv and D2 “ pT ˚ vqzv ˚ x.

Case 2.1. x is linked to v in T .

Now LD˚xrpD ˚ xqrV pBqs, xs “ pT ˚ xq ˚ x ˚ v ˚ xzv “ pT ˚ vqzv ˚ x “ D2.

Case 2.2. x is not linked to v in T .

Since x is not linked to v in T , by Lemma 4.11, T ˚ v ˚ x “ T ˚ x ˚ v. So, we have LD˚xrpD ˚

xqrV pBqs, ys “ pT ˚ xq ˚ vzv “ pT ˚ vqzv ˚ x “ D2.

Case 3. B is of type S and w is the center of DrBs.

In this case, D1 “ pT ^ vyqzv and D2 “ pT ^ vyqzv ˚ x. Let v1 be an unmarked vertex represented

by v in D. Note that v1 R V pT q.

Case 3.1. x is linked to neither v nor y.

Since x is linked to neither v nor y, by Lemma 4.12, T ˚ x ^ vy “ T ^ vy ˚ x. Thus, we have

LD˚xrpD ˚ xqrV pBqs, ys “ pT ˚ xq ^ vyzv “ pT ^ vyzvq ˚ x “ D2.

Case 3.2. x is not linked to y, but linked to v.

The vertex set V pBq induces a complete bag in D ˚v1 ˚y ˚x, and x and v are not linked in D ˚v1 ˚y.

Thus by Lemma 4.11, LD˚v1˚y˚xrpD ˚ v1 ˚ y ˚ xqrV pBqs, ys “ pT ˚ v ˚ y ˚ xq ˚ vzv “ pT ^ vyzvq ˚ x “ D2.

Case 3.3. x is not linked to v, but linked to y.

The vertex set V pBq induces a star with a leaf w in D ˚ y ˚ v1 ˚ y ˚ x. Thus, LD˚y˚v1˚y˚xrpD ˚ y ˚
v1 ˚ y ˚ xqrV pBqs, ys “ pT ˚ y ˚ v ˚ y ˚ xqzv “ pT ^ vyzvq ˚ x “ D2.

Case 3.4. x is linked to both v and y.

The vertex set V pBq induces a star having the center at w in D ˚ v1 ˚ y ˚ x. Thus, LD˚v1˚y˚xrpD ˚
v1 ˚ y ˚ xqrV pBqs, xs “ pT ˚ v ˚ y ˚ xq ˚ x ˚ v ˚ xzv “ pT ^ vyzvq ˚ x “ D2.

5.5 Locally equivalent block graphs

In this section, we extend the following theorem.

Theorem 5.19 (Bouchet [31]). If two trees are locally equivalent, then they are isomorphic.

We recall that a vertex of a graph is a simplicial vertex if its neighborhood induces a clique in the

graph. We prove the following.

Theorem 5.20. If two block graphs without simplicial vertices of degree at least 2 are locally equivalent,

then they are isomorphic.

To prove Theorem 5.20, we use the characterization of block graphs in terms of their canonical split

decompositions in Lemma 5.3.

Proposition 5.21. Let G be a connected block graph with at least 3 vertices, and let D be the canonical

split decomposition of G. Then G has a simplicial vertex of degree at least 2 if and only if D has a

complete bag B containing at least one unmarked vertex.

Proof. Suppose that v P V pGq is a simplicial vertex of degree at least 2 in G. Clearly v is not a center of

a star bag of D by Lemma 4.7. Because the center of a star bag is unmarked by Lemma 5.3 and v has

degree at least 2, v cannot belong to a star bag. So v is in a complete bag of D.
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Conversely suppose that D has a complete bag B having at least 1 unmarked vertex v. Since

|V pGq| ě 3, the bag B contains at least 3 vertices. By Lemma 4.7, the degree of v is at least 2. Since all

adjacent bags of B are star bags whose centers are unmarked by Lemma 5.3, v is a simplicial vertex of

G.

Now we are ready to prove Theorem 5.20. This theorem is best possible for block graphs, because

if v is a simplicial vertex of a block graph G, then G ˚ v is also a block graph.

Proof of Theorem 5.20. Let G and H be two locally equivalent graphs. Suppose that G and H have no

simplicial vertices of degree at least 2. Let DG and DH be the canonical split decompositions of G and

H, respectively. We may assume that |V pGq| “ |V pHq| ě 3 and therefore each bag of DG or DH has at

least 3 vertices.

Since G and H are locally equivalent, by Lemma 4.8 we assume that DH is obtained from DG by a

sequence of local complementations. Note that applying a local complementation in a split decomposition

does not change the number of marked vertices and unmarked vertices in each bag.

Suppose that a bag B of DG corresponds to a bag B1 “ DH rV pBqs of DH . If B is a complete bag

in DG, then by Proposition 5.21, B has no unmarked vertex in DG and therefore B1 has no unmarked

vertex in DH . Since every star bag of DH should have at least one unmarked vertex by Lemma 5.3, B1

is a complete bag in DH . Similarly, if B1 is a complete bag in DH , then B is a complete bag in DG.

Thus B is a star bag of DG if and only if B1 is a star bag of DH . By Lemma 5.3, the center of a star

bag in DG or DH is an unmarked vertex. Since a bag B in DG and B1 in DH have the same number of

adjacent bags and unmarked vertices in each canonical split decomposition, the unmarked vertices of B

in DG must be mapped to the unmarked vertices of B1 in DH . Therefore, DG is isomorphic to DH and

so G is isomorphic to H.

5.6 Thread graphs

We survey known characterizations of thread graphs, and prove Theorem 1.7. A characterization

of thread graphs using canonical split decompositions was first announced by Bui-Xuan, Kanté and

Limouzy [39]. Adler, Farley and Proskurowski [1] characterize the complete set of induced subgraph,

vertex-minor, pivot-minor obstructions for thread graphs. The induced subgraph obstructions consist

of the induced subgraph obstructions for distance-hereditary graphs [9] in Figure 5.1, and 14 additional

induced subgraph obstructions for thread graphs that are distance-hereditary, depicted in Figure 5.7.

Based on the characterization of linear rank-width on distance-hereditary graphs, we obtain an

alternative proof of the characterization in terms of canonical split decompositions. We add the proof of

it.

Theorem 5.22 (Bui-Xuan, Kanté and Limouzy [39]; Adler, Farley and Proskurowski [1]; Kwon and

Oum [134]). Let G be a connected graph and let D be the canonical split decomposition of G. The

following are equivalent.

1. G has linear rank-width at most 1.

2. G is distance-hereditary and TD is a path.

3. G is distance-hereditary and G is tα1, α2, α3, α4, α5, α6, β1, β2, β3, β4, γ1, γ2, γ3, γ4u-free.

4. G has no pivot-minor isomorphic to C5, C6, α1, α3, α4, α6, γ1, and γ3.
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α1 α2 α3

α4 α5 α6

β1 β2 β3 β4

γ1 γ2 γ3 γ4

Figure 5.7: The induced subgraph obstructions for thread graphs that are distance-hereditary.

5. G has no vertex-minor isomorphic to C5, α1 and γ1.

6. G is a vertex-minor of a path.

7. G is locally equivalent to a caterpillar tree.

Proof. The proofs of pp1q Ø p6qq and pp1q Ø p7qq are given by Kwon and Oum [134], and Bui-Xuan,

Kanté and Limouzy [39], respectively. By Lemma 2.1, pp1q Ñ p5qq is clear as C5, α1 and γ1 have linear

rank-width 2. pp5q Ñ p4q Ñ p3qq is proved by Adler, Farley and Proskurowski [1].

We add proofs for the remaining parts.

pp3q Ñ p2qq We may assume that G is distance-hereditary. Suppose TD is not a path. Then there

exists a bag B of D such that DzV pBq has at least three components T1, T2, T3. For each i P t1, 2, 3u,

let vi :“ ζbpB, Tiq and wi :“ ζtpB, Tiq. We have three cases; B is a complete bag, or B is a star bag with

the center at one of v1, v2, v3, or B is a star bag with the center at a vertex of V pBqztv1, v2, v3u.

If B is a complete bag, then G has an induced subgraph isomorphic to one of α1, α2, α3, α4 depending

on the types of the marked edges viwi. If B is a star bag with the center at one of v1, v2, v3, then G

has an induced subgraph isomorphic to one of β1, β2, . . . , β6. Finally, if B is a star bag with the center

at a vertex of V pBqztv1, v2, v3u, then G has an induced subgraph isomorphic to one of γ1, γ2, γ3, γ4. We

summarize all cases in Table 5.1.

pp2q Ñ p1qq Suppose G has linear rank-width at least 2, and we assume that G is distance-hereditary.

By Theorem 5.11, there exists a bag B of D such that B has at least three adjacent bags in D. Thus,

TD is not a path.

Bui-Xuan, Kanté, and Limouzy [39] announced that we can test whether an input graph has linear

rank-width at most 1 in polynomial time using the characterization in terms of split decompositions. For

completeness, we add its proof.

Theorem 5.23 (Bui-Xuan, Kanté, and Limouzy [39]). For a given graph G, we can test whether G has

linear rank-width at most 1 in time Op|V pGq|` |EpGq|q.
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type of B type of v1w1 type of v2w2 type of v3w3 induced subgraph

A complete bag KSp KSp KSp α1

KSc KSp KSp α2

KSc KSc KSp α3

KSc KSc KSc α4

A star bag ScSc SpSp SpSp β1

with center at v1 ScSc SpSp SpK β2

ScSc SpK SpK β3

ScK SpSp SpSp β4

ScK SpSp SpK β5

ScK SpK SpK β6

A star bag SpSp SpSp SpSp γ1

with center at SpK SpSp SpSp γ2

a vertex SpK SpK SpSp γ3

other than vi SpK SpK SpK γ4

Table 5.1: Summary of cases in Corollary 5.22.

tRu tL,Ru

tL,Ru

tLu

tLu

tRu

tRu

tL,Ru

tL,Ru

tLu

tRu

Figure 5.8: The canonical split decomposition of a connected thread graph. The unmarked vertices in

each box form a thread block.

Proof. We first compute the canonical split decomposition D of each connected component of G using

the algorithm from Theorem 4.4 in time Op|V pGq|` |EpGq|q. This also gives the information that each

bag is either prime or a complete bag or a star bag. Then we check whether TD is a path, and whether

each bag is star or complete. By Theorem 5.22, if TD is a path and each bag is star or complete, then

we conclude that G has linear rank-width at most 1, and otherwise, G has linear rank-width at least 2.

Because the total number of bags in all split decompositions is Op|V pGq|q, it takes Op|V pGq|q time.

Now we discuss a proof of Theorem 1.7. We recall the definition of thread graphs and Theorem 1.7.

A triple Bpx, yq “ pG, σ, `q, where x and y are two vertices of the graph G, σ is a linear layout of V pGq

whose first and last vertices are x and y respectively, and ` is a function from V pGq to ttLu, tRu, tL,Ruu,

is a thread block if

1. `pxq “ tRu and `pyq “ tLu,
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2. for v, w P V pGq with v ăσ w, vw P EpGq if and only if R P `pvq and L P `pwq,

3. `pσ´1p2qq ‰ tLu if σ´1p2q ‰ y.

For a digraph D “ pVD, ADq, a set of thread blocks tBpx, yq “ pGxy, σxy, `xyq : xy P ADu is said

to be mergeable with D if for any two arcs x1y1, x2y2 of AD, V pGx1y1q X V pGx2y2q “ tx1, y1u X tx2, y2u.

For a digraph D “ pVD, ADq and a mergeable set of thread blocks BD “ tBpx, yq “ pGxy, σxy, `xyq :

xy P ADu, the graph G “ D d BD has the vertex set V pGq “
Ť

xyPAD
V pGxyq and the edge set

EpGq “
Ť

xyPAD
EpGxyq.

A connected graph G is a thread graph if G is either an one vertex graph or G “ P d BP for some

directed path P , called the underlying path, and some set of thread blocks BP mergeable with P . A

graph is a thread graph if each of its connected components is a thread graph.

Theorem 1.7 (Ganian [97]; Adler, Farley, Proskurowski [1]). A graph has linear rank-width at most 1

if and only if it is a thread graph.

We first prove it for connected graphs. If this is true, then Theorem 1.7 is true because a graph is a

thread graph if each component is a thread graph, and a graph has linear rank-width at most 1 if each

component has linear rank-width at most 1.

Proof of Theorem 1.7. We first show the case when G is connected. We use the characterization of

graphs of linear rank-width 1 in terms of canonical split decompositions in Theorem 5.22.

Suppose G is a connected graph of linear rank-width at most 1, and let D be the canonical split

decomposition of G. Since every graph of linear rank-width 1 is distance-hereditary, by Theorem 5.1,

every bag of D is either a complete bag or a star bag. We may assume that |V pGq| ě 2. From

Theorem 5.22, the split decomposition tree of D is a path. Let B1B2 ¨ ¨ ¨Bm be the sequence of bags

representing D. Note that for each bag Bi of D, for 1 ď i ď m, exactly one of the following is satisfied.

1. (Type 1) Bi is a complete bag.

2. (Type 2) Bi is a star bag whose center is an unmarked vertex.

3. (Type 3) Bi is a star bag whose center is a marked vertex adjacent to a vertex of Bi´1.

4. (Type 4) Bi is a star bag whose center is a marked vertex adjacent to a vertex of Bi`1.

The center of every bag of Type 2 is a cut vertex in G, and thus, two vertices in different parts of

DzV pBiq are not adjacent. It will be the point where we divide a thread graph into thread blocks.

Let Bi1 , Bi2 , . . . , Bit be the set of all star bags whose centers are unmarked vertices such that

1 ď i1 ă i2 ă ¨ ¨ ¨ ă it ď m. For each 1 ď j ď t, let vj be the center of the bag Bij , and let v0 ‰ vi1 and

vm ‰ vit be respectively unmarked vertices in B1 and Bm. Let R0 be the set of unmarked vertices in

the bags on the path from B1 to Bi1 , and for each 1 ď j ď t let Rj be the set of unmarked vertices in

the bags on the path from Bij`1 to Bij`1 .

We claim that G is a thread graph whose underlying directed path is v0v1v2 . . . vtvm. Suppose that

0 ď i ă j ď t. Then the vertex vi`1 is a cut vertex of G and it separates Ri from Rj , and it is easy to

observe that there are no edges between the vertex sets Riztvi, vi`1u and Rjztvj , vj`1u. Thus, to prove

the claim, it is enough to show that for each 0 ď i ď t, GrRiYtvius is a thread block whose linear layout

starts at vi and ends at vi`1.

Let σi be a linear layout of Ri Y tviu satisfying that for two vertices x, y P Ri Y tviu, x ăσi
y if the

bag containing x appears before the bag containing y in the decomposition path, and for all vertices in
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the same bag, we give any linear layout among them. We define a labelling `i of the vertices in RiYtviu

such that for v P Ri Y tviu in a bag B,

1. `ipvq :“ tL,Ru if B is of Type 1,

2. `ipvq :“ tLu if B is of Type 3,

3. `ipvq :“ tRu if B is of Type 4,

4. `ipviq “: tRu, `ipvi`1q :“ tLu.

Note that vi and the second vertex of σi are contained in different bags, except when i1 “ 1, and since

D is a canonical split decomposition, the bag containing the second vertex cannot be of Type 3. Thus,

`ipσ
´1
i p2qq ‰ tLu unless σ´1

i p2q “ vi`1. Thus, it is sufficient to check that for v, w P V pGrRi Y tviusq

with v ăσi w, vw P EpGrRi Y tviusq if and only if R P `ipvq and L P `ipwq.

When v, w are contained in the same bag, they are adjacent if and only if both have labels tL,Ru or

w “ vi`1 and v is a pendant vertex in the bag containing vi`1. Thus, it satisfies the condition because

v, w should have same labels, or v is labeled tRu and w is labeled tLu. Suppose v P Bv and w P Bw with

Bv ‰ Bw. If vw P EpGrRi Y tviusq, then by Lemma 4.6, v and w are linked. Therefore, R P `ipvq and

L P `ipwq. Conversely, if R P `ipvq and L P `ipwq, then v and w are linked because there are no bags of

Type 2 between the bags Bv and Bw in D. Therefore, vw P EpGrRi Y tviusq. It proves the claim.

For the converse direction, suppose that G “ P d BP for some directed path P “ p1p2 ¨ ¨ ¨ pm from

p1 to pm, and some set of thread blocks BP , and for each 1 ď i ď m ´ 1, let Bppi, pi`1q :“ pGi, σi, `iq.

For each 1 ď i ď m´ 1, we take a canonical split decomposition Di of Gi. Since each pi is a cut-vertex

of the graph, it is not hard to see that

σ1 ‘ σ2 ¨ ¨ ¨ ‘ σm´1

is a linear layout of width at most 1, which implies that G has linear rank-width at most 1.

Now we consider the case when G is disconnected. From the definition of thread graphs, we have

the following.

G has linear rank-width at most 1.

ô Each component of G has linear rank-width at most 1.

ô Each component of G is a thread graph.

ô G is a thread graph.
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Chapter 6. Vertex-minor obstruction sets for

graphs of bounded linear rank-width

We provide a lower bound on the number of graphs in a vertex-minor obstruction set for the class of

graphs of linear rank-width at most k. From Corollary 1.1, for each k, there exists a finite set Ok of graphs

such that a graph has linear rank-width at most k if and only if it has no vetex-minor isomorphic to a

graph in Ok. Adler, Farley, Proskurowski [1] prove that three graphs in Figure 1.1 form a vertex-minor

obstruction set for the class of graphs of linear rank-width at most 1.

We show that for each k ě 2, there are at least 2Ωp3k
q pairwise locally non-equivalent vertex-

minor minimal graphs for the class of graphs of linear rank-width at most k, thus proving that every

vertex-minor obstruction set for the class of graphs of linear rank-width at most k has at least 2Ωp3k
q

vertex-minor minimal graphs.

Theorem 6.1. Let k ě 2 be an integer. There exist at least 2Ωp3k
q pairwise locally non-equivalent graphs

that are vertex-minor minimal with the property that they have linear rank-width larger than k. In other

words, if Ok is a vertex-minor obstruction set for the class of graphs of linear rank-width at most k, then

|Ok| ě 2Ωp3k
q.

To prove Theorem 6.1, we construct a set ∆k of graphs that are vertex-minor minimal with the

property that the linear rank-width is larger than k.

Constructions of graphs in ∆k

A delta composition G of graphs G1, G2, and G3 is a graph obtained from the disjoint union of G1,

G2, and G3 by adding a triangle v1v2v3 where vi P V pGiq for i “ 1, 2, 3. We call v1v2v3 the central

triangle of G. For a non-negative integer k, we define ∆k as follows:

1. ∆0 “ tptx, yu, txyuqu. (It is isomorphic to K2.)

2. For i ě 1, ∆i is the set of all delta compositions of three graphs in ∆i´1.

All non-isomorphic graphs in ∆2 are depicted in Figure 6.1.

Figure 6.1: All non-isomorphic graphs in ∆2.
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We use Theorem 5.20 to prove that if two graphs in ∆k are locally equivalent, then they are

isomorphic. Generally, by Theorem 5.20, if two block graphs without simplicial vertices of degree at

least 2 are locally equivalent, then they are isomorphic. We verify that for an integer k, every graph in

∆k is a block graph and has no simplicial vertices of degree at least two.

Lemma 6.2. Every graph in ∆k is a block graph without simplicial vertices of degree at least 2.

Proof. Let G be a graph in ∆k. From the construction of ∆k, every vertex of G has odd degree and

each block of G is isomorphic to K2 or K3. Therefore G is a block graph and has no simplicial vertex of

degree at least 2.

In other words, two non-isomorphic graphs in ∆k cannot be equivalent up to locally equivalence,

and it is sufficient to count the number of graphs in ∆k for providing a lower bound on the number of

graphs in a vertex-minor obstruction set for the class of graphs of linear rank-width at most k. We count

the number of graphs in ∆k in Section 6.2.

We note that it is not clear whether every vertex-minor minimal graph for the class of graphs of

linear rank-width at most k that is distance-hereditary, is locally equivalent to one of the graph in ∆k.

In Section 6.4, we generalize the constructions of ∆k and generate a set of canonical split decompositions

Ψ`k that has the following property.

• Every distance-hereditary graph of linear rank-width at least k`1 contains a vertex-minor isomor-

phic to a graph whose canonical split decomposition is isomorphic to a split decomposition in Ψ`k

(Theorem 6.20).

Using Theorem 6.20, we can generate all vertex-minor minimal distance-hereditary graphs for the class

of graphs of linear rank-width at most k.

6.1 Linear rank-width of a graph in ∆k and its vertex-minor

In this section, we prove the following.

Proposition 6.3. Let k be a non-negative integer. Every graph in ∆k is a vertex-minor minimal graph

for the class of graphs of linear rank-width at most k.

First, we prove that every graph in ∆k has linear rank-width k ` 1. We remark that using the

canonical split decompositions of graphs in ∆k presented in Section 6.3 and Theorem 5.11, we can

obtain the following lemma as a corollary. However, we give a direct proof without using canonical split

decompositions.

Lemma 6.4. The linear rank-width of a graph in ∆k is at least k ` 1.

Proof. We use induction on k. We may assume that k ě 1. Since G P ∆k, G is a delta composition of

G1, G2, G3 P ∆k´1 with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3.

Suppose that G has linear rank-width at most k. By the induction hypothesis, G1 has linear rank-

width at least k and therefore G has linear rank-width exactly k. Let L be a linear layout of G having

width k. For v P V pGq, we define Sv “ tx P V pGq : x ďL vu and Tv “ V pGqzSv. Let a and b be the first

and the last vertices in L such that ρGpSaq “ ρGpSbq “ k. Without loss of generality, we may assume

that ta, bu Ď V pG2q Y V pG3q. Let L1 be the subsequence of L whose elements are the vertices of G1.
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For contradiction, we claim that L1 is a linear layout of G1 having width at most k ´ 1. Let

v P V pG1q. It is sufficient to show that ρG1
pSv X V pG1qq ď k ´ 1. Note that v ‰ a and v ‰ b. If v ďL a

or v ěL b, then

ρG1pSv X V pG1qq ď ρGpSvq ď k ´ 1.

So we may assume that a ďL v ďL b. Note that one of Sv X V pG1q and Tv X V pG1q does not

have a neighbor in GrV pGqzV pG1qs because v1 is the unique vertex in G1 which has a neighbor in

GrV pGqzV pG1qs. And since GrV pGqzV pG1qs is connected and a P SvzV pG1q and b P TvzV pG1q, there is

an edge u1u2 in GrV pGqzV pG1qs such that u1 P SvzV pG1q and u2 P TvzV pG1q. So

ApGqrSvzV pG1q, TvzV pG1qs

is a non-zero matrix. Depending on whether v1 P Sv X V pG1q or v1 P Tv X V pG1q,

ρGpSvq “ rank

˜

ApGqrSv X V pG1q, Tv X V pG1qs 0

ApGqrSvzV pG1q, Tv X V pG1qs ApGqrSvzV pG1q, TvzV pG1qs

¸

ě rank pApGqrSv X V pG1q, Tv X V pG1qsq ` rank pApGqrSvzV pG1q, TvzV pG1qsq ,

or

ρGpSvq “ rank

˜

ApGqrSv X V pG1q, Tv X V pG1qs ApGqrSv X V pG1q, TvzV pG1qs

0 ApGqrSvzV pG1q, TvzV pG1qs

¸

ě rank pApGqrSv X V pG1q, Tv X V pG1qsq ` rank pApGqrSvzV pG1q, TvzV pG1qsq ,

respectively. Thus, we have

ρG1pSv X V pG1qq “ rank pApGqrSv X V pG1q, Tv X V pG1qsq

ď ρGpSvq ´ rank pApGqrSvzV pG1q, TvzV pG1qsq

ď ρGpSvq ´ 1 ď k ´ 1.

So L1 is a linear layout of G1 having width at most k ´ 1, which is contradiction. Hence, lrwpGq ě

k ` 1.

If w is a twin of v in a graph G and Gzw has linear rank-width k ` 1 with a linear layout of width

k ` 1 starting with v, then clearly G also admits a linear layout of width k ` 1 starting with v because

we can easily put w in the second place. But the following lemma claims that we can place w at the end

if Gzw P ∆k. This lemma implies that every graph in ∆k has linear rank-width k. Moreover, it will be

mainly used to show that every elementary vertex-minor of a graph in ∆k has linear rank-width k.

Lemma 6.5. Let v be a vertex of a graph G and let w be a twin of v. If Gzw P ∆k, then G has a linear

layout L of width k ` 1 such that the first vertex of L is v and the last vertex of L is w.

Before proving the lemma, we first show that Lemma 6.5 implies the following proposition deter-

mining the exact linear rank-width of a graph in ∆k.

Proposition 6.6. Every graph in ∆k has linear rank-width k ` 1. Moreover, for every vertex v of

G P ∆k, there exists a linear layout of G having width k ` 1 whose first vertex is v.

Proof. By Lemma 6.4, the linear rank-width of a graph G in ∆k is at least k ` 1. Let v P V pGq and let

G1 be a graph obtained by adding a twin w of v to G. Then Lemma 6.5 implies that G1 has a linear

layout L of width k` 1 starting at v and ending at w. We discard w from L to obtain a linear layout of

G starting with v having width k ` 1.
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Proof of Lemma 6.5. We prove by induction on k. If k “ 0, then G is a connected graph on three vertices

and therefore every linear layout of G has width 1. Thus we may assume that k ě 1. Let Gzw be a delta

composition of G1, G2, G3 P ∆k´1 with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3.

We may assume that v P V pG2q.

We first claim that G1 has a linear layout L1 of width k ending at v1, and G3 has a linear layout

L3 of width k starting at v3. For i P t1, 3u, let G1i is a graph obtained from Gi by adding a twin wi of

vi. Since G1izwi P ∆k´1, by the induction hypothesis, G1i has a linear layout L1i of width k starting at

wi and ending at vi, and by discarding wi from each L1i, we obtain a linear layout L2i of Gi ending at

vi. So, L1 “ L21 and the reverse layout L3 of L23 are the linear layouts of G1 and G3 having width k,

respectively, such that the last vertex of L1 is v1 and the first vertex of L3 is v3.

Let

H “

$

’

’

’

&

’

’

’

%

GzpV pG1q Y V pG3qq if v ‰ v2,

GzpV pG1q Y V pG3qqzvw if v “ v2, and v, w are adjacent in G,

GzpV pG1q Y V pG3qq ` vw otherwise.

By the induction hypothesis, H has a linear layout pvq ‘ LH ‘ pwq of width k.

(1) Clearly, ρGpV pG1q Y tvuq ď 2 ď k ` 1 and ρGpV pG3q Y twuq ď 2 ď k ` 1.

(2) We claim that for X Ď V pG1qztv1u, if ρG1
pXq ď k, then ρGpX Y tvuq ď k ` 1. This is because no

vertex in X has a neighbor in V pGqzV pG1q and therefore ρG1
pXq “ ρGpXq ě ρGpX Y tvuq ´ 1 by the

submodular inequality.

(3) Similar to (2), we deduce that for X Ď V pG3qztv3u, if ρG3
pXq ď k, then ρGpX Y tvuq ď k ` 1.

(4) We claim that if v ‰ v2, X Ď V pHq, and ρHpXq ď k, then ρGpV pG1q YXq ď k ` 1. By symmetry

between G1 and G3, we may assume that v2 R X. By the submodular inequality, ρGpV pG1q Y Xq ď

ρGpXq ` ρGpV pG1qq “ ρHpXq ` 1 ď k ` 1.

(5) We claim that if v “ v2, v P X Ď V pHq, w R X, and ρHpXq ď k, then ρGpV pG1q YXq ď k ` 1. By

adding the row of v1 to that of v2 in ApGqrXYV pG1q, pV pHqzXqYV pG3qs, we see that ρGpXYV pG1qq ď

ρHpXq ` 1 ď k ` 1.

By combining (1), (2), (3), (4), and (5), we conclude that pvq‘L1‘LH ‘L3‘pwq is a linear layout

of G having width at most k ` 1. Clearly it has width k ` 1 because Gzw has linear rank-width k ` 1

by Lemma 6.4.

The following two lemmas will help us to prove that elementary vertex-minors of graphs in ∆k have

linear rank-width at most k.

Lemma 6.7. Let k be a positive integer and let G1, G2 P ∆k´1. Let G be a graph obtained from the

disjoint union of G1 and G2 by adding an edge w1w2 for fixed w1 P V pG1q and w2 P V pG2q. Then G has

linear rank-width k.

Proof. It is trivial that the linear rank-width of G is at least k because an induced subgraph G1 of G

has linear rank-width k by Proposition 6.6. By Proposition 6.6, there is a linear layout L1 of G1 having

width k such that the last vertex of L1 is w1, and there is a linear layout L2 of G2 having width k such

that the first vertex of L2 is w2. Then obviously L1 ‘ L2 is a linear layout of G having width at most

k.
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Lemma 6.8. Let k be a positive integer. Let G1, G2 P ∆k´1, and let G3 be a graph having linear

rank-width at most k ´ 1. Then every delta composition of G1, G2 and G3 has linear rank-width k.

Proof. Let G be a delta composition of G1, G2 and G3 with the central triangle v1v2v3 such that

vi P V pGiq for i “ 1, 2, 3. Clearly the linear rank-width of G is at least k because an induced subgraph

G1 of G has linear rank-width k by Proposition 6.6.

Since G1, G2 P ∆k´1, by Proposition 6.6, there is a linear layout L1 of G1 having width k such that

the last vertex of L1 is v1, and there is a linear layout L2 of G2 having width k such that the first vertex

of L2 is v2. Let L3 be a linear layout of G3 having width at most k ´ 1.

We claim that L “ L1 ‘ L3 ‘ L2 is a linear layout of G having width at most k. Let v P V pGq,

Sv “ tx : x ďL vu, and Tv “ V pGqzSv. We need to show that ρGpSvq ď k for all v P V pGq. This is

clearly true if v P V pG1q Y V pG2q. So let us assume that v P V pG3q. By symmetry we may assume

v3 R Sv, because we can swap G1 and G2. Then no vertex of G2 has a neighbor in Sv X V pG3q and

therefore

ρGpSvq ď rankpApGqrV pG1q, Tvsq ` rankpApGqrSv X V pG3q, Tvsq

“ 1` ρG3
pSv X V pG3qq ď k.

Therefore, G has linear rank-width at most k.

We now prove that every elementary vertex-minor of G in ∆k has linear rank-width at most k. To

prove it, we will use the following lemmas. By Lemma 1.8, it is sufficient to prove that Gzv, G ˚ vzv,

and G^ vwzv has linear rank-width one less than the linear rank-width of G.

Lemma 6.9. Let k be a non-negative integer and G P ∆k. Then Gzv has linear rank-width at most k

for each vertex v.

Proof. We use induction on k. We may assume k ě 1. So G is a delta composition of three graphs in

∆k´1, say G1, G2 and G3 with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3. We may

assume that v P V pG1q. By the induction hypothesis, G1zv has linear rank-width at most k ´ 1.

If v “ v1, then Gzv is obtained from the disjoint union of three graphs G1zv, G2, G3 by adding an

edge v2v3 and so Gzv has linear rank-width k by Lemma 6.7.

If v ‰ v1, then Gzv is a delta composition of two graphs in ∆k´1 and one graph having linear

rank-width at most k ´ 1. Thus by Lemma 6.8, lrwpGzvq “ k.

Lemma 6.10. Let k be a non-negative integer and G P ∆k. Then G ˚ vzv has linear rank-width at most

k for each vertex v.

Proof. We use induction on k. We may assume k ě 1. Let G be a delta composition of G1, G2, G3 P ∆k´1

with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3. We may assume that v P V pG1q.

If v ‰ v1, then G ˚ vzv is a delta composition of G1 ˚ vzv, G2 and G3 where G1 ˚ vzv has linear

rank-width at most k´1 by the induction hypothesis. Thus by Lemma 6.8, G˚vzv has linear rank-width

k.

So we may assume v “ v1. let G11 “ pG ˚ vzvqrV pG1q Y tv2, v3us. Since v3 is a twin of v2 in G11 and

v3 is not adjacent to v2 in G11 ˚ v2 and G11 ˚ v2zv3 is isomorphic to G1 (see Figure 6.2), by Lemma 6.5,

G11 has a linear layout pv2q ‘ L1 ‘ pv3q of width k.

By Proposition 6.6, G2 has a linear layout L2 of width k whose last vertex is v2, and G3 has a linear

layout L3 of width k whose first vertex is v3.
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v2 v3

v “ v1

GrV pG1q Y tv2, v3us

v2 v3

v “ v1

G11

v2 v3

G11 ˚ v2

Figure 6.2: The case G ˚ vzv where v “ v1 in the proof of Lemma 6.10.

v2 v3

v “ v1

GrV pG1q Y tv2, v3us

v v3

v2

GrV pG1q Y tv2, v3us ^ v1v2zv1

Figure 6.3: The case G^ v1v2zv in the proof of Lemma 6.11.

It follows easily that L “ L2 ‘ L1 ‘ L3 is a linear layout of G ˚ vzv having width k because

pG ˚ vzvqrV pG2qs “ G2, pG ˚ vzvqrV pG3qs “ G3, and pG ˚ vzvqrV pG1q Y tv2, v3us “ G11.

Lemma 6.11. Let k be a non-negative integer and G P ∆k. Then G ^ vwzv has linear rank-width at

most k for each edge vw.

Proof. For each vertex v, it is enough to prove it for one neighbor w of v by Lemma 2.1 and Lemma 1.9.

We use induction on k. We may assume k ě 1. Let G be a delta composition of G1, G2, G3 P ∆k´1

with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3. We may assume that v P V pG1q.

If v has only one neighbor w, then G^ vwzv is isomorphic to Gzw and by Lemma 6.9 we know that

Gzw has linear rank-width at most k. So we may assume that v has at least two neighbors.

If v ‰ v1, then we choose a neighbor w of v such that w ‰ v1. It is easy to observe that G^ vwzv

is a delta composition of G1 ^ vwzv, G2, G3 where G1 ^ vwzv has linear rank-width at most k ´ 1 by

the induction hypothesis. Hence, by Lemma 6.8, G^ vwzv has linear rank-width k.

Thus we may assume v “ v1. Since GrV pG1q Y tv2, v3us ^ vv2zv is isomorphic to a graph obtained

from G1 by adding a twin of v (see Figure 6.3), by Lemma 6.5, GrV pG1q Y tv2, v3us ^ vv2zv has a linear

layout pv2q ‘ L1 ‘ pv3q of width k.

Let w be a neighbor of v in G1 and let G11 “ GrV pG1qYtv2, v3us^vwzv. By Lemma 1.9, G11^v2w “

GrV pG1q Y tv2, v3us ^ vw ^ v2wzv “ GrV pG1q Y tv2, v3us ^ vv2zv and therefore pv2q ‘ L1 ‘ pv3q is also

a linear layout of G11 having width k.

By Proposition 6.6, G2 has a linear layout L2 of width k whose last vertex is v2, and G3 has a linear

layout L3 of width k whose first vertex is v3.

It is now easy to see that L “ L2 ‘ L1 ‘ L3 is a linear layout of G^ vwzv having width at most k

because pG^vwzvqrV pG2qs “ G2, pG^vwzvqrV pG3qs “ G3, and pG^vwzvqrV pG1qYtv2, v3us “ G11.

Finally we are ready to prove the main theorem of this section.
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Proof of Proposition 6.3. Let G P ∆k. By Proposition 6.6, G has linear rank-width k ` 1. And by lem-

mas 6.9, 6.10, and 6.11, every elementary vertex-minor of G has linear rank-width at most k. Therefore,

G is a vertex-minor obstruction for the class of graphs of linear rank-width at most k.

6.2 The number of graphs in ∆k

We now prove that ∆k has at least 2Ωp3k
q pairwise non-isomorphic graphs. A rooted graph is a pair

of a graph and a specified vertex called a root. Two rooted graphs pG, vq and pG1, v1q are isomorphic

if there exists a graph isomorphism φ from G to G1 that maps v to v1. Let us write AutpGq to denote

the automorphism group of a graph G. For a rooted graph pG, vq, we write AutpG, vq to denote the

automorphism group of pG, vq. In other words, AutpG, vq “ tφ P AutpGq : φpvq “ vu.

First we show that each graph in ∆k has a unique central triangle.

Lemma 6.12. Let k ě 1 and G P ∆k. Then G has a unique cycle v1v2v3 of length 3 such that

Gzv1v2zv2v3zv3v1 has exactly three components G1, G2, G3, each of which is in ∆k´1.

Proof. Clearly there is at least one such cycle because of the construction. Suppose there are two such

cycles T “ v1v2v3 and T 1 “ v11v
1
2v
1
3. Let H be a component of Gzv1v2zv2v3zv3v1 having no vertex of T 1.

By the condition, H P ∆k´1 and so H has exactly 2 ¨ 3k´1 vertices. We may assume v1 P V pHq. The

component J of Gzv11v
1
2zv

1
2v
1
3zv

1
3v
1
1 intersecting V pHq should be equal to H because T 1 does not intersect

H and |V pJq| “ |V pHq|. Thus v2, v3 P T
1 and so v2 and v3 have a common neighbor other than v1.

However, this contradicts our assumption that Gzv1v2zv2v3zv3v1 has exactly three components.

Let k ě 2 and let G be a graph in ∆k. By the construction, G is a delta composition of three graphs

G1, G2, G3 P ∆k´1 with the central triangle v1v2v3 such that vi P V pGiq for i “ 1, 2, 3. We call G P ∆k

• Type-A if pG1, v1q, pG2, v2q, and pG3, v3q are pairwise isomorphic,

• Type-B if exactly two of pG1, v1q, pG2, v2q, pG3, v3q are isomorphic,

• Type-C otherwise.

Lemma 6.13. Let k ě 1 and G be a delta composition of three graphs G1, G2, G3 P ∆k´1 with the central

triangle v1v2v3 such that vi P V pGiq for all i “ 1, 2, 3. Then,

1. AutpGq » S3 ˆAutpG1, v1q ˆAutpG2, v2q ˆAutpG3, v3q if G is Type-A.

2. AutpGq » S2 ˆAutpG1, v1q ˆAutpG2, v2q ˆAutpG3, v3q if G is Type-B.

3. AutpGq » AutpG1, v1q ˆAutpG2, v2q ˆAutpG3, v3q if G is Type-C.

Proof. Let g P AutpGq. By Lemma 6.12, gptv1, v2, v3uq “ tv1, v2, v3u and therefore

gpV pG1qq, gpV pG2qq, gpV pG3qq P tV pG1q, V pG2q, V pG3qu.

So AutpGq induces a subgroup Γ of S3 on tv1, v2, v3u based on the type of G. It is clear that AutpGq{Γ

is a composition of automorphism groups of three rooted graphs pG1, v1q, pG2, v2q and pG3, v3q.

For a graph G and x P V pGq, we define the orbit of x in G as the set

tw P V pGq : w “ fpxq for some automorphism f of Gu,
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and we denote #OrbpGq as the number of all distinct orbits of G. For a rooted graph pG, vq and x P V pGq,

we define the orbit of x in pG, vq as the set

tw P V pGq : w “ fpxq for some automorphism f of pG, vqu,

and we denote #OrbpG, vq as the number of all distinct orbits of pG, vq.

Lemma 6.14. Let k ě 1 and G be a delta composition of three graphs G1, G2, G3 P ∆k´1 with the central

triangle v1v2v3 such that vi P V pGiq for all i “ 1, 2, 3. If v P V pG1q, then

#OrbpG, vq ě #OrbpG1, v1q `#OrbpG2, v2q.

Proof. By Lemma 6.12, no vertex in G1 can be mapped to a vertex in G2 or G3 by an automorphism of

G fixing v. Thus orbits of pG, vq intersecting V pG1q cannot contain a vertex in G2 or G3. The number

of orbits of pG, vq intersecting V pG1q is equal to the number of distinct subsets of V pG1q that can be

represented as

tfpxq P V pG1q : f is an automorphism of G1 such that fpvq “ v, fpv1q “ v1u

for some x P V pG1q and this number is at least #OrbpG1, v1q. The number of orbits of pG, vq not

intersecting V pG1q is at least #OrbpG2, v2q by Lemma 6.13. Thus, we obtain the desired inequality.

Lemma 6.15. Let k be a non-negative integer and G P ∆k and v P V pGq. Then pG, vq has at least 2k`1

orbits.

Proof. Trivial if k “ 0. It follows easily by induction from Lemma 6.14.

Lemma 6.16. Let k be a positive integer and G P ∆k.

1. If G is Type-A, then G has at least 2k orbits.

2. If G is Type-B, then G has at least 2 ¨ 2k orbits.

3. If G is Type-C, then G has at least 3 ¨ 2k orbits.

Proof. Let G be a delta composition of G1, G2, G3 P ∆k´1 with the central triangle v1v2v3 such that

vi P V pGiq for all i “ 1, 2, 3. By Lemma 6.13,

1. #OrbpGq “ #OrbpG1, v1q if G is Type-A,

2. #OrbpGq “ #OrbpG1, v1q `#OrbpG2, v2q if G is Type-B and pG1, v1q is isomorphic to pG3, v3q,

3. #OrbpGq “ #OrbpG1, v1q `#OrbpG2, v2q `#OrbpG3, v3q if G is Type-C.

By Lemma 6.15, we deduce the lemma.

Let pk be the number of non-isomorphic rooted graphs pG, vq with G P ∆k. Then p0 “ 1, p1 “ 2,

and p2 “ 24 (see Figure 6.1). We can easily verify that ∆k has

• exactly pk´1 non-isomorphic Type-A graphs,

• exactly pk´1ppk´1 ´ 1q non-isomorphic Type-B graphs,

• exactly
`

pk´1

3

˘

non-isomorphic Type-C graphs.
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We are now ready to provide a lower bound on the number of non-isomorphic graphs in ∆k.

Proposition 6.17. Let k ě 2 be an integer. Then ∆k has at least 2Ωp3k
q non-isomorphic graphs.

Proof. Let ak, bk, ck be the number of non-isomorphic graphs in ∆k that is Type-A, Type-B, and Type-C

respectively. By Lemma 6.16,

pk ě 2kak ` 2 ¨ 2kbk ` 3 ¨ 2kck.

Since ak “ pk´1, bk “ pk´1ppk´1 ´ 1q and ck “
`

pk´1

3

˘

, we obtain the following recurrence relation;

ak`1 “ pk ě 2kak ` 2 ¨ 2kbk ` 3 ¨ 2kck “ 2k´1a2
kpak ` 1q ě 2k´1a3

k

and a2 “ 2. We deduce that ak ě 2p1´2kq{4`7¨3k
{36 “ 2Ωp3k

q.

Now we can combine all to prove our main theorem.

Proof of Theorem 6.1. By Proposition 6.3, every graph in ∆k is a vertex-minor minimal graph for the

class of graphs of linear rank-width at most k. Proposition 6.17 states that ∆k has at least 2Ωp3k
q

non-isomorphic graphs. Lemma 6.2 and Theorem 5.20 show that two non-isomorphic graphs in ∆k

cannot be locally equivalent. Therefore, there are at least 2Ωp3k
q pairwise locally non-equivalent vertex-

minor minimal graphs for the class of graphs of linear rank-width at most k. In other words, if Ok is a

vertex-minor obstruction set for the class of graphs of linear rank-width at most k, thn |Ok| ě 2Ωp3k
q.

6.3 Canonical split decompositions of graphs in ∆k

We now aim to describe the canonical split decomposition SG of each graph G in ∆k for k ě 1

explicitly. Using this structure, we can show that two locally equivalent graphs in ∆k are isomorphic,

even though we showed it using a general theorem. In the next subsection, we generalize this construction

to obain all vertex-minor minimal distance-hereditary graphs for the class of graphs of linear rank-width

at most k.

Let us call the edges of the graph in ∆0 thick. In graphs in ∆k, the edges originated from ∆0 are

thick and all other edges introduced by a delta composition are thin. Observe the set of thick edges of

G P ∆k is a perfect matching and therefore we deduce the following.

Lemma 6.18. For graphs in ∆k, each leaf is incident only with a thick edge and no two leaves have a

common neighbor.

For G P ∆k, let CpGq be the set of triangles in G. First let us describe the set ΘpGq of marked

vertices of HG. For each thick edge uv joining two non-leaf vertices, we have two new vertices mpu, vq

and mpv, uq in ΘpGq and for each pair of a vertex v and a triangle C containing v, we have two new

vertices mpC, vq and mpv, Cq. We will construct SG so that V pSGq is the disjoint union of V pGq and

ΘpGq. For convenience, if w is a leaf incident with an (thick) edge vw, then mpv, wq :“ w.

Now we describe all bags of SG. For each vertex v in G of degree n ą 1, if w is the unique neighbor

of v joined by a thick edge, then let Bpvq be the graph isomorphic to K1,pn´1q{2`1 on the vertex set

tv,mpv, wqu Y tmpv, Cq : C P CpGq, v P V pCqu

with the center v. For each triangle C of G, let BpCq be the graph isomorphic to K3 on the vertex set

tmpC, vq : v P V pCqu.
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Figure 6.4: A graph G P ∆2 with thick edges, and a part of SG.

Let SG be the marked graph on the vertex set ΘpGq Y V pGq such that all bags of SG are

tBpvq : v is a non-leaf vertex in Gu Y tBpCq : C P CpGqu

and the set MpSGq of all marked edges is exactly

tmpv, CqmpC, vq : C P CpGq, v P V pCqu

Ytmpv, wqmpw, vq : vw is the thick edge joining two non-leaf verticesu

For a graph G in ∆2, the marked graph SG is depicted in Figure 6.4.

We now show that if G P ∆k, then SG is the canonical split decomposition of G.

Proposition 6.19. For each graph G P ∆k with k ě 1, the marked graph SG is the canonical split

decomposition of G.

Proof. We first prove that SG is a split decomposition of G. We use induction on k. We may assume

that k ě 2 and let C be the central triangle v1v2v3 of G. For each 1 ď i ď 3, let Gi be the component

of Gzv1v2zv2v3zv3v1 such that vi P V pGiq, and let Si be the component of

SGztmpC, v1q,mpC, v2q,mpC, v3qu

such that vi P V pSiq. Let wi be the neighbor of vi such that viwi is thick.

If vi is not a leaf in Gi, then by construction, Sizmpvi, Cq “ SGi . If vi is a leaf of Gi, then SGi

is obtained from Sizmpvi, Cq by recomposing a marked edge joining mpvi, wiq and mpwi, viq. By the

induction hypothesis, SGi
is a split decomposition of Gi and therefore in both cases, Sizmpvi, Cq is a

split decomposition of Gi because we obtain Gi from Sizmpvi, Cq by recomposing all marked edges of

Sizmpvi, Cq.

Let G1i be the graph obtained from Si by recomposing all marked edges of Si. Then mpvi, Cq is a

leaf of G1i and G1izmpvi, Cq “ Gi.
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If we recompose all marked edges of SG except three marked edges associated with C, then we obtain

a marked graph obtained from the disjoint union of G11, G12, G13, and BpCq by adding three marked edges

in tmpvi, Cq,mpC, viqu1ďiď3. It is then clear that G is obtained from this graph by recomposing three

marked edges in tmpvi, Cq,mpC, viqu1ďiď3 from this graph. This proves that SG is a split decomposition

of G.

It remains to check whether SG is a canonical split decomposition. From the construction, every

bag of SG is a complete bag or a star bag, and every star bag has marked vertices only on its leaves and

no two complete bags are adjacent bags. This proves the lemma.

6.4 General constructions of distance-hereditary obstructions

We generalize the constructions of ∆k to generate all vertex-minor minimal graphs that are distance-

hereditary graphs. We use the incremental characterization of distance-hereditary graphs, described in

Section 5.1.

We say that for a distance-hereditary graph G, a graph G1 is an one-vertex DH-extension of G if

G “ G1zv for some vertex v P V pG1q and G1 is distance-hereditary. For convenience, if G1 is an one-vertex

DH-extension of G and D, D1 are canonical split decompositions of G, G1, respectively, then D1 is also

called an one-vertex DH-extension of D.

For a set D of canonical split decompositions, we define

D` :“ D Y tD1 : D1 is an one vertex DH-extension of D P Du.

From Theorem 5.4, we can generate the set D` from D. For a set D of canonical split decompositions,

we define a new set ∆pDq of canonical split decompositions D as follows:

• Choose three split decompositions D1, D2, D3 in D and for each 1 ď i ď 3, take an one-vertex

extension D1i of Di with a new vertex wi. We introduce a new bag B of type K or S having three

vertices v1, v2, v3 and

1. if vi is in a complete bag, then we define D2i :“ D1i ˚ wi,

2. if vi is the center of a star bag, then we define D2i :“ D1i^wizi for some zi linked to wi in D1i,

3. if vi is a leaf of a star bag, then we define D2i :“ D1i.

Let D be the canonical split decomposition obtained by the disjoint union of D21 , D
2
2 , D

2
3 and B by

adding the marked edges v1w1, v2w2, v3w3.

For each non-negative integer k, we recursively construct the sets Ψk and Φk of canonical split

decompositions as follows.

1. Ψ0 “ Φ0 :“ tK2u (K2 is the canonical split decomposition of itself.)

2. For k ě 0, let Ψk`1 :“ ∆pΨ`k q.

3. For k ě 0, let Φk`1 :“ ∆pΦkq

We prove the following.

Theorem 6.20. Let k ě 0. Every distance-hereditary graph of linear rank-width at least k ` 1 con-

tains a vertex-minor isomorphic to a graph whose canonical split decomposition is isomorphic to a split

decomposition in Ψ`k .
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We remark that for each non-negative integer k, starting with the set Ψ`k , we can construct a set of

vertex-minor minimal graphs O such that

1. every distance-hereditary graph of linear rank-width at least k` 1 contains a vertex-minor isomor-

phic to a graph in O, and

2. for G P O, lrwpGq “ k ` 1 and every its proper vertex-minor has linear rank-width at most k.

For computing the linear rank-width values of distance-hereditary graphs, we can use the result in

Theorem 9.1.

Let D be the canonical split decomposition of a connected distance-hereditary graph G.

Lemma 6.21. Let B1 and B2 be two distinct bags of D, and for each i P t1, 2u, let Ti be the components

of DzV pBiq such that T1 contains the bag B2 and T2 contains the bag B1. If

• y1 :“ ζbpD,B1, T1q is not a center of a star bag, and

• B2 is a star bag and y2 :“ ζbpD,B2, T2q is a leaf of B2,

then there exists a canonical split decomposition D1 such that

1. pD has xD1 as a vertex-minor,

2. DrV pT2qzV pT1qs “ D1rV pT2qzV pT1qs,

3. DrV pT1qzV pT2qs “ D1rV pT1qzV pT2qs, and

4. either D1 has no bags between B1 and B2, or D1 has only one bag B between B1 and B2 such that

|V pBq| “ 3, B is star, the center of B is an unmarked vertex, and the two leaves are adjacent to

y1 and y2 in D1.

Proof. If B1 and B2 are adjacent bags in D, then we are done. We assume that there exists at least one

bag between B1 and B2 in D. Let P “ p1p2 . . . p` be the shortest path from y1 “ p1 to y2 “ p` in D.

Note that ` ě 4.

Let C be a bag in D that contains exactly two vertices pi, pi`1 of P . Then we remove C and all

components of DzV pCq which does not contains a vertex of B1 or B2, and add a marked edge pi´1pi`2.

Since this operation does not change the parts DrV pT2qzV pT1qs and DrV pT1qzV pT2qs, applying this

operation consecutively, we may assume that except B1 and B2, all bags of D having a vertex of P

contain three vertices of P . Those bags should be star bags where the middle vertices of them are the

centers.

If there exist two adjacent bags C1 and C2 in D such that pi, pi`1, pi`2 P V pC1q and pi`3, pi`4, pi`5 P

V pC2q. Take two unmarked vertices xi`1 and xi`4 of D that are represented by pi`1, pi`4, respectively.

By pivoting xi`1xi`4 in D, we can modify two bags C1 and C2 so that pipi`2pi`3pi`5 become a path.

By Lemma 4.9, this pivoting does not affect on the parts DrV pT2qzV pT1qs and DrV pT1qzV pT2qs. We

remove C1 and C2 from D (with all components of DzV pCiq which does not contain a vertex of B1 or

B2), and add a marked edge pi´1pi`6. Because by the assumption that y1 is not the center of B1 we

know that by removing C1 and C2 the bag B1 will not be merged with the bag just after C2 in the path

between y1 and y2, we obtain a canonical split decomposition satisfying the condition (1), (2), (3), and

the number of bags containing P is decreased by two. By recursively doing this procedure, at the end,

we have either no bags between B1 and B2, or only one star bag whose two leaves are adjacent to y1 and

y2.
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The next proposition says how we can replace limbs having linear rank-width ě k “ 1 into a split

decomposition in Ψ`k´1 using Lemma 6.21.

Proposition 6.22. Let B be a star bag of D and v be a leaf of B. Let T be a component of DzV pBq

such that ζbpD,B, T q “ v, and w be an unmarked vertex of D represented by v. Let A be the canonical

split decomposition of a distance-hereditary graph. If pLDrB,ws has a vertex-minor that is either pA or

an one-vertex extension of pA, then there exists a canonical split decomposition D1 on a subset of V pDq

such that

1. either D1zV pT q “ DzV pT q or D1zV pT q “ pDzV pT qq ˚ v, and

2. rLD1rB,w1s is either A or an one-vertex DH-extension of A for some unmarked vertex w1 of D1

represented by v.

Proof. Suppose that there exists a sequence x1, x2, . . . , xm of vertices of pLDrB,ws and S Ď V p pLDrB,wsq
such that p pLDrB,ws ˚ x1 ˚ x2 ˚ . . . ˚ xmqzS is either pA or an one-vertex DH-extension of pA. Note that

pLDrB,ws˚x1˚x2˚ . . .˚xmqzS is not necessary a split decomposition, because it could have some marked

vertices that does not represent any unmarked vertices. However, by removing such vertices successively,

we make it a split decomposition of either pA or an one-vertex DH-extension of pA. Let Q Ď V pDq such

that pLDrB,ws ˚x1 ˚x2 ˚ . . . ˚xmqrQs is a split decomposition of either pA or an one-vertex DH-extension

of pA. Since LDrB,ws is an induced subgraph of D, we have

pLDrB,ws ˚ x1 ˚ x2 ˚ . . . ˚ xmqrQs “ pD ˚ x1 ˚ x2 ˚ . . . ˚ xmqrQs.

For convenience, let D˚ “ D ˚ x1 ˚ x2 ˚ . . . ˚ xm. Note that DrV pBqs “ D˚rV pBqs.

We choose a bag B1 in D˚ such that

1. B1 has a vertex of Q, and

2. the distance from B1 to B in TD˚ is minimum.

Here, we want to shrink all the bags between B1 and B using Lemma 6.21. Let T1 be the component

of D˚zV pB1q containing the bag B and let T2 be the component of D˚zV pBq containing the bag B1.

Let y :“ ζbpD,B
1, T1q. From the choice of B1, y R Q. (If y P Q, then there exists an unmarked vertex

represented by y, and all vertices on the path from y to it should be contained in Q.) Since D˚rQs is

connected and B1 has at least two vertices of Q, y is not the center of a star bag.

Applying Lemma 6.21, there exists a canonical split decomposition D1 such that

1. xD˚ has xD1 as a vertex-minor,

2. D˚rV pT2qzV pT1qs “ D1rV pT2qzV pT1qs,

3. D˚rV pT1qzV pT2qs “ D1rV pT1qzV pT2qs,

4. either D1 has no bags between B and B1, or D1 has exactly one bag Bs between B and B1 such

that |V pBsq| “ 3, Bs is star whose center is an unmarked vertex, and the two leaves of Bs are

adjacent to y and v in D1.

We first remove the vertices of V pT2qzV pT1q that are not contained in Q Y tyu. Let D2 :“

D1z ppV pT2qzV pT1qqzpQY tyuqq. From the choice of Q, we know that every marked vertex of D2 repre-

sents at least one unmarked vertex, and therefore D2 is a split decomposition. We consider ĂD2. Because
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v is a leaf of B, and D2rB
1s is either a complete graph or a star with y a leaf, B1 and B are still bags in

ĂD2. Moreover, if Bs exists in D1, then Bs is still a bag of ĂD2.

Let B2 be the bag of ĂD2 containing y. Clearly, D2rQs “ D1rQs “ D˚rQs, and therefore ČD2rQs is

either A or an one vertex DH-extension of A. We divide into cases.

Case 1. ĂD2 has no bags between B and B2.

In this case, ĂD2 is a required decomposition. Choose an unmarked vertex z in ĂD2 that is represented

by v. Then rL
ĄD2
rB, zs “ ČD2rQs because v is a leaf of the bag B.

Case 2. ĂD2 has one bag Bs between B and B2 where |V pBsq| “ 3, Bs is star whose center c is an

unmarked vertex, and two leaves c1, c2 of Bs are adjacent to y and v, respectively.

Choose an unmarked vertex z in ĂD2 that is represented by c1. From the construction, we can easily

observe that rL
ĄD2
rBs, zs “ ČD2rQs.

If ČD2rQs “ A, then we can regard rL
ĄD2
rB, cs as an one-vertex DH-extension of A with the new vertex

c. Therefore, we may assume that ČD2rQs is an one-vertex DH-extension of A with a newly added vertex

a for some unmarked vertex a of ČD2rQs. Note that since y is not the center of a star bag, either y is a

leaf of a star bag or B2 is a complete bag.

If B2 is a star whose center is an unmarked vertex in ĂD2, then we obtain a new decomposition D3

by applying local complementation at c and removing c and recomposing the two marked edges incident

with Bs. Note that D3 is exactly the decomposition obtained from the disjoint of the two components

of ĂD2zV pBsq by adding a marked edge yv, and it is canonical. Also, z is represented by v in D3, and

therefore rLD3
rB, zs “ ČD2rQs. Thus, D3 is a required decomposition.

If B2 is a complete bag and its vertex y1 is an unmarked vertex in ĂD2, then we obtain a new

decomposition D3 by pivoting y1c on ĂD2 and removing c and recomposing the two marked edges incident

with Bs. Here, we also have a split decomposition obtained from the disjoint of the two components of

ĂD2zV pBsq by adding a marked edge yv, and therefore D3 is a required decomposition.

Now we may assume that at least two unmarked vertices of ĂD2 are represented by c1. So, c is linked

to at least two vertices of pA in ĂD2. Since pA is an one vertex DH-extension of a connected distance-

hereditary graph, pAza is connected. So, if we define D3 :“ ĆD2za, then D3 is connected and rLD3
rB, cs

can be regarded as an one vertex DH-extension of A. Therefore, D3 is a required decomposition.

Proof of Theorem 6.20. We prove it by induction on k. If k “ 0, then lrwpGq ě 1 and G has an edge.

Therefore, we may assume that k ě 1.

Let D be the canonical split decomposition of G. Since G has linear rank-width at least k ` 1,

by Theorem 5.11, there exists a bag B in D with three components T1, T2, T3 of DzV pBq such that

fDpB, Tiq ě k for each 1 ď i ď 3. For each 1 ď i ď 3, let vi :“ ζbpD,B, Tiq and wi :“ ζtpD,B, Tiq, and

zi be an unmarked vertex of D that is represented by vi in D.

By Proposition 5.7, we may assume that B is a star with the center v3. We also assume that B has

exactly three vertices, by removing all components of DzV pBq other than T1, T2, T3. Since v1 and v2 are

leaves of B, for each i P t1, 2u, LDrB, zis “ Tizwi and pLDrB, zis has linear rank-width at least k. So, by

the induction hypothesis, there exists a canonical split decomposition Di in Ψ`k´1 such that pLDrB, zis
has a vertex-minor isomorphic to a graph xDi. Note that Di is a split decomposition in Ψk´1 or an one

vertex DH-extension of a split decomposition in Ψk´1. Then by applying Proposition 6.22 twice, we can

obtain a canonical split decomposition D1 satisfying that

1. D1rV pBqs “ DrV pBqs,
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2. either D1rV pT3qs “ T3 or D1rV pT3qs “ T3 ˚ w3, and

3. for each i P t1, 2u, rLD1rB, z1is is isomorphic to a split decomposition in Ψ`k´1 for some unmarked

vertex z1i of D1 represented by vi.

For each i P t1, 2, 3u, let T 1i be the component ofD1zV pBq containing z1i, and w1i :“ ζtpD
1, D1rV pBqs, T 1i q.

Note that T 11zw
1
1 and T 12zw

1
2 are contained in Ψ`k´1. We choose an unmarked vertex z13 that is represented

by v13 in D1. If we apply local complementation at z13 and z12 subsequently in D1, then

1. B is changed to a star with the center v2,

2. T 11 is the same as before,

3. T 12 is changed to T 12 ˚ w
1
2 ˚ z

1
2,

4. T 13 is changed to T 13 ˚ z
1
3 ˚ w

1
3.

Now, we again apply Proposition 6.22 to D1 ˚ z13 ˚ z
1
2, and obtain a canonical split decomposition D2

satisfying that

1. D2rV pBqs “ pD1 ˚ z13 ˚ z
1
2qrV pBqs and D2rV pT 11qs “ pD

1 ˚ z13 ˚ z
1
2qrV pT

1
1qs,

2. either D2rV pT 12qs “ pD
1 ˚ z13 ˚ z

1
2qrV pT

1
2qs or pD1 ˚ z13 ˚ z

1
2qrV pT

1
2qs ˚ w

1
2, and

3. rLD2rB, z23 s is isomorphic to a split decomposition in Ψ`k´1 for some unmarked vertex z23 of D2

represented by v3.

Let T 23 be the component of D2zV pBq containing z23 , and w23 :“ ζtpD
2, D2rV pBqs, T 23 q. Note that

T 23 zw
2
3 P Ψ`k´1 and for i P t1, 2u, z1i is still represented by vi in D2.

Now we claim that D2 P Ψk or D2 ˚ z12 P Ψk. We observe two cases depending on whether

D2rV pT 12qs “ pD
1 ˚ z13 ˚ z

1
2qrV pT

1
2qs or pD1 ˚ z13 ˚ z

1
2qrV pT

1
2qs ˚ w

1
2.

Case 1. D2rV pT 12qs “ pD
1 ˚ z13 ˚ z

1
2qrV pT

1
2qs.

We observe that B is a star with the center v2 in D2, and the three components of D2zV pBq are

T 11, T 12 ˚ w
1
2 ˚ z

1
2, and T 23 . In this case, D2 ˚ z12 P Ψk because

1. B is a complete bag in D2 ˚ z12, and

2. the three components of D2zV pBq are T 11 ˚ w
1
1, T 12 ˚ w

1
2, and T 23 ˚ w

2
3 ,

and each limb of D2 ˚ z12 with respect to B are T 11zw
1
1, T 12zw

1
2, T 23 zw

2
3 , which are contained in Ψ1k´1.

Case 2. D2rV pT 12qs “ pD
1 ˚ z13 ˚ z

1
2qrV pT

1
2qs ˚ w

1
2.

We observe that B is a star with the center v2 in D2, and the three components of D2zV pBq are

T 11, T 12 ˚ w
1
2 ˚ z

1
2 ˚ w

1
2, and T 23 . We can see that D2 P Ψk because each limb with respect to B are T 11zw

1
1,

T 12zw
1
2, T 23 zw

2
3 , which are contained in Ψ1k´1.

We conclude that G has a vertex-minor isomorphic to xD2 where D2 P Ψk Ď Ψ1k, as required.

In order to prove that Ψk is the set of canonical split decompositions of distance-hereditary vertex-

minor obstructions for linear rank-width at most k, we need to prove that for every D P Ψk, pD has linear

rank-width k ` 1 and its proper vertex-minors have linear rank-width at most k. However, while by

Theorem 5.11 we know that lrwp pDq ě k ` 1, it is not true that for all D P Ψk, all proper vertex-minors

of pD have linear rank-width k. For instance, the canonical split decomposition in Figure 6.5 is in Ψ1,
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Figure 6.5: A canonical split decomposition in Ψ1.

has linear rank-width 2 but not all proper vertex-minors have linear rank-width 1. Instead we show the

property for canonical split decompositions in Φk.

Proposition 6.23. Let k ě 0 and let D P Φk. Then lrwp pDq “ k ` 1 and every proper vertex-minor of

pD has linear rank-width at most k.

To prove Proposition 6.23, we need some lemmas.

Lemma 6.24. Let D P Φk and let v be an unmarked vertex in D. Then D ˚ v P Φk.

Proof. We proceed by induction on k. We may assume that k ě 1. By the construction, there exists

a bag B of D such that the three limbs D1, D2, D3 in D corresponding to the bag B are contained in

Φk´1.

Let D11, D12, D13 be the three limbs of D ˚ v corresponding to the bag B such that D1i and Di came

from the same component of DzV pBq. Then by Proposition 5.7, D1i is locally equivalent to Di. So by

the induction hypothesis, D1i P Φk´1. And D ˚ v is the canonical split decomposition obtained from D1i

following the construction of Φk. Therefore, D ˚ v P Φk.

Proof of Proposition 6.23. By Lemma 6.24 and Lemma 1.8, it is sufficient to show that if D P Φk and v

is an unmarked vertex of D, then pDzv has linear rank-width at most k. We use induction on k to prove

it. We may assume that k ě 1. Let B be the bag of D such that DzV pBq has exactly three limbs whose

underlying graphs are contained in Φk´1. Clearly there is no other bag having the same property. Since

B has no unmarked vertices, v is contained in one of the limbs D1, and by induction hypothesis, xD1zv

has linear rank-width at most k ´ 1. Therefore, by Theorem 5.11, pDzv has linear rank-width at most

k.

One can observe that for two graphs other than C5 in Figure 1.1 [1], their canonical split decompo-

sitions are contained in Φ1. Also, all of the canonical split decompositions of graphs in ∆k are contained

in Φk for each k ě 1.

We leave an open question to identify a set Φk Ă Θk Ă Ψk that forms the set of canonical split

decompositions of distance-hereditary vertex-minor minimal graphs for the class of graphs of linear rank-

width k.
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Chapter 7. Finding a tree as a vertex-minor

For the path-width of graphs, it is known that for a fixed forest T , every graph of sufficiently large

path-width contains T as a minor [169, 13]. For the tree-width of graphs, it is known that for fixed n,

every graph of sufficiently large tree-width contains an nˆ n-grid graph as a minor [171].

Oum [150, 154] proved that for a fixed bipartite circle graph H, every bipartite (or line, or circle)

graph of sufficiently large rank-width contains a vertex-minor isomorphic to H. We ask a similar question

for linear rank-width.

Question 1.3. For a fixed tree T , does every graph of sufficiently large linear rank-width contain a

vertex-minor isomorphic to T?

The author [133] showed that if we replace the containment relation with pivot-minor, then this

question becomes false. We remark that there exists a class of trees of unbounded linear rank-width

which do not have a pivot-minor isomorphic to a graph in Figure 7.1 [133]. However, we still have no

counterexamples for Question 1.3.

We show that Question 1.3 is true if it is true for prime graphs. To support this statement, we show

the following.

Theorem 7.1. Let p ě 3 be an integer and T be a tree. Let G be a graph such that every prime

induced subgraph of G has linear rank-width at most p. If lrwpGq ě 30pp` 4q|V pT q|, then G contains a

vertex-minor isomorphic to T .

We prove that for fixed p and a graph G whose prime induced subgraphs have linear rank-width at

most p, if G has large linear rank-width, then its split decomposition tree has large path-width. We first

establish a relation between the linear rank-width of a distance-hereditary graph and the path-width of

its split decomposition tree. Next we observe a relation for graphs whose prime induced subgraphs have

bounded linear rank-width. At the last moment, we show that for a fixed tree T , if a graph G admits a

split decomposition tree of sufficiently large path-width, then G contains a vertex-minor isomorphic to

T .

Figure 7.1: This tree is not a pivot-minor of a tree obtained from a tree by replacing each edge with a

path of length 2 [133].
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7.1 Path-width of split decomposition trees

We will observe a relation between the linear rank-width of a distance-hereditary graph and the

path-width of its split decomposition tree. This analysis is natural because path-width on trees and

linear rank-width on distance-hereditary graphs admit similar characterizations.

We prove the following.

Theorem 7.2. Let D be the canonical split decomposition of a connected distance-hereditary graph G.

Let TD be the split decomposition tree of D. Then 1
2 pwpTDq ď lrwpGq ď pwpTDq ` 1.

For example, every complete graph G with at least two vertices has linear rank-width 1 and the

path-width of its split decomposition tree has path-width 0. For the set ∆1 defined in Chapter 6 and

G P ∆1, G has linear rank-width 2 and the path-width of its split decomposition tree is 1. We recall the

following lemmas on trees from [85].

Lemma 3.7 (Ellis, Sudborough and Turner [85]; Takahashi, Ueno and Kajitani [182]). Let k be a positive

integer and let T be a tree. Then pwpT q ď k if and only if for each vertex v of T , at most two subtrees

of T zv have path-width k and all the other subtrees of T zv have path-width at most k ´ 1.

Lemma 7.3 (Ellis, Sudborough and Turner [85]). Let T be a tree. Let P be a path in T such that

for each vertex v of P and each component T 1 of T zv having no vertices of P , pwpT 1q ď k ´ 1. Then

pwpT q ď k.

Lemma 7.4 (Ellis, Sudborough and Turner [85]). Let T be a tree such that for each v P V pT q, at most

two subtrees of T zv have path-width k and all the other subtrees of T zv have path-width at most k ´ 1.

Then T has a path P such that for each vertex v of P and a component T 1 of T zv having no vertices of

P , pwpT 1q ď k ´ 1.

We first show the lower bound in Theorem 7.2.

Lemma 7.5. Let G be a graph and let uv P EpGq. Then pwpGq ď pwpG{uvq ` 1.

Proof. Let w be the contracted vertex from the edge uv in G{uv, and let pP,Bq be a path-decomposition

of G{uv having the minimum width. It is not hard to check that a new path-decomposition obtained

by replacing w with u and v in each bag containing w is a path-decomposition of G. We conclude that

pwpGq ď pwpG{uvq ` 1.

Lemma 7.6. Let G be a graph. Let u be a vertex of degree 2 in G such that v1, v2 are the neighbors of

u in G and v1v2 R EpGq. Then pwpGq ď pwpG{uv1{uv2q ` 1.

Proof. Let w be the contracted vertex from the two edges uv1, uv2 in G{uv1{uv2, and let pP,Bq be a

path-decomposition of G{uv1{uv2 having the minimum width pwpG{uv1{uv2q. Let t :“ pwpG{uv1{uv2q.

We may assume that every two consecutive bags are not equal.

We first obtain a path-decomposition pP,B1q from pP,Bq by replacing w with v1 and v2 in all bags

containing w. Since every consecutive two bags in pP,Bq are not equal, every consecutive two bags in

pP,B1q are not equal.

We first assume that there are two adjacent bags B1 and B2 in pP,B1q containing both v1 and v2,

respectively. We obtain a path-decomposition pP 1,B2q from pP,B1q by subdividing between two bags B1

and B2 with adding a new bag B1 “ pB1 XB2q Y tuu. Since B1 and B2 are not same, |B1 XB2| ď t` 1
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and therefore, |B1| ď t ` 2. Thus, pP 1,B2q is a path-decomposition of G of width at most t ` 1, and

pwpGq ď pwpG{uv1{uv2q ` 1.

Now we assume that there are only one bag B in pP,B1q containing both v1 and v2. In this

case, since v1v2 R EpGq, we can obtain a path decomposition of G by replacing this bag B with a

sequence of two bags B1 and B2, where B1 “ Bztv2u Y tuu and B2 “ Bztv1u Y tuu. This implies that

pwpGq ď pwpG{uv1{uv2q ` 1.

Let D be the canonical split decomposition of a connected distance-hereditary graph G.

Lemma 7.7. pwpTDq ď 2 lrwpGq.

Proof. We prove by induction on k :“ lrwpGq. If k “ 0, then G is an one vertex graph, and pwpTDq “ 0.

If k “ 1, then by Theorem 5.22, TD is a path. Therefore, pwpTDq “ 0 or 1, and we have pwpTDq ď 2k.

Thus, we may assume that k ě 2.

Since lrwpGq “ k ě 2, by Theorem 5.11 and Lemma 5.15, there exists a path P “ v0v1 ¨ ¨ ¨ vnvn`1

in TD such that for each node v in P and a component C of DzV pbagDpvqq not containing a bag of P ,

fpB,Cq ď k´ 1. By induction hypothesis, for each corresponding limb LC of linear rank-width at moat

k´ 1, the split decomposition tree TLC
of it has path-width at most 2k´ 2. We compare the path-width

of TC (the split decomposition tree of C) and the path-width of TLC
.

We claim that pwpTCq ď 2k ´ 1. As described in Section 5.2, when we take a canonical split

decomposition from a limb, if there is a bag having 2 vertices, then we apply one of the following

operations:

1. Removing a bag having exactly one adjacent bag,

2. Removing a bag having exactly two adjacent bags and linking the adjacent bags, or

3. Removing a bag having exactly two adjacent bags and merging the adjacent bags into one bag.

First two cases correspond to contracting at most one edge in view of subtrees of TD. So, pwpTCq ď

pwpTLC
q ` 1 ď p2k ´ 2q ` 1 “ 2k ´ 1 by Lemma 7.5. The last case corresponds to contracting two

incident edges where the middle node has degree 2 and its neighbors are not adjacent. By Lemma 7.6,

pwpTCq ď pwpTLC
q ` 1 ď 2k ´ 1.

Therefore, By Lemma 7.3, TD has path-width at most 2k, as required.

Now, we prove the upper bound part.

Lemma 7.8. lrwpGq ď pwpTDq ` 1.

Proof. We prove by induction on k :“ pwpTDq. If k “ 0, then TD consists of one node, lrwpGq “ 0 or 1.

So, we have lrwpGq ď pwpTDq ` 1. We assume that k ě 1.

Since pwpTDq “ k, by Lemma 3.7, for each vertex v of TD, at most two subtrees of T zv have

path-width k and all the other subtrees of T zv have path-width at most k ´ 1. Also by Lemma 7.4,

there exists a path P “ v0v1 ¨ ¨ ¨ vnvn`1 in TD such that for each node v in P and a component T of

TDzv not containing a node of P , pwpT q ď k ´ 1. By induction hypothesis, the graph obtained from

a corresponding canonical split decomposition has linear rank-width at most pk ´ 1q ` 1 “ k. From

the definition of limbs, we have that for each node v in P and a component T of DzV pbagDpvqq not

containing a bag of P , fpB, T q ď k. By Theorem 5.11, we conclude that lrwpGq ď k ` 1.
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Proof of Theorem 7.2. From Lemmas 7.7 and 7.8, we conclude that 1
2 pwpTDq ď lrwpGq ď pwpTDq `

1.

We could not confirm that the lower bound of lrwpGq is tight. We remain the following as an open

question.

Question 7.9. Let D be the canonical split decomposition of a connected distance-hereditary graph G.

Is it true that pwpTDq ď lrwpGq?

Now we consider graphs whose prime induced subgraphs have bounded linear rank-width. Note

that every prime induced subgraph of a distance-hereditary graph has at most 3 vertices [31]. Thus, the

following can be regarded as a general version of Lemma 7.8.

Lemma 7.10. Let p ě 3 be an integer. Let G be a graph such that every prime induced subgraph of G

has linear rank-width at most p, and let D be the canonical split decomposition of G. Then lrwpGq ď

2pp` 4qppwpTDq ` 1q.

From the condition, it is easy to observe that every prime bag of D has bounded linear rank-width.

A basic strategy to bound linear rank-width is to recursively replace an optimal linear layout of some

bag with linear layouts of subdecompositions branched from this bag.

Proof. We prove by induction on k :“ pwpTDq. If k “ 0, then TD consists of one vertex, and by the

assumption, lrwpGq ď p ď 2pp` 4q. We assume that k ě 1.

We follow similar steps in the proof of Theorem 5.11. Since pwpTDq “ k, by Lemma 3.7 and

Lemma 7.4, there exists a path P “ v0v1 ¨ ¨ ¨ vnvn`1 in TD such that for each node v in P and a component

T of TDzv not containing a node of P , pwpT q ď k ´ 1. For each 0 ď j ď n` 1, let Bi :“ bagDpviq. For

each 0 ď i ď n, let bi be a marked vertex of Bi and let ai`1 be a marked vertex Bi`1 such that biai`1

is the marked edge connecting Bi and Bi`1. If necessary, by adding unmarked vertices on B0 and Bn`1

which are twins of one of the first or last vertex in the optimal linear layout, we may assume that B0

and Bn`1 have unmarked vertices a0 and bn`1 in D, respectively, and the linear rank-width of B0 and

Bn`1 are at most p.

In case when n “ ´1, let D0 :“ D. If n ě 0, then we define the following subdecompositions.

1. Let D0 be the component of DzV pB1q containing the bag B0.

2. Let Dn`1 be the component of DzV pBnq containing the bag Bn`1.

3. For each 1 ď i ď n, let Di be the component of DzpV pBi´1q Y V pBi`1qq containing the bag Bi.

Notice that the vertices ai and bi are unmarked vertices in Di

We claim that for each i P t0, 1, . . . , n` 1u, xDi has a linear layout of width at most 2pp` 4qpk ` 1q

whose first and last vertices are ai and bi, respectively. Let i P t0, 1, . . . , n`1u and let D1 be a component

of DizV pBiq. Since pwpTD1q ď k´1, by induction hypothesis, xD1 has linear rank-width at most 2pp`4qk,

and in particular, the graph xD1zζtpD,Bi, D
1q has linear rank-width at most 2pp` 4qk.

By the assumption the bag Bi has linear rank-width at most p. Since the rank of any matrix can

be increased by at most 2 when we move one element in the column indices (or the row indices) to the
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row indices (or the column indices, respectively), Bi admits a linear layout of width at most p` 4 whose

first and last vertices are ai and bi, respectively. Let

LBi
:“ pw1, w2, . . . , wmq

be a linear layout of Bi of width at most p ` 4 whose first and last vertices are ai and bi, respectively.

For each 1 ď j ď m,

1. if wj is an unmarked vertex, then let Lpwjq :“ pwjq, and

2. if wj is a marked vertex adjacent to a vertex of a component of DizV pBiq, say Dwj , then let Lpwjq

be the optimal linear layout of yDwj
zζtpD,Bi, Dwj

q.

Since each Twj
has path-width at most k ´ 1, the width of Lpwjq is at most 2pp` 4qk. We define that

Li :“ Lpw1q ‘ Lpw2q ¨ ¨ ¨ ‘ Lpwmq.

We claim that Li has width at most 2pp ` 4qpk ` 1q. It is sufficient to prove that for every w P

V pxDiqztai, biu, ρ
xDi
ptv : v ďLi wuq ď 2pp`4qpk`1q. For each w P V pxDiqztai, biu, let Sw :“ tv : v ďLi wu

and Tw :“ V pxDiqzSw. We fix 2 ď j ď m´ 1. If wj is an unmarked vertex of the bag Bi, then clearly,

ρ
xDi
pSwj q “ ρBiptv : v ďLBi

wjuq ď p` 4

by the assumption. Thus, we may assume that wj R V pBiq.

From the assumption we have the following.

1. ρ˚
xDi
pSwj , Twj zV p

yDwj qq ď mintρBiptv : v ďLBi
wjuq, ρBiptv : v ďLBi

wj´1uqu ď p` 4,

2. ρ˚
xDi
pSwj

zV pyDwj
q, Twj

q ď mintρBi
ptv : v ďLBi

wjuq, ρBi
ptv : v ďLBi

wj´1uqu ď p` 4,

3. ρ˚
xDi
pSwj

X V pyDwj
q, Twj

X V pyDwj
qq ď 2pp` 4qk.

Therefore,

ρ
xDi
pSwj

q

ď ρ˚
xDi
pSwj , Twj zV p

yDwj qq ` ρ
˚
xDi
pSwj zV p

yDwj q, Twj q ` ρ
˚
xDi
pSwj X V p

yDwj q, Twj X V p
yDwj qq

ď 2pp` 4q ` 2pp` 4qk ď 2pp` 4qpk ` 1q.

We show that xDi has a linear layout Li of width 2pp ` 4qpk ` 1q whose first and last vertices are

ai and bi, respectively. For each i, let L1i be the linear layout obtained from Li by removing ai and bi.

Then it is not hard to check that

pa0q ‘ L
1
0 ‘ ¨ ¨ ¨ ‘ L

1
n`1 ‘ pbn`1q

is a linear layout of G having width at most 2pp`4qpk`1q. We conclude that lrwpGq ď 2pp`4qppwpTDq`

1q.

7.2 Containing a tree as a vertex-minor

Now we prove Theorem 7.1 using Lemma 7.10. LetG be a graph where every prime induced subgraph

has linear rank-width at most p. We first prove that if G has sufficiently large linear rank-width, then
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the split decomposition tree of the canonical split decomposition of G has large path-width, by applying

Lemma 7.10. Then this tree must contain a subdivision of a complete binary tree as a subgraph by

Theorem 3.13. We take a corresponding decomposition from the canonical split decomposition of G.

The next step is to replace each prime bag with some canonical split decomposition that consists of only

complete bags or star bags by removing some vertices and applying local complementations such that

• the new split decomposition tree is still a subdivision of the same complete binary tree.

In the last step, we modify to obtain a canonical split decomposition of trees. For this, we will use the

Bouchet’s characterization of trees in terms of canonical split decompositions in Theorem 5.2.

We first prove some lemmas to reduce general trees into subcubic trees. For a tree T , we denote by

φpT q the sum of the degrees of vertices of T whose degree is at least 4. Note that for every subcubic tree

T , φpT q “ 0.

Lemma 7.11. Let k be a positive integer and let T be a tree with φpT q “ k. Then T is a vertex-minor

of a tree T 1 with φpT 1q “ k ´ 1 and |V pT 1q| “ |V pT q|` 2.

Proof. Since φpT q ě 1, T has a vertex of degree at least 4. Let v P V pT q be a vertex of degree at least

4, and v1, v2, . . . , vm be the neighbors of v. We obtain T 1 from T by replacing v with a path vp1p2

and adding edges between v and v3, v4, . . . , vm, and between p2 and v1, v2. It is easy to verify that

T 1^ p1p2zp1zp2 “ T . Because p1 and p2 are vertices of degree at most 3 in T 1, and the degree of v in T 1

is one less than the degree of v in T , we have φpT q “ k ´ 1.

Lemma 7.12. Let T be a tree. Then T is a vertex-minor of a subcubic tree T 1 with |V pT 1q| ď 5|V pT q|.

Proof. By Lemma 7.11, T is a vertex-minor of a subcubic tree T 1 with |V pT 1q| ď |V pT q|` 2φpT q. Since

φpT q ď 2|EpT q| ď 2|V pT q|, we conclude that |V pT 1q| ď |V pT q|` 2φpT q ď 5|V pT q|.

For a tree T , let ηpT q be the tree obtained from T by replacing each edge with a path of length 3.

We recall a characterization of trees in Theorem 5.2 that a connected graph is a tree if and only if each

bag of its canonical split decomposition is a star bag whose center is an unmarked vertex.

We now prove two lemmas which tell how to modify the canonical split decompositions.

Lemma 7.13. Let D be a split decomposition obtained from a path of bags B1B2B3B4 by attaching two

bags B5 and B6 on B4 such that each bag Bi consists of exactly three vertices, and B1, B2, B3 are star

bags whose centers are unmarked vertices. Let v4, w4 be the two marked vertices in B4 adjacent to a

vertex of B5 and B6, respectively. Then pD has a vertex-minor whose canonical split decomposition is D1

where

1. TD1 is a star whose center is B4, and the leaves are B1, B5, B6,

2. for i P t1, 5, 6u, Bi “ D1rV pBiqs, and

3. |V pB4q| “ 4 and B4 is a star bag whose center is an unmarked vertex other than v4 and w4.

Proof. By applying local complementations at some vertices in B5 or B6, we may assume that B4 is a

star bag, and without loss of generality, we assume that v4 is the center of B4.

Let v2 and v3 be the unmarked vertices of B2 and B3, respectively. Consider D^ v2v3zv3. The bag

B3 can be shrunk by recomposing in D^ v2v3zv3 and the marked edge connecting B2 and B4 becomes a
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marked edge of type ScSp. By Theorem 4.5, it is not a canonical split decomposition, and by recomposing

this marked edge of type ScSp, we obtain a canonical split decomposition where B4 contains v2 as a leaf

which is unmarked. By pivoting v2 with an unmarked vertex represented by v4, v2 becomes the center

of B4 as required.

Lemma 7.14. Let k be a positive integer and T be a subcubic tree. Let D be the canonical split decom-

position of a connected distance-hereditary graph whose split decomposition tree TD is isomorphic to a

subdivision of ηpT q and each bag of D consists of exactly 3 vertices. Then D contains a vertex-minor D1

where TD1 is isomorphic to a subdivision of T and for each bag B of D1,

1. B is a star bag,

2. if B is a leaf bag or a bag having 2 adjacent bags, then |V pBq| “ 3,

3. if B is a bag having 3 adjacent bags, then |V pBq| “ 4. (that is, the center of B is an unmarked

vertex, and the other vertices of B are marked vertices.)

Proof. We choose a leaf bag R in D and call it the root. By applying a local complementation if necessary,

we may assume that R is a star bag whose center is an unmarked vertex. From the root to bottom, we

do the following two procedures recursively to obtain the required decomposition D1. Let B be a bag

that is not chosen before. Note that B has at most 3 adjacent bags. We may assume that the parent

bag of B is a star bag whose center is an unmarked vertex.

Suppose that B is a bag having 2 adjacent bags. Let c be the unmarked vertex of B and let y be a

vertex represented by a vertex of B that belongs to a descendant bag of B. Since the parent bag of B

is already a star bag and whose center is an unmarked vertex, B is either a complete bag or a star bag

where c is not linked to a vertex of the parent bag. If it is a complete bag, then we modify it into a star

bag by applying local complementation at c. If it is a star bag, we pivot cy to turn this bag into a star

bag whose center is c.

Now suppose that B is a bag having 3 adjacent bags. Since TD is isomorphic to a subdivision of ηpT q,

there are at least 2 ancestor bags above B, which are already processed. Therefore, using Lemma 7.13,

we can modify it into a star bag of size 4 by shrinking the two ancestor bags, where its center is an

unmarked vertex.

If we do this procedure recursively, we finally obtain the canonical split decomposition satisfying

the condition.

Now we introduce lemmas which tells how to replace each prime bag with some canonical split

decomposition that consists of complete bags or star bags.

Lemma 7.15. Let D be the canonical split decomposition of a connected distance-hereditary graph and

let B be a prime bag of D such that DzV pBq has two components T1, T2 and for each i P t1, 2u, the bag

containing ζtpD,B, Tiq is either a star bag whose leaf is ζtpD,B, Tiq or a prime bag. Then by applying

local complementations at vertices and deleting vertices in B, we can transform D into a canonical split

decomposition D1 such that

1. B is transformed to a complete bag of size 3 in D1,

2. for every bag B1 in D other than B, D1rV pBqs is a bag of D1, and
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3. the types of adjacent bags of B in D1 are the same as in D.

Proof. For each i P t1, 2u, let vi :“ ζbpD,B, Tiq, and let Bi be the adjacent bag of B containing

ζtpD,B, Tiq. Since B is prime, there exists a path from v1 to v2 except a possible edge v1v2. We

take a shortest one among those paths, and say P . Then by applying local complementations at internal

vertices of P , we can shrink it into a path of length exactly 2, without changing the types of adjacent

bags. Finally, by applying local complementation at the middle vertex of the path of length 2, we can

create the edge v1v2 if not exists. Therefore, by removing all other vertices in B except the vertices of

the path of length 2, we can turn B into a star bag of size 3 whose center is an unmarked vertex. Since

each marked edge connecting B and Bi is of type KSp or KP , it is not recomposable.

Lemma 7.16. Let D be the canonical split decomposition of a connected distance-hereditary graph and

let B be a prime bag of D such that DzV pBq has one components T1 and bag containing ζtpD,B, T1q

is either a star bag whose leaf is ζtpD,B, T1q or a prime bag. Then by applying local complementations

at vertices and deleting vertices in B, we can transform D into a canonical split decomposition D1 such

that

1. B is transformed to a complete bag of size 3 in D1,

2. for every bag B1 in D other than B, D1rV pBqs is a bag of D1, and

3. the types of adjacent bags of B in D1 are the same as in D.

Proof. We choose any vertex v2 other than the vertex ζbpD,B, T1q. Then by the same argument in

Lemma 7.15, we can turn B into a star bag of size 3 whose center is an unmarked vertex.

Lemma 7.17. Let D be the canonical split decomposition of a connected distance-hereditary graph and

let B be a prime bag of D such that DzV pBq has three components T1, T2, T3, and for each i P t1, 2, 3u, the

bag containing ζtpD,B, Tiq is either a star bag whose leaf is ζtpD,B, Tiq or a prime bag. Then by applying

local complementations at vertices and deleting vertices in B, we can transform D into a canonical split

decomposition D1 such that

1. for every bag B1 in D other than B, D1rV pBqs is a bag of D1, and

2. the types of adjacent bags of B in D1 are the same as in D, and

3. B is transformed into a split decomposition DB whose split decomposition tree is a star with at

most 3 leaves where its center corresponds to a complete bag of size 3 and its leaves correspond to

star bags of size 3 whose centers are unmarked vertices, and a leaf of a star bag or a vertex of a

complete bag is adjacent to a vertex of one of Ti.

Proof. For each i P t1, 2, 3u, let vi :“ ζbpD,B, Tiq and let Bi be the adjacent bag of B containing

ζtpD,B, Tiq. We take a minimal induced subgraph B1 of B containing v1, v2 and v3. It is not hard to

observe that B1 is one of the following:

1. There exist a vertex c in B1 and three internally vertex-disjoint paths Pi from c to each vi such

that V pB1q “
Ť

1ďiď3 V pPiq and EpB1q “
Ť

1ďiď3EpPiq.

2. There exist a triangle c1c2c3 in B1 and three vertex-disjoint paths Pi from ci to each vi such that

V pB1q “
Ť

1ďiď3 V pPiq and EpB1q “ p
Ť

1ďiď3EpPiqq Y tc1c2, c2c3, c3c1u.
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In both cases, we may assume that each Pi has length at most 1, by applying local complementation

at internal vertices of Pi and taking a shorter path. Note that we did not yet remove vertices and the

modified bag is still prime. We analyze each case, separately.

Case 1. There exist a vertex c in B1 and three internally vertex-disjoint paths Pi from c to each vi.

If c R tv1, v2, v3u, then B1 is exactly isomorphic to K1,3, and it is enough to remain this subgraph

by removing all other vertices. Without loss of generality, we may assume that c “ v1. Note that v2, v3

are the neighbors of v1 in B and v2v3 R EpBq. Since B is prime, it is 2-connected and there exists a path

P 1 from v2 to v3 in Bzv1. We assume that P 1 is a shortest path among those paths. By applying local

complementations at internal vertices of P 1, we can create an edge between v2 and v3 so that tv1, v2, v3u

forms a triangle. Then by removing all vertices except v1, v2, v3, we can turn B into a complete bag.

Since each marked edge connecting B and Bi is of type KSp or KP , it is not recomposable.

Case 2. There exist a triangle c1c2c3 in B1 and three vertex-disjoint paths Pi from ci to each vi.

In this case, we just replace B with the canonical split decomposition of B1. Note that a split

decomposition tree of B1 is a star where the bag corresponding to the center of the star is a complete

bag of size 3, say q1q2q3, and for each 1 ď i ď 3, the canonical split decomposition of B1 possibly has at

most one neighbor star bag Qi of size 3 where ti is adjacent to a leaf of Qi, and

1. if Qi exists, then vi is the other leaf of Qi,

2. if Qi does not exist, then ti “ vi,

So, the canonical split decomposition obtained by replacing B with the canonical split decomposition of

B1 is a required decomposition.

Now we prove the main result.

Proof of Theorem 7.1. Let t :“ |V pT q| and suppose that lrwpGq ě 30pp ` 4qt. By Lemma 7.12, there

exists a subcubic tree T 1 such that T is a vertex-minor of T 1 and |V pT 1q| ď 5t. Note that |V pηpT 1qq| ď 15t.

Since lrwpGq ě 30pp ` 4qt, by Lemma 7.10, pwpTDq ě 15t ´ 1. Since |V pηpT 1qq| ď 15t, from

Theorem 3.13, TD contains a minor isomorphic to ηpT 1q. Since the maximum degree of ηpT 1q is 3, TD

contains a subgraph isomorphic to a subdivision of ηpT 1q.

Let D1 be the subdecomposition of D whose split decomposition tree is isomorphic to the subdivision

of ηpT 1q. We first describe how to take a vertex-minor D2 of D1 whose split decomposition tree is also

isomorphic to a subdivision of ηpT 1q, and xD2 is distance-hereditary.

Suppose that B is a prime bag of D1. Note that B contains 1, 2 or 3 marked vertices because the

split decomposition tree of D1 is isomorphic to a subdivision of ηpT 1q. Let B1 be a adjacent bag of B,

and let v be the marked vertex in B that is adjacent to a vertex of B1. If B1 is a star bag, then by

pivoting with some unmarked vertex in B and an unmarked vertex linked to it on the side of B1, we

can turn B1 into a star bag whose leaf is adjacent to v. If B1 is a complete bag, then by applying local

complementation at the outside of B, we can turn B1 into a star bag whose leaf is adjacent to v. This

local complementation may affect some other adjacent bags of B, but for every adjacent bag that is

already a star bag whose leaf is adjacent to B, is not changed by this local complementation. Therefore,

by doing these procedures, we may assume that each adjacent bag of B is either a prime bag, or a star

bag whose leaf is adjacent to a vertex of B.
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Let T1, T2, T3 be three components of D1zV pBq. Since for each i P t1, 2, 3u, the bag containing

ζtpD
1, B, Tiq is either a star bag whose leaf is ζtpD

1, B, Tiq or a prime bag, by Lemmas 7.15, 7.16 and

7.17, we can transform D1 into a canonical split decomposition D2 by applying local complementations

at vertices and deleting vertices in B such that

1. for every bag B1 in D1 other than B, D2rV pBqs is a bag of D2, and

2. the types of adjacent bags of B in D2 are the same as in D, and

3. B is transformed into a split decomposition DB whose split decomposition tree is a star with at

most 3 leaves where its center corresponds to a complete bag of size 3 and its leaves correspond to

star bags of size 3 whose centers are unmarked vertices, and a leaf of a star bag or a vertex of a

complete bag is adjacent to a vertex of one of Ti.

So, the new canonical split decomposition has a split decomposition tree isomorphic to a subdivision of

ηpT 1q, as required.

Now we prove that we can obtain a tree T from the canonical split decomposition D2 of a distance-

hereditary graph whose split decomposition tree is isomorphic to a subdivision of ηpT 1q. If a leaf bag

has at least three unmarked vertices, by removing unmarked vertices, we may assume that every leaf

bag contains exactly 3 vertices. If a bag having 2 adjacent bags contains at least two unmarked vertices,

by removing unmarked vertices, we may assume that it contains exactly 3 vertices. If a bag having 3

adjacent bags contains a center x of a star that is an unmarked vertex, we apply local complementation

at x and remove it. And, if a bag having 3 adjacent bags still has at least two unmarked vertices, by

removing unmarked vertices, we may assume that it contains exactly 3 vertices. So, we may assume that

every bag of D2 consists of exactly 3 vertices. Note that TD2 is not changed.

Since TD2 is isomorphic to a subdivision of ηpT 1q and each bag of D2 consists of exactly 3 vertices,

by Lemma 7.14, D2 contains a vertex-minor D3 where TD3 is isomorphic to a subdivision of T 1 and for

each bag B of D3,

1. B is a star bag,

2. if B is a leaf bag or a bag having 2 adjacent bags, then |V pBq| “ 3,

3. if B is a bag having 3 adjacent bags, then |V pBq| “ 4.

By Theorem 5.2, D3 is a split decomposition of a tree, and in fact, it is not hard to observe that yD3

has an induced subgraph isomorphic to T 1 by removing some unmarked vertices in leaf bags. Since T is

a vertex-minor of T 1, we conclude that G contains a vertex-minor isomorphic to T .
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Chapter 8. Unavoidable vertex-minors in large

prime graphs

In this chapter, we investigate a Ramsey type theorem on prime graphs. We recall that prime graphs

G have no vertex partitions pA,Bq with |A|, |B| ě 2 and ρ˚GpAq ď 1. The main theorem of this chapter

is the following.

Theorem 8.1. For every n, there is N such that every prime graph on at least N vertices has a vertex-

minor isomorphic to Cn or Kn aKn.

Ramsey’s theorem [161] states that for every n, there exists N such that every graph on at least N

vertices contains an induced subgraph isomorphic to Kn or Kn. There are several variants of Ramsey’s

theorem with some given connectivity conditions. For instance, if a given graph is connected, then

we may expect structures more than Kn, because Kn is not connected. It is known that every large

connected graph contains an induced subgraph isomorphic to either Kn, K1,n or Pn [76]. We point out

some variants of Ramsey’s theorem in this direction.

• (folklore; see Diestel’s book [76, Proposition 9.4.1])

For every n, there exists N such that every connected graph on at least N vertices contains an

induced subgraph isomorphic to Kn, K1,n, or Pn.

• (folklore; see Diestel’s book [76, Proposition 9.4.2])

For every n, there exists N such that every 2-connected graph on at least N vertices contains a

topological minor isomorphic to Cn or K2,n.

• (Oporowski, Oxley, and Thomas [149])

For every n, there exists N such that every 3-connected graph on at least N vertices contains a

minor isomorphic to the wheel graph Wn on n vertices or K3,n.

• (Ding, Chen [78])

For every integer n, there exists N such that every connected and co-connected graph on at least

N vertices contains an induced subgraph isomorphic to Pn, Ks
1,n (the graph obtained from K1,n

by subdividing one edge once), K2,nze, or K2,n{ezfzg where tf, gu is a matching in K2,n{e, or one

of their complements. A graph is co-connected if its complement graph is connected.

• (Chun, Ding, Oporowski, and Vertigan [53])

For every integer n ě 5, there exists N such that every internally 4-connected graph on at least

N vertices contains a parallel minor isomorphic to Kn, K 14,n (K4,n with a complete graph on the

vertices of degree n), TFn (the n-partition triple fan with a complete graph on the vertices of

degree n), Dn (the n-spoke double wheel), D1n (the n-spoke double wheel with axle), Mn (the

p2n` 1q-rung Mobius zigzag ladder), or Zn (the p2nq-rung zigzag ladder).
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These theorems commonly state that every sufficiently large graph having certain connectivity con-

tains at least one graph in the list of unavoidable graphs by certain graph containment relation. Moreover

in each theorem, the list of unavoidable graphs is optimal in the sense that each unavoidable graph in the

list has the required connectivity, can be made arbitrary large, and does not contain other unavoidable

graphs in the list.

Theorem 8.1 is a first non-trivial variant of Ramsey’s theorem on the vertex-minor relation. The

proof of Theorem 8.1 consists of the following steps.

1. We first prove that for each n, there exists N such that every prime graph having an induced path

of length N contains a vertex-minor isomorphic to Cn. (In fact, we prove that N “ r6.75n7s.)

2. Secondly, we prove that for each n, there exists N such that every prime graph on at least N

vertices contains a vertex-minor isomorphic to Pn or Kn aKn.

To prove (1), we actually prove first that every sufficiently large generalized ladder, a certain type of

outerplanar graphs, contains Cn as a vertex-minor. This will be shown in Section 8.3. Then, we use

the technique of blocking sequences developed by Geelen [102] to construct a large generalized ladder

in a prime graph having a sufficiently long induced path, shown in Section 8.4. Blocking sequences will

be discussed and developed in Section 2.1. The second part (2) is discussed in Section 8.5, where we

iteratively use Ramsey’s theorem to find a bigger configuration called a broom inside a graph.

We write Rpn1, n2, . . . , nkq to denote the minimum number N such that in every k coloring of the

edges of KN , there exist i and a clique of size ni whose edges are all colored with the i-th color. Such a

number exists by Ramsey’s theorem [161].

We introduce three classes of graphs which are frequently used in this chapter.

Constructions of graphs

For two graphs G and H on the same set of n vertices, we would like to introduce operations to

construct graphs on 2n vertices by making the disjoint union of them and adding some edges between

two graphs. Roughly speaking, G a H will add a perfect matching, G b H will add the complement of

a perfect matching, and G m H will add a bipartite chain graph. Formally, for two graphs G and H on

tv1, v2, . . . , vnu, let G a H, G b H, G m H be graphs on tv1
1 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

2
nu such that for all

i, j P t1, 2, . . . , nu,

1. v1
i v

1
j P EpGaHq if and only if vivj P EpGq,

2. v2
i v

2
j P EpGaHq if and only if vivj P EpHq,

3. v1
i v

2
j P EpGaHq if and only if i “ j,

4. v1
i v

1
j P EpGbHq if and only if vivj P EpGq,

5. v2
i v

2
j P EpGbHq if and only if vivj P EpHq,

6. v1
i v

2
j P EpGbHq if and only if i ‰ j,

7. v1
i v

1
j P EpGmHq if and only if vivj P EpGq,

8. v2
i v

2
j P EpGmHq if and only if vivj P EpHq,

9. v1
i v

2
j P EpGmHq if and only if i ě j.
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Figure 8.1: K5 aK5, K5 bK5, and K5 mK5.

See Figure 8.1 for K5 aK5, K5 bK5, and K5 mK5.

We will use the following lemmas.

Lemma 8.2. Let n ě 3 be an integer.

1. Kn bKn has a vertex-minor isomorphic to Kn´1 aKn´1.

2. Kn bKn has a vertex-minor isomorphic to Kn´2 aKn´2.

Proof. (1) Let V pKnq “ V pKnq “ tvi : 1 ď i ď nu. The graph pKn b Knq ˚ v
1
1 ˚ v

2
1zv

1
1zv

2
1 is isomorphic

to Kn´1 aKn´1.

(2) Let V pKnq “ tv1, v2, . . . , vnu. The graph pKn bKnq ˚ v
1
1zv

1
1zv

2
1 is isomorphic to Kn´1 aKn´1.

By (1), Kn bKn has a vertex-minor isomorphic to Kn´2 aKn´2.

Lemma 8.3. Let n be a positive integer.

1. The graph Kn mKn is pivot-equivalent to P2n.

2. The graph Kn mKn is locally equivalent to P2n.

Proof. (1) Let P “ p1p2 . . . p2n. We can check that Kn mKn can be obtained from P by pivoting pipi`1

for all i “ 1, 3, . . . , 2n´ 1.

(2) Let V pKnq “ V pKnq “ tv1, v2, . . . , vnu. Since pKn m Knq ˚ v
2
1 is isomorphic to Kn m Kn, the

result follows from (1).

Before going to prove Theorem 8.1, we first observe similar theorems of this type on vertex-minors

with respect to less restrictive connectivity requirements in Section 8.1.

8.1 Ramsey type theorems on vertex-minors with less connec-

tivity

We present three simple statements on unavoidable vertex-minors.

Theorem 8.4. 1. For every n, there exists N such that every graph on at least N vertices has a

vertex-minor isomorphic to Kn.

2. For every n, there exists N such that every connected graph having at least N vertices has a vertex-

minor isomorphic to Kn.

3. For every n, there exists N such that every graph having at least N edges has a vertex-minor

isomorphic to Kn or Kn aKn.
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Proof. (1) If a graph has no Kn as a vertex-minor, then it has no vertex-minor isomorphic to Kn`1. So

we can take N “ Rpn, n` 1q.

(2) Let us assume that G has no vertex-minor isomorphic to Kn. Then the maximum degree of

G is less than ∆ “ Rpn ´ 1, n ´ 1q by Ramsey theorem. If |V pGq| is big enough, then it contains an

induced path P of length 2n´ 3 because the maximum degree is bounded. By Lemma 8.3, P2n´2 has a

vertex-minor isomorphic to K1,n´1, that is locally equivalent to Kn.

(3) Let G be a graph having no vertex-minor isomorphic to Kn or Kn aKn. Each component of G

has bounded number of vertices, say M , by (2). Since Kn a Kn is not a vertex-minor of G, G has less

than n non-trivial components. (A component is trivial if it has no edges.) So G has at most
`

M
2

˘

pn´ 1q

edges.

These theorems together with Theorem 8.1 can be restated with the concept of vertex-minor ideals.

A set I of graphs is called a vertex-minor ideal if for all G P I, all graphs isomorphic to a vertex-minor

of G are also contained in I. This formulation allows us to appreciate why these theorems are optimal.

Corollary 8.5. Let I be a vertex-minor ideal.

(1) (Theorem 8.4) Graphs in I have bounded number of vertices if and only if tKn : n ě 3u Ę I.

(2) (Theorem 8.4) Connected graphs in I have bounded number of vertices if and only if tKn : n ě 3u Ę I.

(3) (Theorem 8.4) Graphs in I have bounded number of edges if and only if tKn : n ě 3u Ę I and

tKn aKn : n ě 1u Ę I.

(4) (Theorem 8.1) Prime graphs in I have bounded number of vertices if and only if tCn : n ě 3u Ę I

and tKn aKn : n ě 3u Ę I.

8.2 Short blocking sequences

We will use blocking sequences to investigate vertex-minors. We first recall the definition of blocking

sequences, introduced by Geelen [102].

A sequence v1, v2, . . . , vm (m ě 1) is called a blocking sequence of a pair pA,Bq of disjoint subsets

A, B of V pGq if

(a) ρ˚GpA,B Y tv1uq ą ρ˚GpA,Bq,

(b) ρ˚GpAY tviu, B Y tvi`1uq ą ρ˚GpA,Bq for all i “ 1, 2, . . . ,m´ 1,

(c) ρ˚GpAY tvmu, Bq ą ρ˚GpA,Bq,

(d) no proper subsequence of v1, . . . , vm satisfies (a), (b), and (c).

The following proposition allows us to change the graph to reduce the length of a blocking sequence.

This was pointed out by Geelen [private communication with Oum, 2005]. A special case of the following

proposition is presented in [153].

Proposition 8.6. Let G be a graph and A, B be disjoint subsets of V pGq. Let v1, v2, . . . , vm be a blocking

sequence for pA,Bq in G. Let 1 ď i ď m.
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• If m ą 1, then ρ˚G˚vipA,Bq “ ρ˚GpA,Bq and a sequence

v1, v2, . . . , vi´1, vi`1, . . . , vm

obtained by removing vi from the blocking sequence is a blocking sequence for pA,Bq in G ˚ vi.

• If m “ 1, then ρ˚G˚vipA,Bq “ ρ˚GpA,Bq ` 1.

Proof. Let k “ ρ˚GpA,Bq and H “ G ˚ vi.

If m “ 1, then by Lemma 2.4,

ρ˚HpA,Bq ` ρ
˚
GpA,Bq ě ρ˚GpAY tv1u, Bq ` ρ

˚
GpA,B Y tv1uq ´ 1 ě 2k ` 1

and therefore ρ˚HpA,Bq ě k ` 1. Since ρ˚HpA,Bq ď ρ˚HpA,B Y tv1uq “ ρ˚GpA,B Y tv1uq ď k ` 1, we

deduce that ρ˚HpA,Bq “ k ` 1 if m “ 1.

Now we assume that m ‰ 1. First it is easy to observe that ρ˚HpX,Y q ď ρ˚GpX,Y Y tviuq and

ρ˚HpX,Y q ď ρ˚GpX Y tviu, Y q whenever X, Y are disjoint subsets of V pGqztviu, because the local com-

plementation does not change the cut-rank function of GrX Y Y Y tvius. This with Lemma 2.5 implies

that

• ρ˚HpA,Bq ď k,

• ρ˚HpAY tvju, Bq ď k for all j P t1, 2, . . . ,muzti´ 1,mu,

• ρ˚HpAY tvi´1u, Bq ď k if i ‰ 1,m.

• ρ˚HpA,B Y tvjuq ď k for all j P t1, 2, . . . ,muzt1, i` 1u.

• ρ˚HpA,B Y tvi`1uq ď k if i ‰ 1,m.

• ρ˚HpAY tvju, B Y tv`uq ď k for all j, ` P t1, 2, . . . ,muztiu with `´ j ą 1, unless j ` 1 “ i “ `´ 1.

Let B1 “ B Y tvi`1u if i ă m and B1 “ B otherwise. Then ρ˚GpAY tviu, B
1q “ k ` 1 and ρ˚GpA,B

1q “ k.

(1) We claim that if i ą 1, then ρ˚HpA,B Y tv1uq ą k. By Lemma 2.4,

ρ˚HpA,B
1 Y tv1uq ` ρ

˚
GpA,B

1q ě ρ˚GpA,B
1 Y tv1, viuq ` ρ

˚
GpAY tviu, B

1q ´ 1,

and therefore we deduce that ρ˚HpA,B
1 Y tv1uq ě ρ˚GpA,B

1 Y tv1, viuq ą k. By Lemma 2.2, ρ˚HpA,B
1 Y

tviuq ` ρ˚HpA,B Y tv1uq ě ρ˚HpA,B
1 Y tv1, viuq ` ρ˚HpA,Bq ą 2k. We deduce that ρ˚HpA,B Y tv1uq ą k

because ρ˚HpA,B
1 Y tviuq “ ρ˚GpA,B

1 Y tviuq “ k by Lemma 2.5.

(2) By (1) and symmetry between A and B, if i ă m, then ρ˚HpAY tvmu, Bq ą k.

Then we deduce that ρ˚HpA,Bq ě k and therefore ρ˚HpA,Bq “ k.

(3) We claim that if j ă i´ 1, then ρ˚HpAY tvju, B Y tvj`1uq ą k. By Lemma 2.4,

ρ˚HpAY tvju, B
1 Y tvj`1uq ` ρ

˚
GpAY tvju, B

1q

ěρ˚GpAY tvju, B
1 Y tvj`1, viuq ` ρ

˚
GpAY tvj , viu, B

1q ´ 1 ą 2k,

and therefore ρ˚HpAYtvju, B
1Ytvj`1uq ą k. By Lemma 2.2, ρ˚HpAYtvju, BYtvj`1uq`ρ

˚
HpAYtvju, B

1q ě

ρ˚HpA Y tvju, B
1 Y tvj`1uq ` ρ˚HpA Y tvju, Bq ą 2k. Note that ρ˚HpA Y tvju, Bq ě ρ˚HpA,Bq “ k.

Since ρ˚HpA Y tvju, B
1q ď ρ˚HpA Y tvju, B

1 Y tviuq “ ρ˚GpA Y tvju, B
1 Y tviuq ď k, we deduce that

ρ˚HpAY tvju, B Y tvj`1uq ą k.

(4) By symmetry, we deduce from (3) that if i ă j ă m, then ρ˚HpAY tvju, B Y tvj`1uq ą k.
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(5) We claim that ρ˚HpAY tvi´1u, B
1q ą k. By Lemma 2.4,

ρ˚HpAY tvi´1u, B
1q ` ρ˚GpAY tvi´1u, B

1q

ě ρ˚GpAY tvi´1u, B
1 Y tviuq ` ρ

˚
GpAY tvi´1, viu, B

1q ´ 1 ą 2k.

Since ρ˚GpAY tvi´1u, B
1q “ k, we have ρ˚HpAY tvi´1u, B

1q ą k.

This completes the proof of the lemma that v1, v2, . . . , vi´1, vi`1, . . . , vm is a blocking sequence of

pA,Bq in G ˚ vi.

Corollary 8.7. Let G be a graph and A, B be disjoint subsets of V pGq. Let v1, v2, . . . , vm be a blocking

sequence for pA,Bq in G. Let 1 ď i ď m. Suppose that vi has a neighbor w in AYB.

• If m ą 1, then ρ˚G^viwpA,Bq “ ρ˚GpA,Bq and the sequence v1, v2, . . . , vi´1, vi`1, . . . , vm obtained

by removing vi from the blocking sequence is a blocking sequence for pA,Bq in G^ viw.

• If m “ 1, then ρ˚G^viwpA,Bq “ ρ˚GpA,Bq ` 1.

Proof. It follows easily from the facts that G^ viw “ G ˚w ˚ vi ˚w and ρ˚GpX,Y q “ ρ˚G˚wpX,Y q for all

graphs G with w P X Y Y .

Corollary 8.8. Let G be a graph and A, B be disjoint subsets of V pGq. Let v1, v2, . . . , vm be a blocking

sequence for pA,Bq in G. Let 1 ď i ď m. Suppose that vi and vi1 are adjacent and i ă i1.

• If m ą 2, then ρ˚G^vivi1 pA,Bq “ ρ˚GpA,Bq and the sequence v1, v2, . . . , vi´1, vi`1, . . . , vi1´1, vi1`1, . . . , vm

obtained by removing vi and vi1 from the blocking sequence is a blocking sequence for pA,Bq in

G^ vivi1 .

• If m “ 2, then ρ˚G^vivi1 pA,Bq “ ρ˚GpA,Bq ` 1.

Proof. If vi has a neighbor w in AYB, then G^ vivi1 “ G^ viw ^wvi1 and this corollary follows from

Corollary 8.7. So we may assume that vi has no neighbors in AY B and similarly vi1 has no neighbors

in AYB. Thus i, i1 R t1,mu and m ě 4.

Since vi and vi1 are adjacent, we may assume that i1 “ i`1. Let H “ G^vivi`1 and k “ ρ˚GpA,Bq.

Since vi and vi`1 have no neighbors in AYB, ρ˚HpA,Bq “ k.

Then v1, v2, . . . , vi is a blocking sequence for pA,B Y tvi`1uq in G by Lemma 2.5. Similarly

vi`1, vi`2, . . . , vm is a blocking sequence for pAY tviu, Bq in G.

By Corollary 8.7, v1, v2, . . . , vi´1 is a blocking sequence for pA,B Y tvi`1uq in H. Then ρ˚HpA,B Y

tv1uq “ ρ˚HpA,B Y tv1, vi`1uq ą k, because vi`1 has no neighbors of H in A.

For 1 ď j ă i ´ 1, ρ˚HpA Y tvju, B Y tvj`1uq ` ρ˚HpA Y tvju, B Y tvi`1uq ě ρ˚HpA Y tvju, B Y

tvj`1, vi`1uq ` ρ
˚
HpAY tvju, Bq ą 2k and therefore

ρ˚HpAY tvju, B Y tvj`1uq ą k

because ρ˚HpAY tvju, Bq ď ρ˚HpAY tvju, B Y tvi`1uq ď k.

Similarly vi`2, vi`3, . . . , vm is a blocking sequence for pAY tviu, Bq in H. By symmetry, we deduce

that ρ˚HpAY tvmu, Bq ą k and ρ˚HpAY tvju, B Y tvj`1uq ą k for all i` 1 ă j ă m.

We now claim that ρ˚HpAY tvi´1u, B Y tvi`2uq ą k. By Lemma 2.2,

ρ˚HpAY tvi´1u, B Y tvi`2uq ` ρ
˚
HpAY tvi`1u, B Y tvi`2uq

ě ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq ` ρ
˚
HpA,B Y tvi`2uq.
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Since vi`1 has no neighbors in AYB, we have ρ˚HpAYtvi`1u, BYtvi`2uq “ ρ˚GpAYtviu, BYtvi`2uq “ k

and ρ˚HpA,B Y tvi`2uq “ ρ˚GpA,B Y tvi`2uq “ k. Therefore

ρ˚HpAY tvi´1u, B Y tvi`2uq ě ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq.

By Lemma 2.4,

ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq ` ρ
˚
GpAY tvi´1u, B Y tvi`1, vi`2uq

ě ρ˚GpAY tvi´1u, B Y tvi, vi`1, vi`2uq ` ρ
˚
GpAY tvi´1, vi, vi`1u, B Y tvi`2uq ´ 1.

By Lemma 2.5, ρ˚GpAYtvi´1, vi, vi`1u, BYtvi`2uq ą k and ρ˚GpAYtvi´1u, BYtvi`1, vi`2uq “ k. Therefore

ρ˚HpAYtvi´1u, BYtvi`2uq ě ρ˚HpAYtvi´1, vi`1u, BYtvi`2uq ě ρ˚GpAYtvi´1u, BYtvi, vi`1, vi`2uq ą k.

This proves the claim.

So far we have shown that the sequence v1, v2, . . . , vi´1, vi`2, . . . , vm satisfies (a), (b), (c) of the

definition of blocking sequences. It remains to show (d). For j P t2, 3, . . . ,muzti, i`1u, ρ˚HpA,BYtvjuq “

ρ˚GpA,B Y tvjuq “ k because vi and vi`1 have no neighbors in A Y B. Similarly ρ˚HpA Y tvju, Bq “

ρ˚GpA Y tvju, Bq “ k for j P t1, 2, . . . ,m ´ 1uzti, i ` 1u. For j, ` P t1, 2, . . . ,muzti, i ` 1u with ` ´ j ą

1, either ρ˚GpA Y tvju, B Y tv`, vi, vi`1uq “ k or ρ˚GpA Y tvj , vi, vi`1u, B Y tv`uq “ k and therefore

ρ˚HpAY tvju, B Y tv`uq ď k, unless j “ i´ 1 and ` “ i` 2. This completes the proof.

We will now prove that without loss of generality, a blocking sequence for pA,Bq is short by applying

local complementation while keeping the subgraph induced on AYB.

Proposition 8.9. Let G be a prime graph and let A, B be disjoint subsets of V pGq with |A|, |B| ě 2.

Suppose that there exist two nonempty sets A0 Ď A and B0 Ď B such that the set of all edges between A

and B is txy : x P A0, y P B0u. Let

`0 “

$

’

’

’

&

’

’

’

%

3 if |A0| “ |B0| “ 1,

4 if |A0| “ 1 or |B0| “ 1,

6 otherwise.

Then there exists a graph G1 locally equivalent to G satisfying the following.

1. GrAYBs “ G1rAYBs.

2. G1 has a blocking sequence b1, b2, . . . , b` of length at most `0 for pA,Bq.

Proof. Since G is prime, G has a blocking sequence for pA,Bq by Proposition 2.6. Let G be the set of

all graphs G1 locally equivalent to G such that G1rAY Bs “ GrAY Bs. We assume that G is chosen in

G so that the length ` of a blocking sequence b1, b2, . . . , b` for pA,Bq is minimized.

For 1 ď i ă `, NGpbiq XB “ B0 or H because ρGpAYtbiu, Bq “ 1. For 1 ă i ď `, NGpbiq XA “ A0

or H because ρGpA,B Y tbiuq “ 1.

Suppose that NGpbiqXpAYBq “ NGpbjqXpAYBq for some 1 ă i ă j ă `. If bi and bj are adjacent,

then G1 “ G^ bibj P G. If bi and bj are non-adjacent, then G1 “ G ˚ bi ˚ bj P G. In both cases, we found

a graph in G having a shorter blocking sequence by Proposition 8.6 or Corollary 8.8, contradicting our

assumption.

If |B0| “ 1, then for all 1 ă i ă `, NGpbiqXA “ A0 because otherwise G˚bi P G has a shorter blocking

sequence by Proposition 8.6, contradicting our assumption. Similarly if |A0| “ 1, then NGpbiq XB “ B0

for all 1 ă i ă `.

By the pigeonhole principle, we deduce that ` ď `0.
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p1 p2 p3 p4 p5 p6 p7 p8 p9

q1 q2 q3 q4 q5 q6 q7 q8

Figure 8.2: An example of a generalized ladder.

8.3 Obtaining a long cycle from a huge generalized ladder

A generalized ladder is a graph G with two vertex-disjoint paths P “ p1p2 . . . pa, Q “ q1q2 . . . qb

(a, b ě 1) with additional edges, called chords, each joining a vertex of P with a vertex of Q such that

V pP q Y V pQq “ V pGq, p1 is adjacent to q1, pa is adjacent to qb, and no two chords cross. Two chords

piqj and pi1qj1 (i ă i1) cross if and only if j ą j1. We remark that a generalized ladder is an outerplanar

graph whose weak dual is a path. We call p1q1 the first chord and paqb the last chord of G. Since no

two chords cross, p1 or q1 has degree at most 2. Similarly, pa or qb has degree at most 2. See Figure 8.2

for an example.

We will prove the following proposition.

Proposition 8.10. Let n ě 2. Every generalized ladder with at least 4608n5 vertices has a cycle of

length 4n` 3 as a vertex-minor.

8.3.1 Lemmas on a fan

Let Fn be a graph on n vertices with a specified vertex c, called the center, such that Fnzc is a path

on n´ 1 vertices and c is adjacent to all other vertices. We call Fn a fan on n vertices. Note that F5 is

the gem graph.

Lemma 8.11. A fan F3n has a vertex-minor isomorphic to a cycle of length 2n` 1.

Proof. Let c be the center of F3n. Let v1, v2, . . . , v3n´1 be the non-center vertices in F3n forming a path.

Let G “ F3n ˚ v3 ˚ v6 ˚ v9 ¨ ¨ ¨ ˚ v3n´3. Clearly c is adjacent to vi in G if and only if i P t1, 3n´ 1u or i ” 0

pmod 3q and furthermore v3i´1 is adjacent to v3i`1 in G for all i. Let H “ Gztv3, v6, . . . , v3n´3u. Then

H is a cycle of length 3n´ pn´ 1q.

Lemma 8.12. Let n ě 2. Let G be a graph with a vertex c such that Gzc is isomorphic to an induced

path P whose both ends are adjacent to c. If |V pGq| ě 6pn´1q2´3, then G has a vertex-minor isomorphic

to a cycle of length 2n` 1.

Proof. We may assume that n ě 3. Let P “ v1v2 . . . vk with k ě 6. We may assume that v2 is adjacent

to c because otherwise we replace G with G ˚ v1. Similarly we may assume that vk´1 is adjacent to c.

We may also assume v3 is adjacent to c because otherwise we replace G with G^v1v2. Similarly we may

assume that vk´2 is adjacent to c.

If c is adjacent to at least 3n ´ 1 vertices on P , then G has a vertex-minor isomorphic to F3n. So

by Lemma 8.11, G has a vertex-minor isomorphic to a cycle of length 2n` 1. Thus we may assume that

the number of neighbors of c is at most 3n ´ 2. The neighbors of c gives a partition of P into at most

3n´ 3 subpaths. We already have 4 subpaths at both ends having length 1. Since

|EpP q| ě 6pn´ 1q2 ´ 3´ 2 ą p2n´ 2qpp3n´ 3q ´ 4q ` 4,

– 90 –



there exists a subpath P 1 of P having length at least 2n´1 such that no internal vertex of P 1 is adjacent

to c and the ends of P 1 are adjacent to c. This together with c gives an induced cycle of length at least

2n` 1.

8.3.2 Generalized ladders of maximum degree at most 3

Lemma 8.13. Let G be a generalized ladder of maximum degree 3. If G has at least 6n vertices of degree

3, then G has a cycle of length 4n` 3 as a vertex-minor.

Proof. We proceed by induction on |V pGq|. Let P , Q be two defining paths of G. We may assume that

all internal vertices of P or Q has degree 3, because if P or Q has an internal vertex v of degree 2,

then we apply the induction hypothesis to G ˚ vzv. Since p1 or q1 has degree 2, we may assume that

p1 has degree 2 by symmetry. We may assume that q1 has degree 3 because otherwise we can apply

the induction hypothesis to G ˚ q1zq1. Consequently q1 is adjacent to p2 and thus for each internal

vertex qi of Q, qi is adjacent to pi`1 and each internal vertex pi`1 of P is adjacent to qi. Thus either

a “ b and pa has degree 3 or a “ b ` 1 and pa has degree 2. But if a “ b ` 1 and pa has degree

2, then we can apply the induction hypothesis to G ˚ pazpa. Thus we may assume that a “ b and pa

has degree 3. Since G has at least 6n vertices of degree 3, a ą 3n and b ą 3n. If a “ b ą 3n ` 1,

then we can apply the induction hypothesis to Gzqb. Thus we may assume that a “ b “ 3n ` 1 and

pa has degree 3 and qb has degree 2. Note that pi is adjacent to qi´1 for all i “ 2, . . . , 3n ` 1. Then

G ˚ p1 ^ p4q3 ^ p7q6 ¨ ¨ ¨ ^ p3n`1q3nztp4, p7, . . . , p3n´2, q3, q6, . . . , q3n´3, q3n`1u is isomorphic to a cycle of

length 4n` 3.

Lemma 8.14. Let G be a generalized ladder of maximum degree 3. If |V pGq| ě 12n2, then G has a

cycle of length 4n` 3 as a vertex-minor.

Proof. Let P , Q be the two defining paths of G. We may assume a ą 1 and b ą 1 because otherwise G

has an induced cycle of length at least 6n2 ` 1 ě 4n` 3.

Let pxqy be the unique chord other than p1q1 with minimum x` y. We claim that we may assume

px ´ 1q ` py ´ 1q ď 2. Suppose not. Then pxqy, p1q1 and subpaths of P and Q form a cycle of length

x` y ě 5 and p1, p2, . . . , px´1, q1, q2, . . . , qy´1 have degree 2. By moving the first few vertices of P to Q

or Q to P , we may assume that x ě 3 and y ě 2. Then we may replace G with G ˚ p1. This proves the

claim.

Thus the induced cycle containing p1q1 has at most 2 edges from EpP q Y EpQq. Similarly we may

assume that the induced cycle containing paqb has at most 2 edges from EpP q Y EpQq.

If G has at least 6n vertices of degree 3, then by Lemma 8.13, we obtain a desired vertex-minor. So

we may assume that G has at most 6n´ 1 vertices of degree 3. Thus G has at most 3n´ 1 chords other

than p1q1 and paqb. These chords give at most 3n induced cycles of G where each edge in EpP q YEpQq

appears in exactly one of them. If every such induced cycle has length at most 4n` 2, then

|EpP q Y EpQq| ď p3n´ 2qp4nq ` 4 “ 12n2 ´ 8n` 4 ă 12n2 ´ 2.

Since |V pGq| ě 12n2, we have |EpP q Y EpQq| ě 12n2 ´ 2. This leads to a contradiction.

8.3.3 Generalized ladders of maximum degree 4

Lemma 8.15. Let G be a generalized ladder of maximum degree at most 4. Let α be the number

of vertices of G having degree 3 or 4. Then G has a vertex-minor H that is a generalized ladder of
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maximum degree at most 3 such that |V pHq| ě α{4.

Proof. Let P “ p1p2 . . . pa, Q “ q1q2 . . . qb be the paths defining a generalized ladder G. Let Xi,j “

tp1, p2, . . . , pi, q1, q2, . . . , qju. We may assume α ą 8.

If a “ 1, then p1 has at least α ´ 1 neighbors but the maximum degree is 4 and therefore α ď 5,

contradicting our assumption. Thus a ą 1. Similarly b ą 1.

We may also assume that no internal vertex of P or Q has degree 2, because otherwise we can apply

local complementation and remove it.

Let αi,jpGq be the number of vertices in V pGqzXi,j having degree 3 or 4. We will prove the following.

Claim 1. Suppose that there exist 1 ď i ă a and 1 ď j ă b such that δGpXi,jq has exactly two edges and

every vertex in Xi,j has degree 2 or 3 in G. Then G has a vertex-minor H that is a generalized ladder

of maximum degree at most 3 such that |V pHq| ě |Xi,j |` αi,jpGq{4.

Before proving Claim 1, let us see why this claim implies our lemma. First we would like to see why

there exist i and j such that δGpXi,jq has exactly two edges. If p1 has degree bigger than 2, then p1 is

adjacent to q2 and so G ˚ q1 “ Gzp1q2. Thus we may assume that both p1 and q1 have degree 2. Keep

in mind that the number of vertices of degree 3 or 4 in X1,1 may be decreased by 1 by replacing G with

G ˚ q1 and so α1,1pGq ě α´ 2.

By applying Claim 1 with i “ j “ 1, we obtain a generalized ladder H of maximum degree at most

3 as a vertex-minor such that |V pHq| ě 2 ` pα ´ 2q{4 ě α{4. This completes the proof of the lemma,

assuming Claim 1.

We now prove Claim 1 by induction on |V pGq| ´ |Xi,jpGq|. We may assume that every vertex in

V pGqzpXi,j Y tpa, qbuq has degree 3 or 4 because otherwise we can apply local complementation and

delete it while keeping αi,j . Then pi`1 is obviously adjacent to qj`1.

We may assume that i ă a ´ 1 because otherwise G is a generalized ladder of maximum degree 3

if pa has degree 3 and Gzqb is a generalized ladder of maximum degree 3 otherwise. Similarly we may

assume j ă b ´ 1. Either pi`1 or qj`1 has degree 4, because otherwise δGpXi`1,j`1q has exactly two

edges. By symmetry, we may assume that pi`1 has degree 3 and qj`1 has degree 4 and therefore qj`1 is

adjacent to pi`2.

If αi,jpGq ď 12, then H “ GrXi`2,j`1s is a generalized ladder of maximum degree at most 3. Thus

we may assume that αi,jpGq ą 12. If b´ j ď 4, then a´ i ď 8 because each vertex in qj`1, qj`2, . . . , qb

has degree at most 4 and each vertex in pi`1, pi`2, . . . , pa´1 has degree at least 3. This contradicts our

assumption that αi,jpGq ą 12. So we may assume that b´ j ě 5 and similarly a´ i ě 5.

Let R be the component of GzpEpP q Y EpQqq containing pi`1. Because of the degree condition, R

is a path. We now consider six cases, see Figure 8.3.

1. If R has length 2 and pi`3 has degree 3 in G, then G1 “ G ˚ pi`2zpi`2 “ pGzpi`2 ` pi`1pi`3 `

qj`1pi`3qzpi`1qj`1 is a generalized ladder of maximum degree at most 4. Every vertex in G1 not

in Xi,j has degree at most 4. Furthermore pi`1 has degree 2 in G1. Thus, δG1pXi`1,jq has exactly

2 edges. Then |Xi`1,j |` αi`1,jpG
1q{4 ě p|Xi,j |` 1q ` pαi,jpGq ´ 2q{4 ě |Xi,j |` αi,jpGq{4. By the

induction hypothesis, we find a desired vertex-minor H in G1.

2. If R has length 2 and pi`3 has degree 4 in G, then the vertex qj`2 has degree 3. Then G1 “

G˚pi`2 ˚qj`2zpi`2zqj`2 is a generalized ladder of maximum degree at most 4. Then δG1pXi`1,j`1q

has exactly two edges and αi`1,j`1pG
1q ě αi,jpGq ´ 6. Again, |Xi`1,j`1| ` αi`1,j`1pG

1q{4 ě

|Xi,j |` 2` pαi,jpGq ´ 6q{4 ě |Xi,j |` αi,jpGq{4 and therefore we are done.
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Figure 8.3: Cases in the proof of Lemma 8.15.
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3. If R has length 3 and qj`3 has degree 3 in G, then G1 “ G ˚ qj`2zqj`2 is a generalized ladder of

maximum degree at most 4. Then δG1pXi`1,j`1q has exactly two edges and αi`1,j`1pG
1q ě αi,jpGq´

3. We deduce that |Xi`1,j`1|` αi`1,j`1pG
1q{4 ě |Xi,j |` 2` pαi,jpGq ´ 3q{4 ě |Xi,j |` αi,jpGq{4.

4. If R has length 3 and qj`3 has degree 4 in G, then pi`3 has degree 3 and G1 “ G ˚ qj`2 ˚

pi`3zqj`2zpi`3 is a generalized ladder of maximum degree at most 4. Then δG1pXi`2,j`1q has

exactly two edges and αi`2,j`1pG
1q ě αi,jpGq ´ 7. We deduce that |Xi`2,j`1|` αi`2,j`1pG

1q{4 ě

|Xi,j | ` 3 ` pαi,jpGq ´ 7q{4 ě |Xi,j | ` αi,jpGq{4. By the induction hypothesis, G1 has a desired

vertex-minor and so does G.

5. If R has length 4, then G1 “ G^pi`2qj`2 ˚pi`3zpi`2zpi`3zqj`2 is a generalized ladder of maximum

degree at most 4. Then δG1pXi`1,j`1q has exactly two edges and αi`1,j`1pG
1q ě αi,jpGq ´ 7 and

therefore |Xi`1,j`1| ` αi`1,j`1pG
1q{4 ě |Xi,j | ` 2 ` pαi,jpGq ´ 7q{4 ě |Xi,j | ` αi,jpGq{4. Our

induction hypothesis implies that G1 has a desired vertex-minor.

6. If R has length at least 5, then G1 “ G ^ pi`2qj`2zpi`2zqj`2 is a generalized ladder of maximum

degree at most 4. Then δG1pXi,j`1q has exactly two edges and αi,j`1pG
1q ě αi,jpGq ´ 4 and

therefore |Xi,j`1|`αi,j`1pG
1q{4 ě |Xi,j |` 1` pαi,jpGq ´ 4q{4 “ |Xi,j |`αi,jpGq{4. Our induction

hypothesis implies that G1 has a desired vertex-minor.

In all cases, we find the desired vertex-minor H. This completes the proof of Claim 1.

Lemma 8.16. Let G be a generalized ladder of maximum degree at most 4. If |V pGq| ě 192n3, then G

has a cycle of length 4n` 3 as a vertex-minor.

Proof. Let P , Q be the two defining paths of G. We may assume a ą 1 and b ą 1 because p192n3 ´

2q{3` 2 ě 4n` 3.

Let pxqy be the unique chord other than p1q1 with minimum x` y. We claim that we may assume

px ´ 1q ` py ´ 1q ď 2. Suppose not. Then pxqy, p1q1 and subpaths of P and Q form a cycle of length

x` y ě 5 and p1, p2, . . . , px´1, q1, q2, . . . , qy´1 have degree 2. By moving the first few vertices of P to Q

or Q to P , we may assume that x ě 3 and y ě 2. Then we may replace G with G ˚ p1. This proves the

claim.

Thus the induced cycle containing p1q1 has at most 2 edges from EpP q Y EpQq. Similarly we may

assume that the induced cycle containing paqb has at most 2 edges from EpP q Y EpQq.

If G has at least 48n2 vertices of degree 3 or 4, then by Lemma 8.15, G has a generalized ladder H

as a vertex-minor such that |V pHq| ě 12n2 and H has maximum degree at most 3. By Lemma 8.14, H

has a cycle of length 4n` 3 as a vertex-minor.

Thus we may assume that G has less than 48n2 vertices of degree 3 or 4. We may assume that G

has at least one vertex of degree at least 3. The cycle formed by edges in EpP q YEpQq Y tp1q1, paqbu is

partitioned into less than 48n2 paths whose internal vertices have degree 2 in G. One of the paths has

length greater than 192n3{p48n2q “ 4n. Then there is an induced cycle C of G containing this path.

Since C does not contain p1q1 or paqb, C must contain two edges not in EpP q Y EpQq Y tp1q1, paqbu.

Thus the length of C is at least 4n` 3.

8.3.4 Treating all generalized ladders

Lemma 8.17. Let G be a generalized ladder. If G has n vertices of degree at least 4, then G has a

vertex-minor H that is a generalized ladder such that the maximum degree of H is at most 4 and H has
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at least n vertices.

Proof. Let P , Q be the two defining paths of G. Let S be the set of vertices having degree at least 4.

For each vertex v in S, let Pv be the minimal subpath of Q containing all neighbors of v in Q if v P V pP q

and let Pv be the minimal subpath of P containing all neighbors of v in P if v P V pQq.

Then each internal vertex of Pv has degree 2 or 3 and has degree 3 if and only if it is adjacent to v.

We apply local complementation to each internal vertex and delete all internal vertices of Pv. It is easy

to see that the resulting graph H is a generalized ladder and moreover S Ď V pHq and every vertex in S

has degree at most 4 in H.

We are now ready to prove the main proposition of this section.

Proof of Proposition 8.10. Let G be such a graph. If G has at least 192n3 vertices of degree at least 4,

then by Lemma 8.17, G has a vertex-minor H having at least 192n3 vertices such that H is a generalized

ladder of maximum degree at most 4. By Lemma 8.16, H has a cycle of length 4n` 3 as a vertex-minor.

Thus we may assume that G has less than 192n3 vertices of degree at least 4. For a vertex v in

P having degree at least 5, let qi, qj be two neighbors of v in Q such that if qk is a neighbor of v in

Q, then i ď k ď j. By Lemma 8.12, if j ´ i ` 2 ě 24n2 ´ 3, then G contains a cycle of length 4n ` 3

as a vertex-minor. Thus we may assume j ´ i ď 24n2 ´ 6. The subpath of Q from qi to qj contains

j ´ i ´ 1 ď 24n2 ´ 7 internal vertices. Similarly the same bound holds for a vertex v in Q having

degree at least 5. As in the proof of Lemma 8.17, we apply local complementation and delete all internal

vertices of the minimal path spanning the neighbors of each vertex of degree at least 5 to obtain H.

Then each vertex of degree at least 5 in G will have degree at most 4 in H. Since we remove at most

p192n3 ´ 1qp24n2 ´ 7q vertices,

|V pHq| ě |V pGq|´ p192n3 ´ 1qp24n2 ´ 7q ą 192n3.

By Lemma 8.16, H has a cycle of length 4n` 3 as a vertex-minor.

8.4 Obtaining a long cycle from a huge induced path

In this section we aim to prove the following theorem.

Theorem 8.18. If a prime graph has an induced path of length r6.75n7s, then it has a cycle of length n

as a vertex-minor.

The main idea is to find a big generalized ladder, defined in Section 8.3 as a vertex-minor by using

blocking sequences in Section 8.2.

8.4.1 Patching a path

For 1 ď k ď n ´ 2, a k-patch of an induced path P “ v0v1 ¨ ¨ ¨ vn of a graph G is a sequence

Q “ w1, w2, . . . , wk of distinct vertices not on P such that for each i P t1, 2, . . . , ku,

1. vi`2 is the only vertex adjacent to wi among vi`1, vi`2, . . ., vn,

2. H ‰ NGpwiq X tv0, . . . , vi, w1, . . . , wi´1u ‰ tvi, wi´1u if i ą 1,

3. NGpw1q X tv0, v1u “ tv0u.
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v0 v1 v2 v3 v4 v5 v6 v7 v8

w1 w2 w3 w4

Figure 8.4: An example of a 4-patched path of length 8.

An induced path is called k-patched if it has a k-patch. An induced path of length n is called fully

patched if it is equipped with a pn´ 2q-patch. See Figure 8.4 for an example.

Our goal is to find a fully patched long induced path in a vertex-minor of a prime graph having a

very long induced path.

Lemma 8.19. Let P “ v0v1 . . . vm be an induced path from s “ v0 to t “ vm in a graph G and let H

be a connected induced subgraph of GzV pP q. Let v be a vertex in V pGqzpV pHq Y V pP qq. Suppose that

NGpV pHqq X V pP q “ tsu, |EpP q| ě 6pn´ 1q2 ´ 5, and v has neighbors in both V pP qztsu and V pHq.

If G has no cycle of length 2n ` 1 as a vertex-minor, then there exist a graph G1 locally equivalent

to G and an induced path P 1 from s to t of G1 disjoint from V pHq satisfying the following.

1. GrV pHq Y tsus “ G1rV pHq Y tsus,

2. NGpvq X V pHq “ NG1pvq X V pHq,

3. P 1 “ v0vivi`1vi`2 ¨ ¨ ¨ vm for some i,

4. vi is the only vertex on V pP 1q adjacent to v in G1,

5. |EpP 1q| ě |EpP q|´ 6pn´ 1q2 ` 6.

Proof. Since G has a cycle using H with s and P , G is not a forest and therefore n ě 2. Let v0 “

s, v1, v2, . . . , vm “ t be vertices in P . Let vk be the neighbor of v with maximum k. Then G has a fan

having at least k ` 3 vertices because H is connected and v has a neighbor in H. If k ě 6pn´ 1q2 ´ 6,

then G has a fan having at least 6pn´ 1q2 ´ 3 vertices and by Lemma 8.12, G contains a cycle of length

2n ` 1 as a vertex-minor. This contradicts to our assumption that G has no such vertex-minor. Thus,

k ď 6pn´ 1q2 ´ 7.

Let G0 “ G ˚ v1 ˚ v2 ˚ v3 ¨ ¨ ¨ ˚ vk´2 and let P0 “ v0vk´1vkvk`1 ¨ ¨ ¨ vm. (If k ď 2, then let G0 “ G and

P0 “ P .) Then clearly P0 is an induced path of G0 and vk P NG0
pvq X V pP0q Ď tv0, vk´1, vku.

If NG0
pvq X V pP0q “ tvku, then we are done by taking G1 “ G0 ˚ vk´1 and P 1 “ v0vkvk`1 ¨ ¨ ¨ vm.

If NG0pvq X V pP0q “ tvk´1, vku, then we can take G1 “ G0 ˚ vk ˚ vk´1 and P 1 “ v0vk`1vk`2 ¨ ¨ ¨ vm.

If NG0pvq X V pP0q “ tv0, vku, then we can take G1 “ G0 ˚ vk´1 ˚ vk and P 1 “ v0vk`1vk`2 ¨ ¨ ¨ vm.

Finally, if NG0
pvq X V pP0q “ tv0, vk´1, vku, then we can take G1 “ G0 ˚ vk ˚ vk´1 ˚ vk`1 and

P 1 “ v0vk`2vk`3 ¨ ¨ ¨ vm.

In all cases, |EpP 1q| ě |EpP q|´ pk ` 1q ě |EpP q|´ 6pn´ 1q2 ` 6.

Lemma 8.20. Let n ě 2. Let G be a prime graph having an induced path of length t. If t ě 6pn ´

1q2 ´ 3, then there exists a graph G1 locally equivalent to G having a 1-patched induced path of length

t´ 6pn´ 1q2 ` 6, unless G has a cycle of length 2n` 1 as a vertex-minor.

Proof. We may choose G so that the length t of an induced path P is maximized among all graphs locally

equivalent to G. Let v0, v1, . . . , vm be vertices of P in this order. Since G is prime, v0 has a neighbor v
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other than v1. We may assume that v is non-adjacent to v1 because otherwise we can replace G with

G ˚ v0.

Since P is a longest induced path, v must have some neighbors in V pP qztv0, v1u. We now apply

Lemma 8.19 with H “ Grtv0, v1us, deducing that there exists a graph G1 locally equivalent to G having

a 1-patched induced path of length t´ 6pn´ 1q2 ` 6, unless G has a cycle of length 2n` 1 as a vertex-

minor.

Lemma 8.21. Let n ě 2. Let G be a prime graph and let P be a k-patched induced path v0v1 ¨ ¨ ¨ vt. If

t ě 6pn ´ 1q2 ` k, then there exists a graph G1 locally equivalent to G having a pk ` 1q-patched induced

path v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vt of length at least t´6pn´1q2`3 with some i ą k`2, unless G has a cycle

of length 2n` 1 as a vertex-minor.

Proof. Let P “ v0v1 . . . vt be an induced path of length t in G and Q “ w1, w2, . . . , wk be its k-patch.

Suppose that G has no vertex-minor isomorphic to a cycle of length 2n` 1.

Let A “ tv0, v1, . . . , vk`1uYQ. By Proposition 8.9, we may assume that G has a blocking sequence

b1, b2, . . . , b` of length at most 4 for pA, V pP qzAq because vk`2 is the only vertex in V pP qzA having

neighbors in A.

Notice that P zA is an induced path of G. We say that a blocking sequence b1, b2, . . . , b` for

pA, V pP qzAq is nice if b` has a unique neighbor in V pP qzA, that is also a unique neighbor of vk`2

in V pP qzA.

We know that b` has neighbors in tvk`3, . . . , vtu by the definition of a blocking sequence. We

take H “ GrA Y Q Y tb1, b2, . . . , b`´1us. By Lemma 8.19, there exist a graph G` locally equivalent

to G and an induced path P` “ v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vt of G` for some i with a k-patch Q such that

G`rA Y tvk`2us “ GrA Y tvk`2us, a sequence b1, b2, . . . , b` is a nice blocking sequence for pA, V pP`qzAq

in G`, and |EpP`q| ě t´ 6pn´ 1q2 ` 6.

Let r ě 1 be minimum such that there exist a graph G1 locally equivalent to G and an induced

path P 1 “ v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vm for some i with a k-patch Q in G1 such that G1rA Y tvk`2us “

GrAYtvk`2us, a sequence b1, b2, . . . , br is a nice blocking sequence for pA, V pP 1qzAq in G1, and |EpP 1q| ě
t´ 6pn´ 1q2 ` 6` r ´ `. Such r exists because G` and P` satisfy the condition when r “ `.

We claim that r “ 1. Suppose r ą 1.

Suppose that br is non-adjacent to vk`1 in G1. Then vi is the only neighbor of br in V pP 1q in G1

and br is adjacent to br´1 in G1. If br´1 is non-adjacent to vk`2, then take G2 “ G1 ˚ br and P 2 “ P 1;

in G2, a sequence b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 1qzAq and the length of P 1 is

at least t ´ 6pn ´ 1q2 ` 6 ` r ´ `. This leads a contradiction to the assumption that r is minimized.

Therefore br´1 is adjacent to vk`2. Then take G2 “ G1 ˚ br ˚ vi with P 2 “ v0v1 ¨ ¨ ¨ vk`2vi`1 ¨ ¨ ¨ vm.

Then b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 2qzAq in G2 and the length of P 2 is at least

t´ 6pn´ 1q2 ` 6` r ´ `´ 1. This contradicts to the assumption that r is chosen to be minimum.

Therefore br is adjacent to vk`1 in G1. Since br is the last vertex in the blocking sequence, br is also

adjacent to wk in G1. If br´1 is non-adjacent to vk`2, then take G2 “ G1 ˚ vk`2 ˚ br and P 2 “ P 1; in

G2, a sequence b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 2qzAq and the length of P 2 is at

least t´ 6pn´ 1q2 ` 6` r´ `, contradicting our assumption on r. So br´1 is adjacent to vk`2. Then we

take G2 “ G1 ˚ vk`2 ˚ br ˚ vi with P 2 “ v0v1 ¨ ¨ ¨ vk`2vi`1 ¨ ¨ ¨ vm. Then b1, b2, . . . , br´1 is a nice blocking

sequence for pA, V pP 2qzAq in G2 and the length of P 2 is at least t´ 6pn´ 1q2` 6` r´ `´ 1. This again

contradicts to the assumption on r. This proves that r “ 1.
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Since b1 is a nice blocking sequence for pA, V pP 1qzAq in G1, b1 has a neighbor in A in G1 and

NG1pb1q X A ‰ tvk`1, wku. In addition, vi is the only neighbor of b1 among V pP 1qzA in G1. Now it

is easy to see that w1, w2, w3, . . . , wk, b1 is a pk ` 1q-patch of P 1 in G1. And, since ` ď 4, we have

|EpP 1q| ě t´ 6pn´ 1q2 ` 3.

Proposition 8.22. Let N ě 4 be an integer. If a prime graph G on at least 5 vertices has an induced

path of length L “ p6pn´ 1q2´ 2qpN ´ 2q ´ 1, then there exists a graph G1 locally equivalent to G having

a fully patched induced path of length N , unless G has a cycle of length 2n` 1 as a vertex-minor.

Proof. Suppose that G has no cycle of length 2n` 1 as a vertex-minor. Then n ě 3 by Theorem 4.2. By

Lemma 8.20, we may assume that G has a 1-patched path of length L´ 6pn´ 1q2 ` 6. By Lemma 8.21,

we may assume that G has an pN ´ 2q-patched path of length

L´ 6pn´ 1q2 ` 6´ pN ´ 3qp6pn´ 1q2 ´ 3q “ N

Thus G has a fully patched induced path of length N .

8.4.2 Finding a cycle from a fully patched path

We aim to find a cycle as a vertex-minor in a sufficiently long fully patched path.

Let P “ v0v1 ¨ ¨ ¨ vn be an induced path of a graph G with a pn ´ 2q-patch Q “ w1w2w3, . . . wn´2.

Let A1 “ tv0, v1u and for i “ 2, . . . , n ´ 2, let Ai “ tv0, v1, . . . , vi, w1, w2, . . . , wi´1u and Bi “ V pP qzAi

for all i P t1, 2, . . . , n´ 2u.

For i ě 1, let Lpwiq be the minimum j ě 0 such that

ρ˚GpAj`1, Bj`1 Y twiuq ą 1.

Since wi is a blocking sequence for pAi, Biq, Lpwiq is well defined and Lpwiq ă i.

We classify vertices in Q as follows.

• A vertex wi has Type 0 if Lpwiq “ 0 and wi is adjacent to v0.

• A vertex wi has Type 1 if Lpwiq ě 1 and wi has no neighbor in ALpwiq and wi is adjacent to exactly

one of vLpwiq`1 and wLpwiq.

• A vertex wi has Type 2 if Lpwiq “ 1 and wi is adjacent to v1, non-adjacent to v0.

• A vertex wi has Type 3 if Lpwiq ě 2 and wi has no neighbor in ALpwiq´1 and wi is adjacent to

both vLpwiq and wLpwiq´1.

By the definition of fully patched paths, we can deduce the following lemma easily.

Lemma 8.23. Each vertex in Q has Type 0, 1, 2, or 3.

Proof. If wi is adjacent to v0, then ρ˚GpA1, B1 Y twiuq ą 1 and therefore Lpwiq “ 0, implying that wi

has Type 0. We may now assume that wi is non-adjacent to v0 and so Lpwiq ą 0.

If wi has no neighbors inALpwiq, then ρ˚GpALpwiq`1, BLpwiq`1Ytwiuq “ ρ˚GpALpwiq`1zALpwiq, BLpwiq`1Y

twiuq ą 1. Thus vLpwiq`2 and wi cannot have the same set of neighbors in ALpwiq`1zALpwiq “

tvLpwiq`1, wLpwiqu. By the definition of fully patched paths, vLpwiq`2 is adjacent to both vLpwiq`1 and

wLpwiq. It follows that wi is adjacent to exactly one of vLpwiq`1 and wLpwiq. So wi has Type 1.
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wi (Type 1)

vi`1

x

y vLpwiq`2 vLpwiq`3 ¨ ¨ ¨

(a)
P i2

P i1

x P tvLpwiq`1, wLpwiqu

y P tvLpwiq`1, wLpwiquztxu

wi (Type 3)

vi`1

x

y
vLpwiq`1

wLpwiq

vLpwiq`2 ¨ ¨ ¨

(b)
P i2

P i1

x P tvLpwiq, wLpwiq´1u

Figure 8.5: Constructing a generalized ladder in a fully patched path. The vertex wi has Type 1 in (a)

and has Type 3 in (b).

Now we may assume that wi has some neighbors in ALpwiq. By definition,

ρ˚GpALpwiq, BLpwiq Y twiuq ď 1

and therefore wi and vLpwiq`1 have the same set of neighbors in ALpwiq. Therefore, if Lpwiq “ 1, then

wi is adjacent to v1, implying that wi has Type 2. If Lpwiq ą 1, then wi is adjacent to both vLpwiq and

wLpwiq´1, and so wi has Type 3.

We say that a pair of paths P i1 and P i2 from tv0, v1u to tvi`1, wiu is good if

1. P i1 and P i2 are vertex-disjoint induced paths on Ai`1,

2. for each j P t1, 2, . . . , i´ 1u, wj P V pP
i
1q Y V pP

i
2q or vj`1 P V pP

i
1q Y V pP

i
2q,

3. GrV pP i1q Y V pP
i
2qs ` vi`1wi is a generalized ladder with two defining paths P i1 and P i2.

Lemma 8.24. For all i P t1, 2, . . . , n ´ 2u, G has a good pair of paths P i1 and P i2 from tv0, v1u to

tvi`1, wiu.

Proof. We proceed by induction on i. If wi has Type 0, then let P i1 “ v1v2 ¨ ¨ ¨ vi`1 and P i2 “ v0wi. Since

v0 has no neighbors in tv2, v3, . . . , vi`1u, GrV pP
i
1q Y V pP i2qs ` vi`1wi is a generalized ladder with two

defining paths P i1 and P i2. Also, V pP i1q Y V pP i2q Ď Ai`1 and for all j P t1, 2, . . . , i ´ 1u, vj`1 P V pP
i
1q.

Thus, the pair pP i1, P
i
2q is good.

If wi has Type 2, then let P i1 “ v0w1v3v4 ¨ ¨ ¨ vi`1 and P i2 “ v1wi. By the definition of a patched

path, v1 is not adjacent to w1. So, v1 has no neighbors in tw1, v3, v4, . . . , vi`1u, and therefore GrV pP i1qY

V pP i2qs`vi`1wi is a generalized ladder with two defining paths P i1 and P i2. Clearly, V pP i1qYV pP
i
2q Ď Ai`1.

Moreover, w1 P V pP
i
1q and for each j P t2, . . . , i´ 1u, vj`1 P V pP

i
1q. Therefore, the pair pP i1, P

i
2q is good.

Now, we may assume that wi has Type 1 or Type 3. Since Lpwiq ě 1, by the induction hypothesis,

G has a good pair of paths P
Lpwiq

1 , P
Lpwiq

2 from tv0, v1u to tvLpwiq`1, wLpwiqu.
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Suppose wi has Type 1 and therefore wi is adjacent to exactly one of vLpwiq`1 and wLpwiq. Let

tx, yu “ tvLpwiq`1, wLpwiqu such that x is adjacent to wi. We may assume that the paths P
Lpwiq

1 and

P
Lpwiq

2 end at y and x, respectively. Let P i1 be a path

P
Lpwiq

1 ` yvLpwiq`2vLpwiq`3 ¨ ¨ ¨ vi`1

and let P i2 be a path P
Lpwiq

2 `xwi. See Figure 8.5. By the induction hypothesis, V pP
Lpwiq

1 qYV pP
Lpwiq

2 q Ď

ALpwiq`1 Ď Ai`1, and for each j P t1, 2, . . . , Lpwiq ´ 1u, V pP
Lpwiq

1 q Y V pP
Lpwiq

2 q contains wj or vj`1.

Thus it follows that V pP i1qYV pP
i
2q Ď Ai`1 and for each j P t1, 2, . . . , i´ 1u, V pP i1qYV pP

i
2q contains wj

or vj`1.

We claim that GrV pP i1q Y V pP i2qs ` vi`1wi is a generalized ladder with the defining paths P i1 and

P i2. By the induction hypothesis, it is enough to show that there are no two crossing chords xa and wib

for some a, b P V pP i1q. Since wi has no neighbor in ALpwiq and wi and y are non-adjacent, b P X “ tvk :

k P tLpwiq ` 2, Lpwiq ` 3, . . . , i` 1uu. Since x has no neighbor in XztvLpwiq`2u, we deduce that xa and

wib cannot cross and therefore GrV pP i1q Y V pP i2qs ` vi`1wi is a generalized ladder. This proves that if

wi has Type 1, then pP i1, P
i
2q is a good pair.

Finally, suppose that wi has Type 3 and so wi is adjacent to both vLpwiq and wLpwiq´1. By symmetry,

we may assume that P
Lpwiq

2 ends at vLpwiq`1. Let x be the predecessor of vLpwiq`1 in P
Lpwiq

2 . Since

P
Lpwiq

2 is on ALpwiq`1 and vLpwiq`1 has only two neighbors vLpwiq, wLpwiq´1 in ALpwiq`1, either x “ vLpwiq

or x “ wLpwiq´1. Let y be the predecessor of wLpwiq in P
Lpwiq

1 . Let P i1 be a path

P
Lpwiq

1 ` wLpwiqvLpwiq`2vLpwiq`3 ¨ ¨ ¨ vi`1

and let P i2 be a path obtained from P
Lpwiq

2 by removing vLpwiq`1 and adding xwi. See Figure 8.5(b). It

follows from our construction and the induction hypothesis that V pP i1qYV pP
i
2q Ď Ai`1 and V pP i1qYV pP

i
2q

contains wj or vj`1 for each j P t1, 2, . . . , i´ 1u.

We claim that GrV pP i1q Y V pP i2qs ` vi`1wi is a generalized ladder with the defining paths P i1 and

P i2. By the induction hypothesis, it is enough to prove that there are no two chords xa and wib such

that a, b P V pP i1q and b precedes a in P i1. Suppose not. Since wi has no neighbor in ALpwiq´1, neighbors

of wi in P i1 are in ty, wLpwiqu Y tvk : k P tLpwiq ` 2, Lpwiq ` 3, . . . , i ` 1uu. Since x has no neighbor

in tvk : k P tLpwiq ` 2, Lpwiq ` 3, . . . , i ` 1uu, we deduce that a “ wLpwiq and b “ y. Since wi has no

neighbor in ALpwiq´1, b is one of vLpwiq and wLpwiq´1 other than x. Thus wLpwiq is adjacent to both

vLpwiq and wLpwiq´1. This contradicts (iii) because vLpwiq`1 is also adjacent to both vLpwiq and wLpwiq´1

and so GrV pP
Lpwiq

1 q Y V pP
Lpwiq

2 qs ` vLpwiq`1wLpwiq is not a generalized ladder.

Lemma 8.25. If a graph has a fully patched induced path of length n, then it has a generalized ladder

having at least n` 2 vertices as an induced subgraph.

Proof. Let P “ v0v1 ¨ ¨ ¨ vn be the induced path of length n with an pn ´ 2q-patch Q “ w1w2 ¨ ¨ ¨wn´2.

Lemma 8.24 provides a good pair of paths Pn´2
1 and Pn´2

2 from tv0, v1u to tvn´1, wn´2u such that

GrV pPn´2
1 qYV pPn´2

2 qs`vn´1wn´2 is a generalized ladder and V pPn´2
1 qYV pPn´2

2 q contains wj or vj`1

for each j P t1, 2, . . . , n ´ 3u. Since vn is only adjacent to vn´1 and wn´2 in G, G1 “ GrV pPn´2
1 q Y

V pPn´2
2 qYtvnus is a generalized ladder. Since v0, v1, vn, vn´1, wn´2 P V pG

1q, G1 has at least pn´3q`5 “

n` 2 vertices.

Now we are ready to prove the main theorem of this section.

Lemma 8.26. Let n ě 1. If a prime graph has an induced path of length 110592n7, then it has a cycle

of length 4n` 3 as a vertex-minor.
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Proof. Let G be a prime graph having an induced path of length 110592n7. Suppose that G has no cycle

of length 4n` 3 as a vertex-minor. Let N “ 4608n5. Then

p6p2nq2 ´ 2qpN ´ 2q ´ 1 ă 110592n7.

Thus by Proposition 8.22, there exists a graph G1 locally equivalent to G having a fully patched induced

path of length N . By Lemma 8.25, G1 must have a generalized ladder having at least N ` 2 vertices

as an induced subgraph. By Proposition 8.10, we deduce that G1 has a cycle of length 4n ` 3 as a

vertex-minor.

Proof of Theorem 8.18. Let k “ tn{4u. Let G be a prime graph having a path of length at least 6.75n7.

Then G has a path of length 6.75p4kq7 “ 110592k7, and by Lemma 8.26, G has a cycle of length 4k`3 ě n

as a vertex-minor.

8.5 Obtaining Cn or Kn a Kn from a large prime graphs

In this section, we prove the main result of this chapter.

Theorem 8.1. For every n, there is N such that every prime graph on at least N vertices has a vertex-

minor isomorphic to Cn or Kn aKn.

By Theorem 8.18, it is enough to prove the following proposition.

Proposition 8.27. For every c, there exists N such that every prime graph on at least N vertices has

a vertex-minor isomorphic to either Pc or Kc aKc.

Here is the proof of Theorem 8.1 assuming Proposition 8.27.

Proof of Theorem 8.1. We take c “ r6.75n7s and apply Proposition 8.27 and Theorem 8.18.

For integers h,w, ` ě 1, a ph,w, `q-broom of a graph G is a connected induced subgraph H of G such

that

1. H contains a vertex v, called the center,

2. one component of Hzv is an induced path P of length h´ 1, and

3. HzpV pP q Y tvuq has w components, each having exactly ` vertices.

The path P is called a handle of H and each component of HzV pP q is called a fiber of H. If H “ G,

then we say that G is a ph,w, `q-broom. We call h, w, ` the height, width, length, respectively, of

a ph,w, `q-broom. See Figure 8.6. Observe that v has one or more neighbors in each fiber.

Here is the rough sketch of the proof. If a prime graph G has no vertex-minor isomorphic to Pc or

KcaKc and G has a broom having huge width as a vertex-minor, then it has a vertex-minor isomorphic

to a broom with larger length and sufficiently big width. So, we increase the length of a broom while

keeping its width big. If we obtain a broom of big length by repeatedly applying this process, then we

will obtain a broom of larger height. By growing the height, we will eventually obtain a long induced

path.

To start the process, we need an initial broom with sufficiently big width. For that purpose, we use

the following Ramsey-type theorem.
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center

height h :“ number of edges in the handle

width w :“number of fibers

length ` :“number of vertices in each fiber

Figure 8.6: A ph,w, `q-broom.

Theorem 8.28 (folklore; see Diestel [76]). For positive integers c and t, there exists N “ g0pc, tq such

that every connected graph on at least N vertices must contain Kt`1, K1,t, or Pc as an induced subgraph.

By Theorem 8.28, if G is prime and |V pGq| ě g0pc, t ` 1q, then either G has an induced subgraph

isomorphic to Pc or G has a vertex-minor isomorphic to K1,t`1. Since a p1, t, 1q-broom is isomorphic

to K1,t`1, we conclude that every sufficiently large prime graph has a vertex-minor isomorphic to a

p1, t, 1q-broom, unless it has an induced subgraph isomorphic to Pc.

8.5.1 Increasing the length of a broom

We now show that if a prime graph has a broom having sufficiently large width, we can find a broom

having larger length after applying local complementation and shrinking the width.

In the following proposition, we want to find a wide broom of length 2 when we are given a sufficiently

wide broom of length 1, when the graph has no Pc or Kc aKc as a vertex-minor.

Proposition 8.29. For all integers c ě 3 and t ě 1, there exists N “ g1pc, tq such that for each h ě 1,

every prime graph having a ph,N, 1q-broom has a vertex-minor isomorphic to a ph, t, 2q-broom, Kc aKc,

or Pc.

We will use the following theorem.

Theorem 8.30 (Ding, Oporowski, Oxley, Vertigan [79]). For every positive integer n, there exists

N “ fpnq such that for every bipartite graph G with a bipartition pS, T q, if no two vertices in S have the

same set of neighbors and |S| ě N , then S and T have n-element subsets S1 and T 1, respectively, such

that GrS1, T 1s is isomorphic to Kn aKn, Kn mKn, or Kn bKn.

Proof of Proposition 8.29. Let N “ fpRpw,wqq where f is the function in Theorem 8.30, and w “

maxpt ` pc ´ 1qpc ´ 3q, 2c ´ 1q. Suppose that G has a ph, g1pc, tq, 1q-broom H. Note that every fiber of

H is a single vertex.

Let S be the union of the vertex sets of all fibers of H, and x be the center of H. Let NGpSqztxu “ T .

Since G is prime, no two vertices in G have the same set of neighbors, and so two distinct vertices in S

have different sets of neighbors in T . Since |S| “ N “ fpRpw,wqq, by Theorem 8.30, there exist S0 Ď S,

T0 Ď T such that GrS0, T0s is isomorphic to KRpw,wqaKRpw,wq, KRpw,wqmKRpw,wq or KRpw,wqbKRpw,wq.

Since |T0| ě Rpw,wq, by Ramsey’s theorem, there exist S1 Ď S0 and T 1 Ď T0 such that GrS1, T 1s is

isomorphic to Kw a Kw, Kw m Kw, or Kw b Kw, and T 1 is a clique or a stable set in G. If GrS1, T 1s is

isomorphic to Kw mKw or Kw bKw, then by Lemmas 8.2 and 8.3, G has a vertex-minor isomorphic to
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x, y x, y x, y x, y

Figure 8.7: Dealing with 4-vertex graphs in Lemma 8.31.

either P2w or Kw´2 aKw´2. Since w ě 2c´ 1 and c ě 3, we have Pc or Kc aKc. Thus we may assume

that GrS1, T 1s is isomorphic to Kw aKw.

If T 1 is a clique in G, then we can remove the edges connecting T 1 with x by applying local com-

plementation at some vertices in S1. Thus, we can obtain a vertex-minor isomorphic to Kw a Kw from

GrS1YT 1Ytxus by applying local complementation at x and deleting x. Therefore we may assume that

T 1 is a stable set in G.

We claim that each vertex y ‰ x in the handle of H is adjacent to at most c vertices in T 1, or G has

Kc a Kc as a vertex-minor. Suppose not. If y is a neighbor of x, then by pivoting an edge of GrS1, T 1s,

we can delete the edge xy. From there, we obtain a vertex-minor isomorphic to Kc a Kc by applying

local complementation at x and y. If y is not adjacent to x, then we obtain a vertex-minor isomorphic to

Kc a Kc by deleting all vertices in the handle other than x and y, and applying local complementation

at x and y. This proves the claim.

By deleting at most pc ´ 1qh vertices in T 1 and their pairs in S1, we can assume that no vertex

other than x in the handle has a neighbor in T 1 and this broom has width at least w ´ pc ´ 1qh. If

h ` 2 ě c, then we have Pc as an induced subgraph. Thus we may assume that h ď c ´ 3. Since

w ´ pc´ 1qh ě w ´ pc´ 1qpc´ 3q ě t, we obtain a vertex-minor isomorphic to a ph, t, 2q-broom.

We now aim to increase the length of a broom when the broom has length at least 2. For a fiber F

of a broom H, we say that a vertex v P V pGqzV pHq blocks F if

ρ˚GpV pF q, pV pHqzV pF qq Y tvuq ą 1.

If G is prime and F has at least two vertices, then G has a blocking sequence for pV pF q, V pHqzV pF qq by

Proposition 2.6 and therefore there exists a vertex v that blocks F because we can take the first vertex

in the blocking sequence.

Lemma 8.31. Let G be a graph and let x, y be two vertices such that ρGptx, yuq “ 2 and Gzxzy is

connected. Then there exists some sequence v1, v2, . . . , vn P V pGqztx, yu of (not necessarily distinct)

vertices such that G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has an induced path of length 3 from x to y.

Proof. We proceed by induction on |V pGq|. If |V pGq| “ 4, then it is easy to check all cases to obtain a

path of length 3. To do so, first observe that up to symmetry, there are 2 cases in Grtx, yu, V pGqztx, yus;

either it is a matching of size 2 or a path of length 3. In both cases, one can find a desired sequence

of vertices to apply local complementation, see Figure 8.7 for all possible graphs on 4-vertices up to

isomorphism.

Now we may assume that G has at least 5 vertices. Let A1 “ NGpxqzpNGpyq Y tyuq, A2 “ NGpxq X

NGpyq, and A3 “ NGpyqzpNGpxq Y txuq. Clearly ρGptx, yuq “ 2 is equivalent to say that at least two of

A1, A2, A3 are nonempty.

We say a vertex t in Gzxzy deletable if Gzxzyzt is connected. If there is a deletable vertex not in

A1 Y A2 Y A3, then ρGztptx, yuq “ 2 and we apply the induction hypothesis to find an induced path.

Thus we may assume that all deletable vertices are in A1 YA2 YA3.
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If |Ai| ą 1 and Ai has a deletable vertex t for some i “ 1, 2, 3, then ρGztptx, yuq “ 2 and so we

obtain a sequence by applying the induction hypothesis. So we may assume that if Ai has a deletable

vertex, then |Ai| “ 1.

If there are three deletable vertices t1, t2, t3 in Gzxzy, then we may assume Ai “ ttiu. However,

ρGzt1ptx, yuq “ 2 because A2, A3 are nonempty and therefore we obtain an induced path from x to y by

the induction hypothesis.

Thus we may assume that Gzxzy has at most 2 deletable vertices. So Gzxzy has maximum degree

at most 2 because otherwise we can choose leaves of a spanning tree of Gzxzy using all edges incident

with a vertex of the maximum degree. If Gzxzy is a cycle, then every vertex is deletable and so Gzxzy is

a path. Let w be a degree-2 vertex in Gzxzy. Then G ˚w has at least 3 deletable vertices and therefore

we find a desired sequence v1, v2, . . . , vn such that G ˚ w ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has an induced path of length

3 from x to y.

Lemma 8.32. Let G be a graph and let x, y be two vertices in G, and let F1, F2, . . . , Fc be the components

of Gzxzy. If ρ˚Gptx, yu, Fiq “ 2 for all 1 ď i ď c, then G has a vertex-minor isomorphic to Kc aKc.

Proof. We proceed by induction on |V pGq|` |EpGq|.
Suppose that GrV pFiqYtx, yus is not an induced path of length 3 from x to y. By Lemma 8.31, there

exists a sequence v1, v2, . . . , vn P V pFiq such that GrV pFiq Y tx, yus ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has an induced path

of length 3 from x to y. If |V pFiq| ě 3, then we delete all vertices in Fi not on this path and apply the

induction hypothesis. If |V pFiq| “ 2, then |EpGrV pFiqYtx, yusq| ą |EpGrV pFiqYtx, yus˚v1˚v2˚¨ ¨ ¨˚vnq|
because two vertices in Fi are connected, Grtx, yu, V pFiqs has at least two edges, and GrV pFiqYtx, yus is

not an induced path of length 3 from x to y. So we apply the induction hypothesis to G˚ v1 ˚ v2 ˚ ¨ ¨ ¨ ˚ vn

to obtain a vertex-minor isomorphic to Kc aKc.

Therefore we may assume that GrV pFiq Y tx, yus is an induced path of length 3 from x to y for all

i. Thus G ˚ x ˚ yzxzy is indeed isomorphic to Kc aKc.

Lemma 8.33. Let t be a positive integer, and G be a bipartite graph with a bipartition pS, T q such that

every vertex in T has degree at least 1. Then either S has a vertex of degree at least t ` 1 or G has an

induced matching of size at least |T |{t.

Proof. We claim that if every vertex in S has degree at most t, then G has an induced matching of size

at least |T |{t. We proceed by induction on |T |. This is trivial if |T | “ 0. If 0 ă |T | ď t, then we can

simply pick an edge to form an induced matching of size 1. So we may assume that |T | ą t.

We may assume that T has a vertex w of degree 1, because otherwise we can delete a vertex in S

and apply the induction hypothesis. Let v be the unique neighbor of w. By the induction hypothesis,

GzvzNGpvq has an induced matching M 1 of size at least p|T |´ tq{t. Now M 1Ytvwu is a desired induced

matching.

Lemma 8.34. Let H be a broom in a graph G having n fibers F1, F2, . . . , Fn given with n vertices

v1, v2, . . . , vn in V pGqzV pHq such that

1. vi blocks Fj if and only if i “ j,

2. vi has a neighbor in Fj if and only if i ď j.

If n ě Rpc` 1, c` 1q, then G has a vertex-minor isomorphic to Pc.
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Proof. If j ą i, then vi has a neighbor in Fj , but vi does not block Fj . Therefore, vi is adjacent to every

vertex in V pFjq X NHpxq for j ą i. Since n ě Rpc ` 1, c ` 1q, there exist 1 ď t1 ă t2 ¨ ¨ ¨ ă tc`1 ď n

such that tvt1 , vt2 , . . . , vtc`1u is a clique or a stable set of G. For 1 ď i ď c ` 1, let wi be a vertex in

V pFtiq XNHpxq. Clearly,

Grtvt1 , vt3 , . . . , vt2rc{2s´1
u, tw2, w4, . . . , w2rc{2sus

is isomorphic to Krc{2s mKrc{2s.

By Lemma 8.3, Krc{2s mKrc{2s or Krc{2s mKrc{2s has a vertex-minor isomorphic to Pc.

Lemma 8.35. Let H be a broom in a graph G having n fibers F1, F2, . . . , Fn. Let v1, v2, . . . , vn be vertices

in V pGqzV pHq such that

1. vi blocks Fj if and only if i “ j,

2. vi has a neighbor in Fj for all i and j.

If n ě Rpc` 2, c` 2q, then G has a vertex-minor isomorphic to Kc aKc.

Proof. If i ‰ j, then vj does not block Fi and therefore NGpvjq X V pFiq “ NGpxq X V pFiq. Since

n ě Rpc ` 2, c ` 2q, there exist 1 ď t1 ă t2 ¨ ¨ ¨ ă tc`2 ď n such that tvt1 , vt2 , . . . , vtc`2
u is a clique or a

stable set of G.

We claim that for each 1 ď i ď c` 2, there exist a sequence w
piq
1 , w

piq
2 , . . . , w

piq
ki

of ki ě 0 vertices in

V pFtiqzpNGpxq YNGpvtiqq and zi P V pFtiq such that zi is not adjacent to vti in G ˚w
piq
1 ˚w

piq
2 ˚ ¨ ¨ ¨ ˚w

piq
ki

but zi is adjacent to vtj in G ˚ w
piq
1 ˚ w

piq
2 ˚ ¨ ¨ ¨ ˚ w

piq
ki

for all j ‰ i.

LetA
piq
1 “ pNGpvtiqzNGpxqqXV pFtiq, A

piq
2 “ pNGpvtiqXNGpxqqXV pFtiq andA

piq
3 “ pNGpxqzNGpvtiqqX

V pFtiq.

If A
piq
3 ‰ H, then a vertex zi in A

piq
3 satisfies the claim. So we may assume A

piq
3 is empty. Then

A
piq
1 ‰ H and A

piq
2 ‰ H, otherwise ρ˚Gptvti , vtju, V pFtiqq ď 1 for all j ‰ i because NGpvtj q X V pFtiq “

NGpxq X V pFtiq. We choose a
piq
1 P A

piq
1 and a

piq
2 P A

piq
2 so that the distance from a

piq
1 to a

piq
2 in Fi is

minimum.

Let Pi be a shortest path from a
piq
1 to a

piq
2 in Fti . Note that each internal vertex of Pi is not contained

in A
piq
1 YA

piq
2 . After applying local complementation at all internal vertices of Pi, a

piq
1 is adjacent to a

piq
2

and vti , and non-adjacent to vtj for all j ‰ i. So by applying one more local complementation at a
piq
1

if necessary, we can delete the edges between a
piq
2 and vtj for all j ‰ i. And then, zi “ a

piq
2 satisfies the

claim.

Now, take G1 “ G ˚ w
p1q
1 ˚ ¨ ¨ ¨ ˚ w

p1q
k1
˚ w

p2q
1 ˚ ¨ ¨ ¨ ˚ w

p2q
k2
¨ ¨ ¨ ˚ w

pc`2q
1 ˚ ¨ ¨ ¨ ˚ w

pc`2q
kc`2

. Since each w
piq
k

has no neighbors in tvt1 , vt2 , . . . , vtc`2
u in G, applying local complementation at w

piq
k does not change

the adjacency between any two vertices in tvt1 , vt2 , . . . , vtc`2
u. Thus the induced subgraph of G1 on

tz1, z2, . . . , zc`2uYtvt1 , vt2 , . . . , vtc`2u is isomorphic to Kc`2 bKc`2 or Kc`2 bKc`2, and by Lemma 8.2,

G has a vertex-minor isomorphic to Kc aKc.

Lemma 8.36. Let H be a ph, n, `q-broom in a graph G having n fibers F1, F2, . . . , Fn given with n vertices

v1, v2, . . . , vn in V pGqzV pHq such that

1. vi blocks Fj if and only if i “ j,

2. if i ‰ j, then vi has no neighbor in Fj.

If n ě Rpt`pc´1qpc´3q, cq, then G has a vertex-minor isomorphic to Pc, KcaKc, or a ph, t, ``1q-broom.
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Proof. Since n ě Rpt` pc´ 1qpc´ 3q, cq, there exist 1 ď t1 ă t2 ¨ ¨ ¨ ă tk ď n such that either

1. k “ c and tvt1 , vt2 , . . . , vtku is a clique in G, or

2. k “ t` pc´ 1qpc´ 3q and tvt1 , vt2 , . . . , vtku is a stable set in G.

First, we assume that k “ c and tvt1 , vt2 , . . . , vtku is a clique. For each ti, since ρ˚Gptx, vtiu, V pFtiqq ě

2, by Lemma 8.31, there exists some sequence w1, w2, . . . , wn P V pFtiq of (not necessarily distinct) vertices

such that GrV pFtiqYtx, vtius˚w1 ˚w2 ¨ ¨ ¨˚wn has an induced path of length 2 from vti to x. By applying

local complementation at x, we have a vertex-minor isomorphic to Kc aKc.

Now, suppose that k “ t ` pc ´ 1qpc ´ 3q and tvt1 , vt2 , . . . , vtku is a stable set in G. Let P be

the handle of H. If h ` 2 ě c, then we have Pc as an induced subgraph. Thus we may assume that

h ď c ´ 3. We assume that a vertex y P V pP qztxu adjacent to c vertices in tv1, v2, . . . , vku. Then since

ρ˚Gptx, yuq, V pFiqYtvtiuq “ 2 for each i, by Lemma 8.32, we have a vertex-minor isomorphic to KcaKc.

Thus, every vertex in the handle other than x cannot have more than c´1 neighbors in tvt1 , vt2 , . . . , vtku.

By deleting at most pc ´ 1qh vertices in tvt1 , vt2 , . . . , vtku, we can remove all edges from V pP qztxu to

tvt1 , vt2 , . . . , vtku. Since

k ´ pc´ 1qh ě k ´ pc´ 1qpc´ 3q ě t,

we have a vertex-minor isomorphic to a ph, t, `` 1q-broom.

Proposition 8.37. For positive integers c and t, there exists N “ g2pc, tq such that for all integers ` ě 2

and h ě 1, every prime graph having a ph,N, `q-broom has a vertex-minor isomorphic to a ph, t, `` 1q-

broom, Pc, or Kc aKc.

Proof. Let N “ g2pc, tq “ pc ´ 1qm, where m “ Rpm1,m2,m2,m2q, m1 “ Rpt ` pc ´ 1qpc ´ 3q, cq, and

m2 “ Rpc ` 2, c ` 2q. Let H be a ph,N, `q-broom of G. If a vertex w in V pGqzV pHq blocks c fibers

of H, then for each fiber F of them, ρ˚Gptw, xu, V pF qq “ 2. So by Lemma 8.32, G has a vertex-minor

isomorphic to Kc aKc. Thus, a vertex in V pGqzV pHq can block at most c´ 1 fibers of H.

For each fiber F of H, there is a vertex v P V pGqzV pHq that blocks F because G is prime. Thus, by

Lemma 8.33, there are g2pc, tq{pc´ 1q “ m vertices v1, v2, . . . , vm in V pGqzV pHq and fibers F1, F2, . . . , Fm

of H such that for 1 ď i, j ď m, vi blocks Fj if and only if i “ j. For i ‰ j, either vi has no neighbor in

Fj or vi has a neighbor in Fj but ρ˚Gptvi, xu, V pFjqq “ 1.

We assume that V pKmq “ t1, 2, . . . ,mu. We color the edges of Km such that an edge ti, ju is

• green if NGpviq X V pFjq ‰ H and NGpvjq X V pFiq ‰ H,

• red if NGpviq X V pFjq ‰ H and NGpvjq X V pFiq “ H,

• yellow if NGpviq X V pFjq “ H and NGpvjq X V pFiq ‰ H,

• blue if NGpviq X V pFjq “ NGpvjq X V pFiq “ H.

Since |V pKmq| “ m “ Rpm1,m2,m2,m2q, by Ramsey’s theorem, either Km has a green clique of size

m1, or Km has a monochromatic clique of size m2 which is red, yellow, or blue.

If Km has a red clique C of size m2, then for i, j P C, vi has a neighbor in Fj if and only if i ď j.

Since m2 ě Rpc` 1, c` 1q, by Lemma 8.34, G has a vertex-minor isomorphic to Pc.

Similarly, if Km has a yellow clique C of size m2, by Lemma 8.34, G has a vertex-minor isomorphic

to Pc.
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If Km has a blue clique C of size m2, then for distinct i, j P C, vi has a neighbor in Fj . Since

m2 “ Rpc` 2, c` 2q, by Lemma 8.35, G has a vertex-minor isomorphic to Kc aKc.

If Km has a green clique C of size m1, then for distinct i, j P C, vi has no neighbor in Fj . Since

m1 “ Rpt ` pc ´ 1qpc ´ 3q, cq, by Lemma 8.36, G has a vertex-minor isomorphic to Pc, Kc a Kc, or a

ph, t, `` 1q-broom.

8.5.2 Increasing the height of a broom

Proposition 8.38. For positive integers c, t, there exists N “ g3pc, tq such that for h ě 1, every prime

graph having a ph, 1, Nq-broom has a vertex-minor isomorphic to a ph` 1, t, 1q-broom or Pc.

Proof. Let N “ g3pc, tq “ g0pc, 2tq where g0 is given in Theorem 8.28. Suppose that G has a ph, 1, Nq-

broom H and let x be the center of H. Let F be the fiber of H.

Since F is connected, by Theorem 8.28, F has an induced subgraph isomorphic to Pc, or F has a

vertex-minor isomorphic to K2t`1. We may assume that F has an induced subgraph F 1 isomorphic to

K2t`1. Let P “ p1p2 . . . pm be a shortest path from p1 “ x to F 1 in H. Note that m ě 2 and pm´1 is

adjacent to at least one vertices of F 1. Let S “ NHppm´1q X V pF
1q.

We claim that there exists a vertex v P V pF 1q such that pG ˚ vqrV pF qY txus has an induced path of

length at least m´ 1 from x, and the last vertex of the path has t neighbors in F 1 which form a stable

set in G.

If |S| ď t, then choose pm`1 P V pF 1qzS and we delete Szpm from F 1. And by applying local

complementation at pm`1, we obtain a path from x to pm`1 such that pm`1 has t neighbors in F 1 which

form a stable set.

If |S| ě t` 1, then by applying local complementation at pm, we obtain a path from x to pm such

that pm has t neighbors in F 1 which form a stable set. Thus, we prove the claim.

Since m ě 2, the union of the handle of H and the path in the claim form a path of length at least

h` 1, and the last vertex of the path has t neighbors which form a stable set in F 1. Therefore, G has a

vertex-minor isomorphic to a ph` 1, t, 1q-broom.

Proposition 8.39. For positive integers c, t, there exists N “ g4pc, tq such that for all h ě 1, every

prime graph having a ph,N, 1q-broom has a vertex-minor isomorphic to a ph ` 1, t, 1q-broom, Pc, or

Kc aKc.

Proof. By Proposition 8.38, there exists N0 depending only on c and t such that every prime graph

having a ph, 1, N0q-broom has a vertex-minor isomorphic to a ph ` 1, t, 1q-broom or Pc. By applying

Proposition 8.37 pN0 ´ 2q times, we deduce that there exists N1 such that every prime graph having

a ph,N1, 2q-broom has a vertex-minor isomorphic to a ph, 1, N0q-broom, Pc, or Kc a Kc. By Propo-

sition 8.29, there exists N such that every prime graph having a ph,N, 1q-broom has a vertex-minor

isomorphic to a ph,N1, 2q-broom, Pc, or Kc aKc.

We are now ready with all necessary lemmas to prove Proposition 8.27.

Proof of Proposition 8.27. By Theorem 4.2, every prime graph on at least 5 vertices has a vertex-minor

isomorphic to C5 and P4 is a vertex-minor of C5. Therefore we may assume that c ě 5.

By applying Proposition 8.39 pc ´ 3q times, we deduce that there exists a big integer t depending

only on c such that every prime graph G with a p1, t, 1q-broom has a vertex-minor isomorphic to a

pc´2, 1, 1q-broom, Pc, or KcaKc. Since a pc´2, 1, 1q-broom is isomorphic to Pc and a p1, t, 1q-broom is
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isomorphic to K1,t`1, we conclude that every prime graph having a vertex-minor isomorphic to K1,t`1

has a vertex-minor isomorphic to Pc or Kc a Kc. By Theorem 8.4, there exists N such that every

connected graph on at least N vertices has a vertex-minor isomorphic to K1,t`1. This completes the

proof.

8.6 Why optimal?

Theorem 8.1 states that sufficiently large prime graphs must have a vertex-minor isomorphic to Cn

or KnaKn. But do we really need these two graphs? To justify why we need both, we should show that

for some n, Cn is not a vertex-minor of KN aKN for all N and similarly Kn aKn is not a vertex-minor

of CN for all N , because Cn and Kn aKn are also prime.

Proposition 8.40. Let n be a positive integer.

1. K3 aK3 is not a vertex-minor of Cn.

2. C7 is not a vertex-minor of Kn aKn.

Since C7 is a vertex-minor of Cn for all n ě 7, the above proposition implies that Cn is not a

vertex-minor of KN aKN when n ě 7. Similarly Kn aKn is not a vertex-minor of CN for all n ě 3.

We can classify all non-trivial prime vertex-minors of a cycle graph.

Lemma 8.41. If a prime graph H on at least 5 vertices is a vertex-minor of Cn, then H is locally

equivalent to a cycle graph.

Proof. We proceed by induction on n. If n “ 5, then it is trivial. Let us assume n ą 5. Suppose

|V pHq| ă |V pCnq|. By Lemma 1.8, H is a vertex-minor of Cnzv, Cn ˚ vzv, or Cn ^ vwzv for a neighbor

w of v.

If H is vertex-minor of Cn ˚ vzv, then we can apply the induction hypothesis because Cn ˚ vzv is

isomorphic to Cn´1.

By Lemma 4.3, H cannot be a vertex-minor of Cnzv because Cnzv has no prime induced subgraph

on at least 5 vertices.

Thus we may assume that H is a vertex-minor of Cn ^ vwzv for a neighbor w of v. Again, by

Lemma 4.3, H is isomorphic to a vertex-minor of Cn´2.

Classifying prime vertex-minors of Kn a Kn turns out to be more tedious. Instead of identifying

prime vertex-minors of Kn aKn, we focus on characterizing prime vertex-minors on 7 vertices to prove

(2) of Proposition 8.40.

Instead of Kn a Kn, we will first consider Hn. Let Hn be the graph having two specified vertices

called roots and n internally disjoint paths of length 3 joining the roots. Let Jn be the graph obtained

from Hn by adding a common neighbor of the two roots. Then Hn has 2n` 2 vertices and Jn has 2n` 3

vertices, see Figure 8.8. It is easy to observe the following.

Lemma 8.42. Let H be a prime vertex-minor of Hn on at least 5 vertices. If |V pHnq| ´ |V pHq| ě 3,

then Jn´1 has a vertex-minor isomorphic to H.

Proof. We may assume n ě 3. Since at most 2 vertices of Hn have degree other than 2, there exists

v P V pHnqzV pHq of degree 2 in Hn. Let w be the neighbor of v having degree 2 in Hn. Let av1w1b be a

path of length 3 from a to b in Hn such that tv, wu ‰ tv1, w1u.
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Figure 8.8: The graphs H5 and J5.

By Lemma 1.8, H is a vertex-minor of either Hnzv, Hn ˚ vzv or Hn ^ vwzv. If H is a vertex-minor

of Hn ˚ vzv, then H is isomorphic to a vertex-minor of Jn´1, because Hn ˚ vzv is isomorphic to Jn´1.

Since w has degree 1 in Hnzv, by Lemma 4.3, if H is a vertex-minor of Hnzv, then H is isomorphic

to a vertex-minor of Hnzvzw. Since Hnzvzw is isomorphic to Hn´1 and Hn´1 is an induced subgraph of

Jn´1, H is isomorphic to a vertex-minor of Jn´1.

Similarly, ifH is a vertex-minor ofHn^vwzv, thenH is isomorphic to a vertex-minor ofHn^vwzvzw.

Clearly, pHn ^ vwzvzwq ^ v1w1 is isomorphic to Hn´1. Since Hn´1 is an induced subgraph of Jn´1, H

is isomorphic to a vertex-minor of Jn´1, as required.

Lemma 8.43. Let H be a prime vertex-minor of Jn on at least 5 vertices. If |V pJnq| ´ |V pHq| ě 2,

then Hn has a vertex-minor isomorphic to H.

Proof. We may assume n ě 2. Let a, b be the roots of Jn, azb be the path of length 2, and avwb be a

path of length 3 from a to b.

Case 1: Suppose that V pJnqzV pHq has a degree-2 vertex on a path of length 3 from a to b. We may

assume that it is v by symmetry. By Lemma 1.8, H is a vertex-minor of Jnzv, Jn ˚ vzv, or Jn ^ vwzv.

If H is a vertex-minor of Jnzv, then H is isomorphic to a vertex-minor of Jnzvzw by Lemma 4.3,

because w has degree 1 in Jnzv. Similarly, if H is a vertex-minor of Jn ^ vwzv, then H is isomorphic

to a vertex-minor of Jn ^ vwzvzw. Clearly, Jnzvzw and pJn ^ vwzvzwq ˚ z are isomorphic to Jn´1, and

Jn´1 is a vertex-minor of Hn.

If H is a vertex-minor of Jn˚vzv, then by Lemma 4.3, H is isomorphic to a vertex-minor of Jn˚vzvzw,

which is isomorphic to Jn´1, because w and z have the same set of neighbors in Jn ˚ vzv. Since Jn´1 is

a vertex-minor of Hn, H is isomorphic to a vertex-minor of Hn. This proves the lemma in Case 1.

Case 2: Suppose that z P V pJnqzV pHq. Then by Lemma 1.8, H is a vertex-minor of Jnzz, Jn ˚ zzz, or

Jn^azzz. Since Jnzz and pJn ˚zzzq^vw are isomorphic to Hn, we may assume that H is a vertex-minor

of Jn^ azzz. However, Jn^ azzz has no prime induced subgraph on at least 5 vertices and therefore by

Lemma 4.3, H cannot be a vertex-minor of Jn ^ azzz, contradicting our assumption.

Case 3: Suppose that a or b is contained in V pJnqzV pHq. By symmetry, let us assume a P V pJnqzV pHq.

By Lemma 1.8, H is a vertex-minor of Jnza, Jn ˚ aza, or Jn ^ azza.

Since Jnza has no prime induced subgraph on at least 5 vertices, H cannot be a vertex-minor of

Jnza by Lemma 4.3.

Suppose H is a vertex-minor of Jn^ azza. By the definition of pivoting, b is adjacent to all vertices

of NJnpaqztzu in Jn ^ azza. We can remove all these edges between b and NJnpaqztzu by applying local
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F1 F2 F3

Figure 8.9: Graphs F1, F2 and F3.

C7

F1

F2

F3

Figure 8.10: List of all 3-vertex sets having cut-rank 2 containing a fixed vertex x denoted by a square.

complementation on all vertices of NJnpbqztzu in Jn^ azza. Thus, Hn is locally equivalent to Jn^ azza,

and H is isomorphic to a vertex-minor of Hn.

Now suppose that H is a vertex-minor of Jn˚aza. By the definition of local complementation, NJnpaq

forms a clique in Jn ˚ aza. So, b is adjacent to all vertices of NJnpaqztzu in pJn ˚ azaq ˚ z. Similarly in

the above case, by applying local complementation on all vertices of NJnpbqztzu in pJn ˚ azaq ˚ z, we can

remove all edges between b and NJnpaqztzu in pJn ˚ azaq ˚ z. Finally, by pivoting vw, we can remove the

edge bz, and therefore, Jn ˚ aza is locally equivalent to Hn. Thus, H is isomorphic to a vertex-minor of

Hn.

Let F1, F2, F3 be the graphs in Figure 8.9.

Lemma 8.44. Let n ě 3 be an integer. If a prime graph H is a vertex-minor of Hn and |V pHq| “ 7,

then H is locally equivalent to F1, F2, or F3.

Proof. We proceed by induction on n. If n “ 3, then let H be a prime 7-vertex vertex-minor of H3.

Let axyb be a path from a root a to the other root b in H3. By symmetry, we may assume that

V pH3qzV pHq “ txu or tau. By Lemma 1.8, H is locally equivalent to H3zx, H3 ˚ xzx, H3^ xazx, H3za,

H3 ˚ aza, or H3 ^ abza. The conclusion follows because H3zx, H3 ^ xyzx, H3za are not prime and

H3 ˚ xzx, H3 ^ axza, and H3 ˚ aza are isomorphic to F1, F2, and F3, respectively.

Suppose n ą 3. By Lemma 8.42, every 7-vertex prime vertex-minor is also isomorphic to a vertex-

minor of Jn´1. By Lemma 8.43, it is isomorphic to a vertex-minor of Hn´1. The conclusion follows from

the induction hypothesis.

Lemma 8.45. The graphs F1, F2, F3 are not locally equivalent to C7.

Proof. Suppose that Fi is locally equivalent to C7. Then ρFipXq “ ρC7pXq for all X Ď V pC7q by

Lemma 2.1. Let x be the vertex in the center of Fi, see Figure 8.10. By symmetry of C7, we may assume

that x is mapped to a particular vertex in C7. Figure 8.10 presents all vertex subsets of size 3 having

cut-rank 2 and containing x in graphs C7, F1, F2, F3. It is now easy to deduce that no bijection on the

vertex set will map these subsets correctly.
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We are now ready to prove Proposition 8.40.

Proof of Proposition 8.40. (1) By Lemma 8.41, it is enough to check that K3aK3 is not locally equivalent

to C6. This can be checked easily.

(2) By applying local complementation at roots, we can easily see that Hn has a vertex-minor isomorphic

to Kn a Kn. Lemma 8.44 states that all 7-vertex prime vertex-minors of Hn are F1, F2, and F3.

Lemma 8.45 proves that none of them are locally equivalent to C7. Thus Hn has no vertex-minor

isomorphic to C7 and therefore Kn aKn has no vertex-minor isomorphic to C7.
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Chapter 9. An exact algorithm to compute linear

rank-width

We discuss exact algorithms to compute linear rank-width. We first verify that computing linear

rank-width on bipartite graphs is NP-hard in Section 9.1. For this, we use the relation between matroid

path-width and linear rank-width.

We naturally ask which graph classes allow a polynomial-time algorithm to compute linear rank-

width. Previously, Adler and Kanté [2] proved a linear-time algorithm for trees, and it was the only

known exact algorithm to compute linear rank-width which runs in polynomial time.

We provide a polynomial-time algorithm to compute the linear rank-width of distance-hereditary

graphs.

Theorem 9.1. The linear rank-width of distance-hereditary graphs with n vertices can be computed in

time Opn2 ¨ log2 nq.

We remark that computing the path-width of distance-hereditary graphs is NP-hard [129]. There-

fore, our result provides a difference between path-width and linear rank-width on distance-hereditary

graphs. We use the notion of limbs and the characterization of linear rank-width on distance-hereditary

graphs, developed in Chapter 5.

As a corollary of Theorem 9.1, we prove that the path-width of matroids of branch-width at most 2

can be computed in polynomial time, provided that the matroid is given by an independent set oracle.

Corollary 9.2. The linear rank-width of n-element matroid branch-width at most 2 with a given inde-

pendent set oracle can be computed in time Opn2 ¨ log2 nq.

9.1 NP-hardness of computing linear rank-width

Here, we prove that computing the linear rank-width of a graph is NP-hard.

Theorem 9.3. The problem of computing the linear rank-width of a graph is NP-hard.

We first remark that the computation of the path-width of a graph is NP-hard [6, 19].

Theorem 9.4 (Arnborg, Corneil, and Proskurowski [6]). The problem of computing the path-width of a

graph is NP-hard.

Kashyap [123] showed an analogous result for a matroid path-width of graphic matroid.

Theorem 9.5 (Kashyap [123]). For a fixed field F, computing the path-width of a matroid representable

over F is NP-hard.

For linear rank-width, we may use a direct relation between the branch-width of a binary matroid

and the rank-width of its fundamental graph, mentioned in Section 3.4. We recall the following.
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Proposition 3.17 (Oum [150]). Let G be a bipartite graph with a bipartition pA,Bq and let M :“

MpG,A,Bq. Then rwpGq “ bwpMq ´ 1 and lrwpGq “ pwpMq ´ 1.

Proof of Theorem 9.3. Given a binary matroid M , we want to produce a bipartite graph G in polynomial

time such that pwpMq can be computed from lrwpGq. Let M be a binary matroid. We first run a greedy

algorithm to find a base B of M [156, Section 1.8]. After choosing one base B, for each e P B and

e1 P EzB, we test whether pBzteuq Y te1u is again a base, and we create the fundamental graph G with

respect to M in polynomial time. By Proposition 3.17 and Theorem 9.5, lrwpGq “ pwpMq ´ 1, and

NP-hardness of computing path-width of binary matroids implies that computing linear rank-width of

bipartite graphs is NP-hard.

9.2 A polynomial-time algorithm for distance-hereditary graphs

We describe an algorithm to compute the linear rank-width of distance-hereditary graphs. Since

the linear rank-width of a graph is equal to the maximum over all linear rank-width of its connected

components, we will focus on connected distance-hereditary graphs.

The main idea consists of rooting the canonical split decomposition D of a connected distance-

hereditary graph and associating with each bag B of D a canonical limb L :“ rLDrB1, ys with its parent

B1 and computing the linear rank-width of pL. In order to compute the linear rank-width of pL, we will

use the linear rank-width of the graphs xL1,. . . , xLp where L1, . . . ,Lp are the limbs associated with the

children of B.

Let D be a canonical split decomposition of a connected distance-hereditary graph and let B be a

bag of D, y be a vertex represented by a vertex of B. Let L :“ LDrB, ys be a limb and TL be its split

decomposition tree. Let B1 be the bag in the component of DzV pBq containing y that has a neighbor in

B, and let w be the node of TD such that its corresponding bag is B1. One easily checks that the split

decomposition tree rT of rLDrB, ys is obtained similarly as rLDrB, ys, namely,

1. rT “ TL if |B1| ě 4 or |V pTLq| “ 1,

2. rT “ TLztwu if |B1| “ 3 and w has two neighbors in TD,

3. If |B1| “ 3 and w has 3 neighbors in TD, then let T 1 be obtained from TLztwu by adding an edge

e1 between the two neighbors of w in TD. In this case, either rT “ T 1 or rT is obtained from T 1 by

contracting the edge e1.

As a consequence, we may assume that every node of rT , but at most one, is also a node of TD.

Similarly, every edge of rT , but at most one, is an edge of TD.

We now define the notion of rooted split decomposition trees of limbs. A split decomposition tree is

rooted if we distinguish either a node or an edge and call it root. Let T be a rooted decomposition tree

with root r. A node v is a descendant of a node v1 if either r “ vv1, or v1 is in the unique path from

the root to v; if moreover v and v1 are adjacent we call v a child of v1 and v1 the parent of v. Observe

from the definition of descendants that if r “ vv1 then v is the parent of v1 and also v1 is the parent of

v. Two nodes v and v1 are called comparable if one node is a descendant of the other one. Otherwise,

they are called incomparable. Recall that for each node v of T and each canonical split decomposition

D with T as a split decomposition tree we write bagDpvq to denote the bag of D with which it is in

correspondence, and we let pbagDpvq be bagDpv
1q with the parent v1 of v.
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Let D be a canonical split decomposition of a connected distance-hereditary graph and let T be its

split decomposition tree rooted at r. For each canonical limb rL we root its split decomposition tree rT

as follows.

1. If the root (node or edge) r of T exists in rLDrB, ys, then we assign it as the root of rT . In the other

cases, we can easily see that either the root node is removed or a node incident with the root edge

is removed.

2. If the removed node has one neighbor, then we assign this neighbor as the root of rT .

3. If the removed node has two neighbors in T and they are linked by a new edge in rT , then we assign

the new edge as the root of rT .

4. If the removed node has two neighbors in T and they are identified in rT , then we assign the new

node as the root of rT .

The following observation is easy to check from the definition of rooted split decomposition trees of

canonical limbs.

Fact 1. Let D be a canonical split decomposition and let TD be its rooted split decomposition tree. If w

is a non-root node of the rooted split decomposition tree rT of a canonical limb rLDrB, ys, then w is also

a non-root node of TD with the property that V pbagDpwqq “ V pbag
rLDrB,ys

pwqq.

For two disjoint bags B and B1 we denote by TDrB,B1s the component of DzV pBq containing B1.

For conciseness, for every non-root node v of T , we define that

f1pD, vq :“ fDppbagDpvq, TDrpbagDpvq, bagDpvqsq

f2pD, vq :“ fDpbagDpvq, TDrbagDpvq, pbagDpvqsq.

A node v of T is called k-critical if f1pD, vq “ k and v has two children v1 and v2 such that

f1pD, v1q “ f1pD, v2q “ k.

From now on, let G be a fixed connected distance-hereditary graph and we fix a root r for the

split decomposition tree TD of the canonical split decomposition D of G. We remark that since G

has rank-width at most 1, by Lemma 3.5, lrwpGq ď tlog2|V pGq|u. For convenience, we denote by

lrwbd :“ tlog2|V pGq|u.
For each non-root node v of TD and each 1 ď j ď lrwbd, we define the following.

1. Let Dv
lrwbd be any canonical limb rLDrpbagDpvq, ys with an unmarked vertex y in

TDrpbagDpvq, bagDpvqs

represented by a marked vertex in pbagDpvq; and let T vlrwbd be the rooted split decomposition tree

of Dv
lrwbd.

2. Let

αvj :“ maxtf1pD
v
j , wq : w is a non-root node of T vj u.

If αvj ‰ j, then let Dv
j´1 “ Dv

j and T vj´1 :“ T vj . If αvj “ j, then
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(a) if (T vj has a node with at least 3 children w such that f1pD
v
j , wq “ j) or (T vj has two incom-

parable nodes v1 and v2 with a j-critical node v1 and fpDv
j , v2q “ j) or (T vj has no j-critical

nodes), then let Dv
j´1 “ Dv

j and T vj´1 :“ T vj .

(b) if T vj has the unique j-critical node vc, then let Dv
j´1 :“ rLDv

j
rbagDv

j
pvcq, ys with y any un-

marked vertex in TDv
j
rbagDv

j
pvcq, pbagDv

j
pvcqs represented by a marked vertex in bagDv

j
pvcq

and let T vj´1 be the rooted split decomposition tree of Dv
j´1.

The following can be derived from Theorem 5.11 and Proposition 5.10.

Proposition 9.6. Let 0 ď j ď lrwbd. Let v be a non-root node of TD such that αvj ď j and T vj contains

neither

• a node with at least 3 children w such that f1pD
v
j , wq “ αvj , nor

• two incomparable nodes v1 and v2 such that v1 is a αvj -critical node and f1pD
v
j , v2q “ αvj .

Let w be a αvj -critical node of T vj . Then w is the unique αvj -critical vertex of T vj . Moreover, lrwpxDv
j q “

αvj ` 1 if and only if lrwpzDv
j´1q “ f2pD

v
j , wq “ αvj .

Proof. Let k :“ αvj . We first show that w is the unique k-critical node of T vj . Let w1 be a k-critical

node of T vj that is distinct from w. From the second assumption, w and w1 must be comparable in T vj .

Without loss of generality, we may assume that w is a descendant of w1 in T vj . Then by the definition

of k-criticality, w1 has a child w2 such that f1pD
v
j , w

2q “ k and w is not a descendant of w2 in T vj ,

contradicting to the second assumption.

Now we claim that lrwpxDv
j q “ k ` 1 if and only if f2pD

v
j , wq “ k. By the assumption on k and

by Theorem 5.11 lrwpxDv
j q ď k ` 1. Also, by definition one can see that Dv

` “ Dv
j for all k ď ` ď j.

Let w1 and w2 be the two children of w such that f1pD
v
j , w1q “ f1pD

v
j , w2q “ k. By assumption for

all the other children w1 of w we have f1pD
v
j , w

1q ď k ´ 1. So, by Theorem 5.11 it remains to check

fDv
j
pbagDv

j
pwq, pbagDv

j
pwqq “ f2pD

v
j , wq “ lrwpzDv

j´1q to conclude whether lrwpxDv
j q “ k ` 1. Therefore,

we can conclude that lrwpzDv
j´1q “ f2pD

v
j , wq “ k implies that lrwpxDv

j q ě k ` 1.

For the forward direction, suppose that lrwpxDv
j q ě k ` 1. Since T vj contains no node having

at least three children w such that f1pD
v
j , wq “ k, by Theorem 5.11, there should exist a k-critical

node vc of T vj such that f2pD
v
j , vcq “ k. Since w is the unique k-critical node of T vj , w “ vc and

f2pD
v
j , wq “ lrwpzDv

j´1q “ k, as required.

Let v be a non-root node of TD and let k :“ maxtlrwp{Dv
lrwbdq : v is a non-root vertex of TDu. From

Theorem 5.11, we can easily observe that k ď lrwp {Dv
lrwbdqq ď k ` 1. We discuss now how to determine

it precisely. By Proposition 9.6, the computation of lrwp {Dv
lrwbdqq can be reduced to the computation of

f2pD
v
lrwbd, vcq where vc is the unique k-critical node of Dv

lrwbd. In order to compute it, we can recursively

call the algorithm on zDv
k´1. However, we will prove that these recursive calls are not needed if we

compute more than the linear rank-width.

Lemma 9.7. Let v be a non-root vertex of TD. Let i be an integer such that 0 ď i ă lrwbd. If αvi ď i,

then αvi`1 ď i` 1.

Proof. Suppose that αvi`1 ě i` 2. By the definition of Dv
i , Dv

i “ Dv
i`1 and therefore, αvi ě i` 2, which

yields a contradiction.
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Before describing the algorithm we prove the following which states that the choice of canonical

limbs in the definition of the Dv
i ’s is not important.

Proposition 9.8. Let v be a non-root vertex of TD. Let i be an integer such that 0 ď i ď lrwbd and

αvi ď i. Let w be a non-root node of T vi . Then, αwi ď i and Dw
i is locally equivalent to rLDv

i
rpbagDv

i
pwq, ys

for any unmarked vertex y in TDv
i
rpbagDv

i
pwq, bagDv

i
pwqs represented by a marked vertex in pbagDv

i
pwq.

Proof. Let w be a non-root vertex of T vi . By Fact 1, for each i ` 1 ď j ď lrwbd, w P V pT vj q and

hence w P V pTDq. Moreover, since αvi ď i, by Lemma 9.7, αvj ď j for all i ` 1 ď j ď tlog2|V pGq|u.
Now, we claim that for each i ď j ď lrwbd and each unmarked vertex y in TDv

j
rpbagDv

j
pwq, bagDv

j
pwqs

represented by a marked vertex in pbagDv
j
pwq, rLDv

j
rpbagDv

j
pwq, ys is locally equivalen to Dw

j . We prove

it by induction on plrwbd´ jq.

If j “ lrwbd, then Dv
lrwbd and Dw

lrwbd are both limbs in D, and hence by Proposition 5.17, we can

conclude that Dw
lrwbd is locally equivalent to a canonical limb

rLDv
lrwbd
rpbagDv

lrwbd
pwq, ys

with an unmarked vertex y in TDv
j
rpbagDv

j
pwq, bagDv

j
pwqs represented by a marked vertex in pbagDv

j
pwq.

Now let us assume that i ď j ă lrwbd, and let y be an unmarked vertex in

TDv
j`1
rpbagDv

j`1
pwq, bagDv

j`1
pwqs

represented by a marked vertex in pbagDv
j`1
pwq. By induction hypothesis Dw

j`1 is locally equivalent to

rLDv
lrwbd
rpbagDv

lrwbd
pwq, ys. Assume first that αvj`1 ď j. Then, by Proposition 5.17 and Lemma 4.8 we can

conclude that αwj`1 ď j. Since by definition in that case Dv
j “ Dv

j`1 and Dw
j “ Dw

j`1, we can conclude

the statement.

Assume now that αvj`1 “ j ` 1. Since αvj`1 “ j ` 1 and αvj ď j, T vj`1 should have a unique

pj ` 1q-critical vertex vc such that Dv
j :“ rLDv

j`1
rbagDv

j`1
pvcq, ycs with yc some unmarked vertex in

TDv
j`1
rbagDv

j`1
pvcq, pbagDv

j`1
pvcqs represented by a marked vertex in bagDv

j`1
pvcq. Let y be any unmarked

vertex in TDv
j`1
rpbagDv

j`1
pwq, bagDv

j`1
pwqs represented by a marked vertex in pbagDv

j`1
pwq and let y1 be

any unmarked vertex in TDv
j
rpbagDv

j
pwq, bagDv

j
pwqs represented by a marked vertex in pbagDv

j
pwq. We

distinguish two cases: either vc is incomparable with w in T vj`1, or vc is a descendant of w in T vj`1. Since

w is a vertex of T vj , w cannot be a descendant of vc.

Case 1. vc is incomparable with w in T vj`1.

Since vc is incomparable with w in T vj`1 and vc is the unique pj ` 1q-critical vertex in T vj`1, there is

no pj`1q-critical vertex in Twj`1, which is by inductive hypothesis and Lemma 4.8 the split decomposition

tree of rLDv
j`1
rpbagDv

j`1
pwq, ys. Hence, Dw

j “ Dw
j`1 by definition. By Proposition 5.17 rLDv

j
rpbagDv

j
pwq, y1s

is locally equivalent to rLDv
j`1
rpbagDv

j`1
pwq, ys. Hence, we can conclude that Dw

j is locally equivalent to

rLDv
j
rpbagDv

j
pwq, y1s because Dw

j “ Dw
j`1 and Dw

j`1 is locally equivalent to rLDv
j`1
rpbagDv

j`1
pwq, ys by

inductive hypothesis.

Case 2. vc is a descendant of w in T vj`1.

If vc is a child of w in T vj`1 and the bag bagDv
j`1
pwqq has size 3, then T vj cannot contain w as a node,

and this contradicts the assumption that w is a node of T vj . Therefore, we may assume that either

1. |bagDj`1
pwq| ě 4, or

2. |bagDj`1
pwqq| “ 3 and vc is not a child of w in T vj`1.
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This implies that vc is a node of the split decomposition tree of D1 :“ rLDv
j`1
rpbagDv

j`1
pwq, ys,

and by Proposition 5.16, rLDv
j
rpbagDv

j
pwq, y1s is locally equivalent to rLD1rbagD1pvcq, zs where z is any

unmarked vertex in TD1rbagD1pvcq, pbagD1pvcqs represented by a marked vertex in bagD1pvcq. By in-

ductive hypothesis, we know that Dw
j`1 is locally equivalent to D1, and by definition vc is also the

unique critical node of Twj`1, and moreover Dw
j “

rLDw
j`1
rbagDw

j`1
pvcq, z

1s for some unmarked vertex z1 in

TDw
j`1
rbagDw

j`1
pvcq, pbagDw

j`1
pvcqs represented by a marked vertex in bagDw

j`1
pvcq. Hence, by Proposition

5.18 rLD1rbagD1pvcq, zs is locally equivalent to Dw
j , that is, rLD1rbagD1pvcq, zs is locally equivalent to Dw

j ,

and this concludes the proof.

Now we are ready to present and analyze our algorithm. We describe the algorithm explicitly in

Algorithm 1. First, we modify the given decomposition as follows. For the canonical split decompo-

sition D1 of a distance-hereditary graph G, we modify D1 into a canonical split decomposition D of

a connected distance-hereditary graph by adding a bag R and making it adjacent to a bag R1 of D1

so that fpD,R,DrV pD1qsq “ lrwpGq. So, if we root TD at the node r such that bagDprq “ R, then

lrwpGq “ lrwp{Dr1
lrwbdq with bagDpr

1q “ R1. We call pD,Rq a modified canonical split decomposition of G.

The basic strategy is to compute lrwpxDv
i q for all non-root vertices v of TD and all integers i such that

αvi ď i, and we will use Proposition 9.6 and the canonical split decompositions Dv
j for j ď i.

Proof of Theorem 9.1. LetG be a connected distance-hereditary graph. We recall that lrwbd “ tlog2|V pGq|u.
We first show that Algorithm 1 correctly computes the linear rank-width of G. Let pD,Rq be a modified

canonical split decomposition of G and let r1 be the unique neighbor node of the root of TD. As we

observed, we have that lrwpGq “ lrwp{Dr1
lrwbdq, and we want to prove that βr

1

t “ lrwp{Dr1
lrwbdq. We claim

that for each non-root node v of TD and each 0 ď i ď lrwbd such that αvi ď i, Algorithm 1 βvi “ lrwpxDv
i q.

Suppose v is a non-root leaf node of TD. Since every canonical limb is connected by Lemma 5.5,

Dv
lrwbd is isomorphic to either a complete graph or a star and it has moreover at least two unmarked

vertices. Thus, lrwp{Dv
lrwbdq “ 1, and by construction for each 0 ď i ď lrwbd, Dv

i “ Dv
lrwbd, and so Line 3

correctly puts these values.

We assume that v is a non-root node in TD that is not a leaf, and for all its descendants v1 and

integers 0 ď ` ď lrwbd such that αv
1

` ď `, βv
1

` is computed (i.e. βv
1

` ‰ 0). We claim that Line 8- 12

recursively computes Dv
i for each i where αvi ď i. We first remark that for computing αvi of T vi , we use

the fact that for each non-root node w of T vi , αwi ď i and lrwpyDw
i q “ f1pD

v
i , wq from Proposition 9.8.

So, αvi “ maxtβwi : w a non-root node w of T vi u.

Let i P t0, 1, . . . , lrwbdu such that αvi ď i. If αvi ă i, then by the definition, T vi´1 “ T vi and thus, we

take Dv
i´1 “ Dv

i . We may assume that αvi “ i. If either T vi has a node with at least 3 children v1 such

that βv
1

i “ i, or T vi has two incomparable nodes v1 and v2 with v1 an i-critical node and βv2i “ i, then

from the definition of Dv
i , we have that Dv

i´1 “ Dv
i and for all 0 ď ` ď i ´ 1, αv` “ i ą `. Since we do

not need to evaluate βv` when αv` ą `, we stop the loop. If T vi has no i-critical node, then βvi “ αvi “ i,

that is, the βvi value cannot be increased by one. In this case, we also stop the loop. These 3 cases are

the conditions in Line 9.

Suppose neither of the conditions in Line 9 occur. Then by Proposition 9.6, T vi has a unique i-critical

node vc and Dv
i´1 is equal to some canonical limb rLDv

i
rbagDv

i
pvcq, ys where y is some unmarked vertex

in TDv
i
rbagDv

i
pvcq, pbagDv

i
pvcqs represented by a marked vertex in bagDv

i
pvcq. So, we compute Dv

i´1 from

Dv
i , the rooted split decomposition tree T vi´1 of Dv

i´1 and compute subsequently αvi´1. Notice that for

all αvi´1 ď ` ď i´ 1, Dv
` “ Dv

i´1 and thus it is sufficient to deal with Dv
αv

i´1
in the next iteration. Thus,

Line 8- 12 correctly computes canonical split decompositions Dv
i for each i where αvi “ i.
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Algorithm 1: Compute LRW of Connected DH graphs

Input: A connected distance-hereditary graph G

Output: The linear rank-width of G

1 Compute a modified canonical split decomposition pD,Rq of G.

2 Let βvi Ð 0 for each non-root node v and each 0 ď i ď lrwbd “ tlog2|V pGq|u
3 For each non-root leaf node v in TD and each 0 ď i ď lrwbd, let βvi Ð 1

4 while TD has a non-root node v such that βvlrwbd is not computed do

5 Let v a non-root node in TD such that βvlrwbd “ 0, but βv
1

lrwbd ‰ 0 for each child v1 of v

6 Compute Dv
lrwbd, T

v
lrwbd and αvlrwbd

7 k Ð αvlrwbd, iÐ k, and let S be a stack

8 while (true) do

9 if (T vi has a node with at least 3 children v1 such that βv
1

i “ i) or (T vi has two

incomparable nodes v1 and v2 with v1 an i-critical node and βv2i “ i) or (T vi has no

i-critical nodes) then

10 Stop this loop

11 Find the unique i-critical node vc of T vi ;

12 Compute Dv
i´1, T vi´1 and αvi´1

13 pushpS, iq and iÐ αvi´1

14 if (T vi has a node with at least 3 children v1 such that βv
1

i “ i) or (T vi has two incomparable

nodes v1 and v2 with v1 an i-critical node and βv2i “ i) then βvi Ð i` 1 else βvi Ð i

15 while pS ‰ Hq do

16 j Ð pullpSq

17 if βvi “ j then βvj Ð j ` 1 else βvj Ð j

18 for `Ð i` 1 to j ´ 1 do

19 βv` Ð βvi

20 iÐ j

21 for j Ð k ` 1 to lrwbd do

22 βvj Ð βvk

23 Let r1 be the unique neighbor of the root and return βr
1

t

Now we verify the procedure of computing βvj in Line 14. Let 0 ď ` ď t be the minimum integer

such that αv` “ `. If ` “ 0, then βv` “ 1. Suppose ` ě 1. Then since αv`´1 ą `´ 1, we have that

1. βv` “ ` ` 1 if either T v` has a node with at least 3 children v1 such that βv
1

` “ ` or T v` has two

incomparable nodes v1 and v2 with v1 an i-critical node and βv2i “ i,

2. βv` “ ` if otherwise.

So, Line 14 correctly computes it.

In the loop in Line 8, we use a stack to pile up the integers i such that T vi has the unique i-critical

node. When T vi has the unique i-critical node, then by Proposition 9.6,

1. βvi “ i` 1 if βvi´1 “ i, and

2. βvi “ i if βvi´1 ď i´ 1.
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So, from the lower value in the stack we can compute βvi recursively. From Line 15 to Line 21,

Algorithm 1 computes all βvi correctly where αvi ď i, and in particular, it computes βvt . Therefore, at

the end of the algorithm, it computes βr
1

t that is equal to the linear rank-width of G.

Let us now analyze its running time. Let n and m be the number of vertices and edges of G. Its

canonical split decomposition can be computed in time Opn`mq by Theorem 4.4, and one can of course

a modified canonical split decomposition pD,Rq in constant time.

For each node v and each 0 ď j ď lrwbd, βvj can be computed in time Opn ¨ log2 nq. Line 5 can be

done in time Opnq. For computing αvi from T vi , for each non-root vertex w of T vi , we call the value βwi .

Since αvi is the maximum βwi over all non-root nodes of T vi , Line 6 or 12 can be done in Opnq time.

The loop in Line 8 runs lrwbd times, and all the steps in Line 8 can be implemented in time Opnq.
Also, Lines 14-21 can be done in time Opnq. Since the number of bags in D is bounded by Opnq (see

[99, Lemma 2.2]), we conclude that this algorithm runs in time Opn2 ¨ log2 nq.

Corollary 9.9. For every connected n-vertex distance-hereditary graph G, we can compute in time

Opn2 ¨ log2 nq a layout of the vertices of G witnessing the linear rank-width of G.

Proof. We establish a linear layout witnessing lrwpGq “ k. Let G be a connected distance-hereditary

graph. Let D be a modified canonical split decomposition of G with the root bag R. We first run the

algorithm computing lrwpGq and assume that for each non-root vertex v of TD and each 0 ď i ď lrwbd

such that αvi ď i, βvi is computed.

Then using the values βvlrwbd, we can search for the path depicted in Lemma 5.15, and this can be done

in linear time. Now for all the subtrees pending on that path, the linear rank-width of the corresponding

limbs are at most k ´ 1. We recursively apply the same algorithm on each of them. Then, similarly in

the backward direction of Theorem 5.11, we can output a linear layout witnessing lrwpGq “ k.

Note that the total number of the recursive calls is bounded by the number of bags. Therefore, we

make at most Opnq recursive calls and in each call, the path is found in Opnq. So, if all of the βvi ’s are

computed before, then we can compute an optimal layout in time Opn2q.

9.3 Path-width of matroids with branch-width at most 2

Now we prove that the path-width of matroids of branch-width at most 2 can be computed in

polynomial time, provided that the matroid is given by an independent set oracle. Note that by Corol-

lary 1.14, every matroid of branch-width at most 2 is binary. We use the direct relation between binary

matroids and bipartite graphs, mentioned in Section 2 [150].

Proof of Corollary 9.2. Let M be a matroid of branch-width at most 2 and assume that an independent

oracle of M is given. We first run a greedy algorithm to find a base B of M [156, Section 1.8] in time

Op|EpMq|q. After choosing one base B, for each e P B and e1 P EpMqzB, we test whether pBzteuqYte1u

is again a base using the independent set oracle, and we create the fundamental graph G with respect

to M in time Op|EpMq|2q. By Proposition 2.7, the rank-width of G is at most 1. Using Theorem 9.1,

we can compute the linear rank-width of G in time Op|EpMq|2 ¨ log2|EpMq|q, which is the same as

pwpMq ´ 1.
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Chapter 10. Linear rank-width 1 vertex deletion

We discuss a graph modification problem related to graphs of linear rank-width 1, which are called

thread graphs. We recall the problem.

Thread Vertex Deletion (Linear Rank-Width 1 Deletion)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S Ď V pGq of size at most k such that GzS is a thread graph?

We prove the following.

Theorem 10.1. For a fixed k and a given graph G with n vertices, the Thread Vertex Deletion problem

can be solved in Op8k ¨ n8q time.

Theorem 10.2. There exists a polynomial-time algorithm that transforms a given instance pG, kq of the

Thread Vertex Deletion problem into an instance pG1, k1q such that

1. pG, kq is a Yes-instance if and only if pG1, k1q is a Yes-instance,

2. k1 ď k and |V pG1q| ď Opk33q.

We use the induced subgraph obstructions for thread graphs in Theorem 5.22. We recall that the

obstructions consist of a house, a gem, a domino, and induced cycles of length at least 5 in Figure 5.1,

which are the induced subgraph obstructions for distance-hereditary graphs [9], and 14 induced subgraph

obstructions for thread graphs that are distance-hereditary, depicted in Figure 5.7. We define ΩU as the

set of graphs in Figure 5.7. Because the following sets are frequently used, we define that

• ΩT :“ thouse, gem, domino, holeu Y ΩU , and

• ΩN :“ thouse, gem, domino, C5, C6, C7, C8u Y ΩU .

One of the main ingredient is to investigate a new class of graphs, called necklace graphs, which

are close to thread graphs. Briefly, necklace graphs are locally thread graphs, but they may have a

long induced cycle. We show that every connected graph having no induced subgraph in ΩN is either a

necklace graph or a thread graph, and it is easy to find a minimum vertex set on ΩN -free graphs whose

removal makes a given graph a thread graph. We first use a simple branching algorithm to remove the

obstructions in ΩN with the time complexity O˚p8kq because every graph in ΩT has at most 8 vertices.

(The O˚ notation indicates that polynomial factors of an input size are suppressed.) If the instance does

not have an obstruction in ΩN , then it is an ΩN -free graph, and we compare the remaining budget with

the minimum deleting set in the ΩN -free graph to decide whether it is a Yes-instance.

To obtain a polynomial size kernel, we adapt an idea used to obtain a polynomial size kernel for

Proper Interval Vertex Deletion due to Fomin, Saurabh, and Villanger [90]. When a finite list

of graphs is fixed, they use Sunflower lemma to find a small vertex set T in G satisfying that a set is a

minimal hitting set for the list in G if and only if it is a minimal hitting set for the list in the subgraph

of G induced on T . From the property of T , automatically, the remaining part obtained by removing T
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has no induced subgraph in the list. For our purpose, this will be an ΩN -free graph, and after adding at

most one vertex from each component of GzT , we obtain a vertex subset T 1 of size polynomial in k such

that GzT 1 is a thread graph. We analyze how to shrink the remaining part.

For a graph G, a set S Ď V pGq is called a thread vertex deletion set if GzS is a thread graph.

We recall thread blocks and thread graphs defined in Section 1.1. A thread graph is a graph that

is either an one vertex graph or G “ P d BP for some directed path P and some set of thread blocks

BP mergeable with P . In the next subsection, we study graphs which are defined using directed cycles

instead of directed paths.

10.1 Necklace graphs

We generalize the construction of thread graphs from directed paths to directed cycles. A connected

graph G is a necklace graph if there exist a directed cycle C, called the underlying directed cycle, and

some set of thread blocks BC mergeable with C such that G “ C d BC .

Our FPT algorithm and the construction of a polynomial size kernel rely deeply on the following

characterization of ΩN -free graphs.

Theorem 10.3. A connected ΩN -free graph is either a thread graph or a necklace graph whose underlying

directed cycle has length at least 9.

We use the following lemma several times to find one of the forbidden graphs in each induction step.

Lemma 10.4. Let k ě 4 be an integer. Let G be a graph and let v P V pGq such that Gzv is a path

p1p2 ¨ ¨ ¨ pk, and v is adjacent to both p1 and pk in G. Then G contains an induced subgraph isomorphic

to a house, a gem, a domino, or an induced cycle of length at least 5.

Proof. The neighbors of v divide Gzv into edge-disjoint paths I “ tP1, . . . , Pmu where the end vertices

of each Pi are two neighbors of v and all internal vertices of Pi have degree 2 in G. If one of the path in

I has length at least 3, then together with v, G contains an induced cycle of length at least 5. We may

assume that each path in I has length at most 2.

If there exist two consecutive paths Pi, Pi`1 such that one has length 1 and the other has length 2,

then G contains a house. So, we may assume that all paths P1, P2, . . . , Pm have the same length. If all

paths in I have length 1, then G contains a gem because k ě 4. If all paths in I have length 2, then

G contains a domino. Therefore, we conclude that G has an induced subgraph isomorphic to either a

house, a gem, a domino or an induced cycle of length at least 5.

Let G be a connected ΩN -free graph and suppose that G is not a thread graph. Since G is ΩN -free

and it is not a thread graph, by Theorem 5.22, G has an induced subgraph isomorphic to Ck for some

k ě 9. We prove by induction on |V pGq| that if C is a shortest cycle among induced cycles of length at

least 9 in G, then G is a necklace graph whose underlying directed cycle is C. Let C :“ pv1, v2, . . . , vk, v1q

be a shortest cycle among induced cycles of length at least 9 in G and we regard it as a directed cycle

where for each 1 ď j ď k, vjvj`1 is an arc.

If G “ C, then we are done because C itself is a necklace graph with the underlying directed cycle

C. We may assume that |V pGq| ą |V pCq|. We may choose a vertex v P V pGqzV pCq such that Gzv is

connected. Clearly, Gzv is again ΩN -free graph, and C is a shortest cycle among induced cycles of length

at least 9 in Gzv. By the induction hypothesis, there exists some set of thread blocks BC mergeable with
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C such that Gzv “ C d BC . The remaining part of this section devotes to prove that G “ C d B1C for

some set of thread blocks B1C mergeable with C.

For convenience, let vk`1 :“ v1 and vk`2 :“ v2. Let BC :“ tBpx, yq : xy is an arc of Cu such that

for each 1 ď j ď k, Bpvj , vj`1q is a thread block pBj , σj , `jq with a linear layout σj and a labelling `j .

We define that

S :“ thouse, gem, domino,C5, C6, . . . , Ck´1u Y ΩU ,

M :“ tBpvj , vj`1q : v has a neighbor in V pBjqztvj , vj`1uu.

The proof consists of three steps.

Lemma 10.5. If there are two non-adjacent neighbors of v on C, then G contains an induced subgraph

isomorphic to a graph in S.

Lemma 10.6. IfM contains at least two thread blocks of BC , then either G contains an induced subgraph

isomorphic to a graph in S or G is a necklace graph whose underlying directed cycle is C.

Lemma 10.7. If the neighbors of v are contained in one thread block of BC , then either G contains an

induced subgraph isomorphic to a graph in S or G is a necklace graph whose underlying directed cycle is

C.

Using Lemmas 10.5 and 10.6 and excluding some small cases, we can show that the neighbors of v

should be contained in one thread block. Then, with Lemma 10.7, we conclude our claim.

For an induced path P of a graph G and v P V pGqzV pP q, we say pP, vq is a bad pair in G if P has

length ` where 3 ď ` ď k ´ 3, and v is adjacent to the end vertices of P . Lemma 10.4 tells us that if G

has a bad pair pP, vq, then G contains an induced subgraph isomorphic to a graph in S.

We first prove Lemma 10.5.

Proof of Lemma 10.5. Suppose that v has two neighbors on C that are not consecutive. Let I “ ti :

vvi P Eu. If there exist two vertices vi, vj in I such that one of the two paths from vi to vj in C has

length ` where 3 ď ` ď k ´ 3, then the path together with v is a bad pair in G.

By the assumption, there exists two distinct vertices vi, vj in I where the distance from vi to vj on

C is 2. Therefore, G contains an induced subgraph isomorphic to either α1 or α4 which are in S.

To prove Lemma 10.6, we need to analyze several cases.

Lemma 10.8. If Bpvj , vj`1q PM for some 1 ď j ď k and v is adjacent to a vertex in V pCqztvj´1, vj , vj`1, vj`2u,

then G contains an induced subgraph isomorphic to a graph in S.

Proof. Let z P V pBjqztvj , vj`1u be a neighbor of v and let w P V pCqztvj´1, vj , vj`1, vj`2u be a neighbor

of v. Since the maximum distance between two vertices in C is tk{2u, there exists an induced path P

from w to z in Gzv having length ` where 3 ď ` ď tk{2u` 1 ď k ´ 3. Thus, pP, vq is a bad pair, and by

Lemma 10.4, G contains an induced subgraph isomorphic to a graph in S.

Lemma 10.9. If Bpvj , vj`1q PM for some 1 ď j ď k and vvj´1 P E, vvj`1 R E, then G contains an

induced subgraph isomorphic to a graph in S.

Proof. Let z P V pBjqztvj , vj`1u be a neighbor of v. See Figure 10.1 for the descriptions of cases. If

z has a label tRu or tL,Ru, then pvj´1vzvj`1, vjq is a bad pair in G. Let us assume that z has a

label tLu. Since vjvj`1 is an arc of the directed cycle C and by definition of thread blocks which is
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Figure 10.1: Two cases in Lemma 10.9.

`jpσ
´1
j p2qq ‰ tLu, z is not a pendant vertex adjacent to vj in Gzv, and therefore, there exists at least

one element z1 P V pBjq preceding z in the linear layout σj of Bpvj , vj`1q such that it has label tRu or

tL,Ru. From the previous case, we may assume that v is not adjacent to z1. Then pvj´1vzz
1vj`1, vjq

is a bad pair in G. Again, by Lemma 10.4, G contains an induced subgraph isomorphic to a graph in

S.

Lemma 10.10. If Bpvj´1, vjq, Bpvj , vj`1q PM for some 1 ď j ď k and vvj´1 R E and vvj`1 R E, then

G contains an induced subgraph isomorphic to a graph in S.

Proof. Let zj´1 P V pBj´1qztvj´1, vju and zj P V pBjqztvj , vj`1u be neighbors of v. If zj has a label tRu

or tL,Ru, then either pzj´1vzjvj`1, vjq or pvj´1zj´1vzjvj`1, vjq is a bad pair in G depending on the

adjacency between vj´1 and zj´1. We may assume that zj has a label tLu. Since zj is not a pendant

vertex adjacent to vj in Gzv, there exists at least one element z1j P V pBjqztvj , vj`1u preceding zj in the

linear layout of Bpvj , vj`1q that has a label tRu or tL,Ru. In this case, we have either pzj´1vzjz
1
jvj`1, vjq

or pvj´1zj´1vzjz
1
jvj`1, vjq is a bad pair in G depending on the adjacency between vj´1 and zj´1. Thus,

G contains an induced subgraph isomorphic to a graph in S, as required.

Lemma 10.11. If Bpvj´1, vjq P M for some 1 ď j ď k, vvj`1 P E and NGpvq Ď V pBj´1q Y

V pBjqztvj´1u, then either G contains an induced subgraph isomorphic to a graph in S or G is a necklace

graph whose underlying directed cycle is C.

Proof. Let zj´1 be a neighbor of v in V pBj´1qztvj´1, vju. If zj´1 has a label tL,Ru or tLu in Bpvj´1, vjq,

then pvj´1zj´1vvj`1, vjq is a bad pair in G, and we are done by Lemma 10.4. Thus, we may assume

that all neighbors of v in Bpvj´1, vjq have a label tRu, and are all pairwise non-adjacent. If there exists

a vertex z1j´1 with zj´1 ăσj´1
z1j´1 and a label tLu or tL,Ru, then pvj´1z

1
j´1zj´1vvj`1, vjq is a bad pair

in G. Since we can reorder between the vertices having the same neighbors in G, we may also assume

that all the neighbors of v in Bpvj´1, vjq are the last vertices in the order σj´1 before vj .

We forbid the following 4 configurations. See Figure 10.2 for the description of these configurations

(in this order).

1. v has a neighbor w in V pBjqztvj , vj`1u with `jpwq “ tRu.

- pzj´1vjvj`1w, vq is a bad pair in G.

2. There exists a vertex w of V pBjqztvj , vj`1u with `jpwq “ tL,Ru such that vw R E.

- pzj´1vvj`1w, vjq is a bad pair in G.

3. There exists a pair of vertices w1 and w2 in V pBjqztvj , vj`1u with vw1, vw2 R E, w1 ăσj
w2,

`jpw1q “ tRu, and `jpw2q “ tLu.

- pzj´1vvj`1w1w2, vjq is a bad pair in G.
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Figure 10.2: Forbidden configurations in Lemma 10.11.

4. There exists a pair of vertices w1 and w2 in V pBjqztvj , vj`1u with vw1 P E, vw2 R E, w1 ăσj w2,

`jpw1q “ tL,Ru, and `jpw2q “ tLu.

- pzj´1vw1w2, vjq is a bad pair in G.

In all of the four cases, by Lemma 10.4, G contains an induced subgraph isomorphic to a graph in S.

Now we may assume that G does not have any of these 4 configurations. In particular, by the forbidden

configurations (1) and (2), we may assume that all vertices in V pBjqztvj , vj`1u with a label tL,Ru are

adjacent to v, and all vertices in V pBjqztvj , vj`1u with a label tRu are not adjacent to v.

Let x be the first vertex of V pBjqztvj , vj`1u in the sequence `j . Note that x has no label tLu

because vjvj`1 is an arc of the directed cycle C. If x has a label tRu, then vw R E, and all vertices

in V pBjqztvj , vj`1u with a label tLu must be adjacent to v because of the forbidden configuration (3).

Similarly, if x has a label tL,Ru, then vw P E, and all vertices in V pBjqztvj , vj`1u with a label tLu must

be adjacent to v because of the forbidden configuration (4). It implies that all vertices in V pBjqztvj , vj`1u

with a label tLu or tL,Ru are adjacent to v.

Now we claim that

B1j´1 “ GrV pBj´1qzNGpvq Y tvjus

and

B1j “ GrV pBjq Y tvu YNGpvqs

are new thread blocks with the same end vertices. Clearly, B1j´1 is a thread block with the end vertices

vj´1 and vj because we just remove some vertices from V pBj´1qztvj´1, vju.

For B1j , we define a linear layout σ1j and a labeling `1j of B1j as follows. We take any linear layout σa

of the vertices of NGpvq X pV pBj´1qztvjuq. Let σb be the linear layout obtained from σj by removing vj

and vj`1. Let

σ1j :“ pvj , vq ‘ σa ‘ σb ‘ pvj`1q.

We define that

1. `1jpvjq :“ tRu and `1jpvj`1q :“ tLu,

2. `1jpvq :“ tL,Ru or tRu depending on vvj P E or not,

3. for all neighbors w of v in Bpvj´1, vjq, `
1
jpwq “ tLu, and

4. for all w P V pBjqztvj , vj`1u, `
1
jpwq :“ `jpwq.

Since all vertices in V pBjqztvj , vj`1u with a label tLu or tL,Ru are adjacent to v, v has no conflict with

vertices in the linear layout σj . Since all neighbors w of v in Bpvj´1, vjq are not adjacent to the vertices

in V pBjqztvj , vj`1u and are pairwise non-adjacent, we conclude that B1j is indeed a thread block with

the end vertices vj and vj`1.

Since there are no edges between V pB1j´1qztvj´1, vju and V pB1jqztvj , vj`1u, we conclude that G is

a necklace graph whose underlying directed cycle is C.
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Proof of Lemma 10.6. Suppose that M has at least two blocks.

If Bpvj , vj`1q PM for some 1 ď j ď k and v is adjacent to a vertex in V pCqztvj´1, vj , vj`1, vj`2u,

then by Lemma 10.8, G contains an induced subgraph isomorphic to a graph in S. We may assume that

if Bpvj , vj`1q PM for some 1 ď j ď k, then v has no neighbors in V pCqztvj´1, vj , vj`1, vj`2u.

Case 1. There exist two blocks Bpvp, vp`1q, Bpvq, vq`1q PM such that Bpvp, vp`1q, Bpvq, vq`1q are not

consecutive thread blocks.

Let zp P V pBpq and zq P V pBqq such that zp and zq are neighbors of v in G. Since Bpvp, vp`1q

and Bpvq, vq`1q are not consecutive, the distance between tvp, vp`1u and tvq, vq`1u on C is at least 1

and the longest possible distance between two vertices in C is at most tk{2u. Thus, Gzv has an induced

path from zp to zq of length ` where 3 ď ` ď tk{2u ` 2. Since k ě 9, by Lemma 10.4, G contains

an induced subgraph isomorphic to a house, a gem, a domino, or an induced cycle of length ` where

5 ď ` ď tk{2u` 4 ď k ´ 1.

Case 2. M contains exactly two blocks that are consecutive in Gzv.

Suppose that M “ tBpvp, vp`1q, Bpvp`1, vp`2qu . From the assumption, we may assume that v has

no neighbors on V pCqztvp´1, vp, vp`1, vp`2, vp`3u in G. Also, if v is adjacent to both vp and vp`2, then

G contains an induced subgraph isomorphic to either α1 or α4. So, we may assume that v is not adjacent

to both of vp and vp`2. Let zp`1 be the first vertex of V pBp`1qztvp`1, vp`2u that is adjacent to v. Let

zp be a neighbor of v in V pBpqztvp, vp`1u.

If v is adjacent to vp and not adjacent to vp`2 in G, then since v has a neighbor on Bpvp`1, vp`2q, by

Lemma 10.9, G contains an induced subgraph isomorphic to a graph in S. If v is adjacent to neither vp

nor vp`2 in G, then since v has neighbors on Bpvp, vp`1q and Bpvp`1, vp`2q, by Lemma 10.10, G contains

an induced subgraph isomorphic to a graph in S. At last, if v is not adjacent to vp and adjacent to vp`2

in G, then

NGpvq Ď V pBpq Y V pBp`1qztvpu,

and by Lemma 10.11, either G contains an induced subgraph isomorphic to a graph in S, or G is a

necklace graph whose underlying directed cycle is C.

Now we prove Lemma 10.7. We will use structural properties of distance-hereditary graphs in this

proof. For detailed incremental characterization of distance-hereditary graphs, we refer to [104]. We

denote by G` v the graph obtained from G by adding a new vertex v and new edges incident with v.

Proof of Lemma 10.7. Suppose that NGpvq Ď V pBjq for some 1 ď j ď k, and G has no induced subgraph

isomorphic to a graph in S. If NGpvq “ tvju, then we can extend the thread block Bpvj´1, vjq into a

thread block containing vj by putting it as the last second vertex. Suppose that NGpvq ‰ tvju.

We claim that GrV pBjq Y tvus is a thread block with the same end vertices vj and vj`1. If it is

true, then it directly implies that G is a necklace graph because v has no neighbors on the other thread

blocks except the vertices of C.

We regard GrV pBj´1q Y V pBjq Y V pBj`1q Y tvus as a graph obtained from the union of three

consecutive thread blocks by adding a vertex v. If it is not a thread graph, then it should have an

induced subgraph isomorphic to an induced cycle H of length at least 9 that contains v. However,

since vj and vj`1 are cut vertices in GrV pBj´1q Y V pBjq Y V pBj`1q Y tvus and v has no neighbors on

pV pBj´1q Y V pBj`1qqzV pBjq, H should be contained in Bj . But then Hzv is an induced path of length

at least 7, while the longest induced path in a thread block has length 3, it is a contradiction. Therefore,

GrV pBj´1q Y V pBjq Y V pBj`1q Y tvus is a thread graph.
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Let Dj be the canonical split decomposition of GrV pBj´1q Y V pBjq Y V pBj`1qs. We use one vertex

incremental characterization of canonical split decompositions of distance-hereditary graphs, developed

by Gioan and Paul [104]. For a distance-hereditary graph G and v R V , they characterize the conditions

for G ` v being distance-hereditary. Since GrV pBj´1q Y V pBjq Y V pBj`1q Y tvus is a thread graph

(especially, distance-hereditary graphs), its canonical split decomposition can be modified from Dj . The

new vertex v is placed in either

• (Case 1) a bag of Dj ,

• (Case 2) a new bag put between two bags of Dj , or

• (Case 3) a new bag put between two bags by splitting one bag of Dj .

If v is placed in a bag of Dj , then it implies that v and some vertex of Bpvj , vj`1q have the same

neighbors in G, and since NGpvq “ tvju, v is not placed in the bag containing vj . Thus, we can naturally

extend the linear layout and the labelling of Bpvj , vj`1q into GrV pBjq Y tvus. In Case 2 or 3, the new

bag containing v cannot be a star bag whose center is an unmarked vertex because Gzv is connected.

Therefore, depending on the type of the bag containing v, we can also naturally extend the linear layout

and the labelling of Bpvj , vj`1q into GrV pBjq Y tvus. For instance, if the new bag is a star bag and the

center is adjacent to the previous bag, then we give a label tLu on v. This extends the thread block

Bpvj´1, vjq with the vertex v, and G is again a necklace graph whose underlying cycle is C.

Now we prove the main result of this section.

Proof of Theorem 10.3. Let G be a connected ΩN -free graph and suppose that G is not a thread graph.

Since G is ΩN -free and it is not a thread graph, by Theorem 5.22, G has an induced subgraph isomorphic

to Ck for some k ě 9. We prove by induction on |V pGq| that if C is a shortest cycle among induced

cycles of length at least 9 in G, then G is a necklace graph whose underlying directed cycle is C. Let

C :“ pv1, v2, . . . , vk, v1q be a shorest cycle among induced cycles of length at least 9 in G and we regard

it as a directed cycle where for each 1 ď j ď k, vjvj`1 is an arc.

If G “ C, then we are done because C itself is a necklace graph with the underlying directed cycle

C. We may assume that |V pGq| ą |V pCq|. We may choose a vertex v P V pGqzV pCq such that Gzv is

connected. Clearly, Gzv is again ΩN -free graph, and C is a shortest cycle among induced cycles of length

at least 9 in Gzv. By the induction hypothesis, there exists some set of thread blocks BC mergeable with

C such that Gzv “ C d BC . We prove that G is a necklace graph whose underlying directed cycle is C.

For convenience, let vk`1 :“ v1 and vk`2 :“ v2. Let BC :“ tBpx, yq : xy is an arc of Cu such that

for each 1 ď j ď k, Bpvj , vj`1q is a thread block pBj , σj , `jq with a linear layout σj and a labelling `j .

We recall that

S “ thouse, gem, domino,C5, C6, . . . , Ck´1u Y ΩU ,

M “ tBpvj , vj`1q : v has a neighbor in V pBjqztvj , vj`1uu.

Since G is connected, v has at least one neighbor. Since G is S-free, by Lemma 10.5, v is adjacent

to at most two vertices of C and if v has two neighbors on C, then they must be consecutive. Also, by

Lemma 10.6, the number of indices j such that v has a neighbor on V pBjqztvj , vj`1u is at most 1.

Suppose that v has a neighbor on V pBjqztvj , vj`1u for some 1 ď j ď k. If v has a neighbor on

V pCqztvj´1, vj , vj`1, vj`2u, then by Lemma 10.8, Gi contains an induced subgraph isomorphic to a graph

in S. So, we may assume that v has no neighbors on V pCqztvj´1, vj , vj`1, vj`2u. If vvj´1 P EpGiq, then
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vvj`1 R EpGiq, and by Lemma 10.9, Gi contains an induced subgraph isomorphic to a graph in S. If

vvj`2 P EpGiq, then vvj´1, vvj R EpGiq, and therefore,

NGi
pvq Ď V pBjq Y V pBj`1qztvju.

By Lemma 10.11, either G contains an induced subgraph isomorphic to a graph in S, or G is a necklace

graph whose underlying directed cycle is C.

Therefore, we may assume that the neighbors of v on C are contained in tvj , vj`1u. So, NGi
pvq Ď

V pBjq and by Lemma 10.7, either G contains an induced subgraph isomorphic to a graph in S, or G is

a necklace graph whose underlying directed cycle is C.

We conclude that G is a necklace graph whose underlying directed cycle is C.

10.2 A fixed parameter tractable algorithm for Thread Vertex

Deletion

We prove that Thread Vertex Deletion is fixed parameter tractable.

Theorem 10.12. For a given graph G with n vertices, Thread Vertex Deletion can be solved in

time Op8k ¨ n8q.

Our algorithm is a branching algorithm that reduces a given instance to an ΩN -free graph. For this,

it suffices to hit all induced subgraphs isomorphic to a graph in ΩN by Theorem 10.3. As each graph

of ΩN has size at most 8, the announced complexity follows. It remains to prove that given an ΩN -free

graph, a minimum thread vertex deletion set can be found in polynomial time. In fact, we prove that

such a set has size at most one per component and identifying such a vertex requires polynomial time.

Lemma 10.13. Let G be a necklace graph. Then there exists a vertex v such that Gzv is a disjoint

union of connected thread graphs.

Proof. Let C be a directed cycle pv1, v2, . . . , vk, v1q where for each 1 ď j ď k, vjvj`1 is an arc. Suppose

that G “ C d BC for some set of thread blocks BC where BC “ tBpvj , vj`1q “ pBj , σj , `jq : 1 ď j ď ku.

Let vk`1 :“ v1.

We show that for each 1 ď i ď k, Gzvi is a disjoint union of a thread graph and one vertex graphs.

Without loss of generality, we assume that i “ 1. Let S be the set of all pendant vertices adjacent to v1

in G. We claim that GrV pGqzpS Y tv1uqs is a connected thread graph. Since S is a disjoint union of one

vertex graphs in Gzv1, it is enough to show the claim. Since vkv1 is an arc of C, the vertices of S are

contained in Bpvk, v1q.

Suppose that V pBkqzpSYtv1uq ‰ tvku. Since V pBkqzS has no pendant vertices adjacent to v1 in G,

the last vertex z in the linear layout σk except SYtv1u must have a label either tL,Ru or tLu. It is easy

to check that Bpvk, zq “ pV pBkqzpS Y tv1uq, σ
1
k, `

1
kq is again a thread block where σ1k is the restriction of

σk on V pBkqzpS Y tv1uq, and

`1kpxq “

#

`kpxq if x ‰ z

tLu if x “ z

If V pBkqzpSYtv1uq “ tvku, then we can regard Bpvk´1, vkq as the last thread block ofGrV pGqzpSYtv1uqs.

Similarly, if V pB1qzpS Y tv1uq “ tv2u, then we can regard Bpv2, v3q as the first thread block of

GrV pGqzpSYtv1uqs. If otherwise, we regard Bpv1, v2qrV pB1qzpSYtv1uqs as the first thread block. Let y
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be the first vertex in the linear layout σ1 except V pB1qzpSYtv1uq. We conclude that GrV pGqzpSYtv1uqs

is a thread graph on a directed path P where

P “

$

’

’

’

’

&

’

’

’

’

%

v2v3 ¨ ¨ ¨ vk if V pBkqzSztv1u “ tvku and V pB1qzSztv1u “ tv2u,

yv2v3 ¨ ¨ ¨ vk if V pBkqzSztv1u “ tvku and V pB1qzSztv1u ‰ tv2u,

v2v3 ¨ ¨ ¨ vkz if V pBkqzSztv1u ‰ tvku and V pB1qzSztv1u “ tv2u,

yv2v3 ¨ ¨ ¨ vkz otherwise.

From Lemma 10.13, we can find a minimum thread vertex deletion set on necklace graphs in poly-

nomial time. To find such a set in polynomial-time, we use the following lemma.

Lemma 10.14. Let G be a necklace graph whose underlying directed cycle has length at least 9 and let

v P V pGq. For a positive integer i, let Nipvq be the set of vertices z whose distance from v is exactly i in

G. Then Grtvu YN1pvq YN2pvq YN3pvqs is a thread graph containing two consecutive thread blocks of

G. Moreover, every cut vertex of Grtvu YN1pvq YN2pvq YN3pvqs is a vertex of the underlying directed

cycle.

Proof. Suppose that there exist a directed cycle C :“ pv1, v2, . . . , vk, v1q where for each 1 ď j ď k, vjvj`1

is an arc, and some set of thread blocks BC where BC “ tBpvj , vj`1q “ pBj , σj , `jq : 1 ď j ď ku, such

that G “ C d BC . Without loss of generality, we may assume that v P V pB1q.

First assume that v “ v1. Then N1pvq contains all vertices with a label tLu or tL,Ru in B1. Also,

N2pvq contains all vertices with a label tRu in B1, and therefore

B1 Ď tv1u YN1pv1q YN2pv1q.

Similarly,

Bk Ď tv1u YN1pv1q YN2pv1q.

So, Grtv1u Y N1pv1q Y N2pv1qs contains two consecutive thread blocks of G. By the same reason, it is

not hard to observe that Grtv2u YN1pv2q YN2pv2qs contains two consecutive thread blocks B1 and B2.

Now suppose that v P V pB1qztv1, v2u. Since N1pvq contains one of v1 and v2, by the previous case,

we can observe that GrtvuYN1pvq YN2pvq YN3pvqs contains two consecutive thread blocks in G. Since

C has length at least 9, Grtvu YN1pvq YN2pvq YN3pvqs cannot contain all vertices of C, and it implies

that Grtvu YN1pvq YN2pvq YN3pvqs is a thread graph.

Now we claim that every cut vertex of GrtvuYN1pvqYN2pvqYN3pvqs is a vertex of the underlying

directed cycle. Since Grtvu YN1pvq YN2pvq YN3pvqs is a thread graph with at least two thread blocks,

there exists a cut vertex w of it. Suppose that w P V pBjqztvj , vj`1u for some 1 ď j ď k. We first

show that vj , vj`1 P V pGrtvu Y N1pvq Y N2pvq Y N3pvqsq. If v P V pBjq, then this is clear because

Grtvu Y N1pvq Y N2pvqs contains Bj as an induced subgraph. We may assume that v R V pBjq. Since

GrtvuYN1pvqYN2pvqYN3pvqs is connected, without loss of generality, GrtvuYN1pvqYN2pvqYN3pvqs

contains vj . However, since GrtvuYN1pvqYN2pvqYN3pvqs contains w, GrtvuYN1pvqYN2pvqs contains

vj , and it implies that Grtvu YN1pvq YN2pvq YN3pvqs contains vj`1 as well. We conclude that both vj

and vj`1 are contained in V pGrtvu YN1pvq YN2pvq YN3pvqsq.

The vertices vj and vj`1 are on the same component of GrtvuYN1pvqYN2pvqYN3pvqszw as they are

adjacent. Then all vertices of V pBjqzw are contained in the same component of GrtvuYN1pvqYN2pvqY

N3pvqszw, contradicting to the assumption that w is a cut vertex of Grtvu Y N1pvq Y N2pvq Y N3pvqs.

Therefore, w P V pCq.
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Proposition 10.15. Let G be an ΩN -free graph with n vertices and m edges. We can compute the

minimum thread vertex deletion set of G in time Opn`mq.

Proof. We remark that each component ofG is either a thread graph or a necklace graph whose underlying

directed cycle has length at least 9. For each component H of G, we test whether H is a thread graph

or not in time Op|V pHq|` |EpHq|q using Theorem 5.23. If H is a thread graph, then we do not need to

remove any vertex from it. If H is a necklace graph, then we need to remove at least one vertex from it

to make G a thread graph. Also, by Lemma 10.13, it is sufficient to remove one vertex on the underlying

cycle to make H a disjoint union of thread graphs. Thus, the number of non-thread components are

exactly the minimum size of thread vertex deletion set of G.

To identify a deletion set, let H be a necklace graph whose underlying cycle has length at least 9.

Choose any vertex v in H, and for a positive integer i, let Nipvq the set of vertices z whose distance from

v is exactly i in H. Then by Lemma 10.14, HrtvuYN1pvqYN2pvqYN3pvqs is a thread graph containing

two consecutive thread blocks of G, and its cut vertex is a vertex of the underlying directed cycle. We

compute Hrtvu YN1pvq YN2pvq YN3pvqs in time Op|V pHq|` |EpHq|q using breadth-first search. Then

we can find a cut vertex of Hrtvu Y N1pvq Y N2pvq Y N3pvqs in time Op|V pHq| ` |EpHq|q; for instance

we use the algorithm by Hopcroft and Tarjan [112]. Since we proceed in time Op|V pHq| ` |EpHq|q per

each component H, we can find a minimum thread deletion set in time Op|V pGq|` |EpGq|q.

Proof of Theorem 10.12. Let pG, kq be an instance of the Thread Vertex Deletion problem. The first

phase of the algorithm is to find an induced subgraph of G that is isomorphic to a graph in ΩN and

branch by removing one of the vertices in the subgraph. Because the maximum size of graphs in ΩN is 8,

we can find such a vertex subset in time Opn8q if exists. If no such vertex subset is found, the remaining

graph is ΩN -free and the algorithm proceeds to the next phase. After the branching algorithm, we

transform the given instance pG, kq into at most 8k sub-instances pG1, k1q such that each sub-instance

consists of an ΩN -free graph G1 and a remaining budget k1. It totally takes a time 8k ¨n8. Clearly, pG, kq

is a Yes-instance if and only if one of sub-instances pG1, k1q is a Yes-instance.

Let pG1, k1q be a sub-instance obtained from the branching algorithm. Since G1 is ΩN -free, by

Theorem 10.3, each connected component of G1 is either a connected thread graph or a necklace graph

on a directed cycle of length at least 9. By Proposition 10.15, we can compute a minimum thread

vertex deletion set of G1 in time Opn`mq. So, we can decide whether pG1, k1q is a Yes-instance in time

Opn `mq. Since pG, kq is a Yes-instance if and only if one of sub-instances pG1, k1q is a Yes-instance,

by checking all sub-instances, we can decide whether pG, kq is a Yes-instance in time 8k ¨ Opn ` mq.

Therefore, we conclude that the Thread Vertex Deletion problem can be solved in time 8k ¨Opn8q.

10.3 A polynomial kernel for Thread Vertex Deletion

In this section, we prove that Thread Vertex Deletion has a polynomial size kernel.

10.3.1 Hitting small obstructions

Let F be a family of sets over a universe U . A subset U 1 Ď U is called a hitting set of F if for every

set F P F , F XU 1 ‰ H. For a graph G and a family of graphs F , a set S Ď V pGq is also called a hitting

set for F if for every induced subgraph H of G that is isomorphic to a graph in F , V pHq XS ‰ H. The

following is a crucial ingredient for the polynomial kernel.
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Lemma 10.16 (Fomin, Saurabh and Villanger [90]). Let F be a family of sets of size at most d over a

universe U , and let k be a positive integer. Then there is an Op|F|pk ` |F|qq time algorithm that finds

a nonempty set F 1 Ď F such that

1. for every U 1 Ď U of size at most k, U 1 is a minimal hitting set of F if and only if U 1 is a minimal

hitting set of F 1, and

2. |F 1| ď d!pk ` 1qd.

Let pG, kq be an instance of Thread Vertex Deletion. We apply Lemma 10.16 for the set F of

obstructions of size at most 8 in G.

Lemma 10.17. Let pG, kq be an instance of Thread Vertex Deletion. There is a polynomial time

algorithm that either concludes that pG, kq is a No-instance or finds a nonempty set T Ď V pGq such that

1. GzT is a thread graph,

2. for every set S Ď V pGq of size at most k, S is a minimal hitting set for ΩN in G if and only if it

is a minimal hitting set for ΩN contained in GrT s, and

3. |T | ď 8 ¨ 8!pk ` 1q8 ` k.

Proof. Let F be the set of vertex sets S of G such that GrSs is isomorphic to a graph in ΩN . Since the

maximum size of a set in F is 8, using Lemma 10.16, we can find a subset F 1 of F such that

1. for every vertex subset X Ď V of size at most k, X is a minimal hitting set of F if and only if X

is a minimal hitting set of F 1, and

2. |F 1| ď 8!pk ` 1q8.

Let T 1 :“
Ť

SPF 1 S. From the condition 1, GzT 1 has no induced subgraph isomorphic to a graph in

ΩN and by Theorem 10.3, GzT 1 is a graph whose component is either a necklace graph with underlying

directed cycle of length at least 9 or a thread graph. So, using Proposition 10.15, we can find a minimum

thread vertex deletion set Y of GzT 1 in polynomial time. If |Y | ě k`1, then we conclude that pG, kq is a

No-instance. Otherwise, we add Y to T 1, increasing its size by at most k. We conclude that T :“ T 1YY

is a required set.

10.3.2 Bounding the Size of GzT

The goal now is to shrink GzT while preserving the solutions. Let us fix in this section an instance

pG, kq of Thread Vertex Deletion and also a subset T of V satisfying the conditions in Lemma 10.17.

Let us remark that for every minimal hitting set S for ΩN in G, we have that S Ď T .

A vertex v of G is called irrelevant if pG, kq is a Yes-instance if and only if pGzv, kq is a Yes-instance.

We first show that if a thread block in GzT is large, then we can always find an irrelevant vertex in there.

Lemma 10.18. If GzT contains a thread block pGxy, σxy, `xyq of size at least pk ` 2qpp8 ¨ 8!pk ` 1q8 `

kq ` 2q2 ` 1, we can find an irrelevant vertex in Gxy in polynomial time.

To find an irrelevant vertex, we use the following lemma.

Lemma 10.19. Let G be a graph and let v1v2v3v4v5 be an induced path of length 4 in G. If two distinct

vertices w1, w2 in V pGqztv1, v2, . . . , v5u have the neighbors v2 and v4 in G, then Gzv3 contains an induced

subgraph isomorphic to a graph in ΩN .
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Figure 10.3: Cases in Lemma 10.19.

Proof. See Figure 10.3 for the following cases. If v1 is adjacent to w1 but not adjacent to w2, then

pv1v2w2v4, w1q is a bad pair in Gzv3. Thus, by Lemma 10.4, Gzv3 has an induced subgraph isomorphic

to a graph in ΩN . So, we may assume that for each v P tv1, v5u, v is adjacent to both w1, w2 or neither

of them. Depending on the adjacency between tv1, v5u and tw1, w2u, and the adjacency between w1 and

w2, we have one of the 6 graphs in ΩN , which are α1, α2, . . . , α6.

Proof of Lemma 10.18. Suppose that GzT contains a thread block of size at least pk`2qpp8 ¨8!pk`1q8`

kq`2q2`1. We compute the canonical decomposition of each component of GzT . Because thread blocks

are divided by unmarked vertices that are the centers of star bags, we can compute the size of each thread

block. Then we can find a thread block of size at least pk ` 2qp8 ¨ 8!pk ` 1q8 ` k ` 2q2 ` 1 in polynomial

time. Let B :“ Bpx, yq “ pB, σ, `q be a thread block of size at least pk ` 2qp8 ¨ 8!pk ` 1q8 ` k ` 2q2 ` 1.

For convenience, let σ1 be the linear layout obtained from σ by removing the end vertices x and y.

In the following procedure, we mark some vertices of B in order to find an irrelevant vertex in B.

We set Z :“ H.

1. For each v of T , choose the first k ` 2 vertices z of σ1 that are neighbors of v with R P `pzq, and

add them to Z. If there are at most k ` 1 such vertices, then we add all of them into Z.

2. For each v of T , choose the last k ` 2 vertices z of σ1 that are neighbors of v with L P `pzq, and

add them to Z. If there are at most k ` 1 such vertices, then we add all of them into Z.

3. For each pair of two vertices v, v1 in T , choose k ` 2 common neighbors of v and v1 in B, and add

them to Z. If there are at most k ` 1 such vertices, then we add all of them into Z.

4. Choose the first k ` 2 vertices z of σ1 with R P `pzq and add them to Z. Choose the last k ` 2

vertices z of σ1 with L P `pzq, and add them to Z.

Clearly, we can mark the set Z in polynomial time. The size of Z is bounded by

|T |p2k ` 4q ` |T |2pk ` 2q ` p2k ` 4q “ pk ` 2qp|T |2 ` 2|T |` 2q

ď pk ` 2qp8 ¨ 8!pk ` 1q8 ` k ` 2q2 ´ 2.

Since |V pBq| ě pk ` 2qp8 ¨ 8!pk ` 1q8 ` k ` 2q2 ` 1, there exists a vertex w in V pBqzZztx, yu. We claim

that w is an irrelevant vertex.

If pG, kq is a Yes-instance, then there exists a vertex set X of size at most k in G such that GzX is a

thread graph. Since pGzwqzX is a thread graph, pGzw, kq is a Yes-instance. Now suppose that pGzw, kq

is a Yes-instance and let X Ď V pGqztwu such that |X| ď k and GzpX Y twuq is a thread graph. We

may assume that GzX is not a thread graph. So, GzX must have an obstruction in ΩT that contains

the vertex w.

Since X Y twu is a thread vertex deletion set of G, X Y twu hits all induced subgraphs of ΩN in G.

Thus, there exists a vertex subset Y Ď X X T that hits all induced subgraphs of ΩN contained in GrT s.
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Figure 10.4: Case 1 and Case 2 in Lemma 10.18.
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Figure 10.5: Case 3 in Lemma 10.18.

From the property of T , this set Y also hits all induced subgraphs of ΩN in G. Since Y Ď X, GzX must

have an induced cycle of length at least 9 that contains w.

Let C be an induced cycle of length at least 9 containing w in GzX. We will find an induced subgraph

of GzpX Ytwuq that is isomorphic to a graph in ΩN , which leads a contradiction. Let v1, v2, w, v3, v4 be

the consecutive vertices on C. Clearly, v1 ´ v2 ´w´ v3 ´ v4 is an induced path of length 4 in GzX. We

divide into cases depending on the places of v2 and v3.

Case 1. v2, v3 P T .

Since v2 and v3 have a common neighbor w in V pBqzZ, Z contains k ` 2 common neighbors of v2

and v3. Since |X| ď k, there exist two vertices w1, w2 P ZzX that are common neighbors of v2 and v3.

By Lemma 10.19, GzpX Y twuq has an induced subgraph isomorphic to a graph in ΩN .

Case 2. Exactly one of v2 and v3 is contained in T .

From the symmetry, we may assume that v2 P T and v3 R T . Since w R tx, yu, v3 is contained in B.

Case 2.1. R P `pwq.

Since R P `pwq, we have L P `pv3q and w ăσ v3, otherwise L P `pwq and we are in Case 2.2. From

the construction of Z, Z contains the first k ` 2 vertices z of σ1 that are neighbors of v2 with R P `pzq.

Since |X| ď k, we can choose two such vertices w1, w2 contained in ZzX. Since w is not contained in

Z, we have w1 ăσ w,w2 ăσ w, and they must be adjacent to v3 in GzX. Therefore, by Lemma 10.19,

GzpX Y twuq has an induced subgraph isomorphic to a graph in ΩN .

Case 2.2. L P `pwq.

Similar to Case 2.1, we may assume that v3 ăσ w and using the last k ` 2 vertices z of σ1 that are

neighbors of v2 with L P `pzq, we can verify that GzpX Y twuq has an induced subgraph isomorphic to a

graph in ΩN .

Case 3. Neither v2 nor v3 is contained in T .

Since w R tx, yu, v2 and v3 are contained in B. If v2 ăσ w ăσ v3, then R P `pv2q, L P `pv3q and it

implies that v2v3 P E. But this contradicts to the assumption that v1 ´ v2 ´ w ´ v3 ´ v4 is an induced
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path. Similarly, we may assume that v3 ăσ w ăσ v2, and thus, both of v2 and v3 appear either before

w in σ or after w in σ.

By the symmetry, we may assume that v2 and v3 appear before w in σ. So, R P `pv2q, R P `pv3q,

and L P `pwq.

Since Z contains the last k ` 2 vertices z of σ1 with L P `pzq, there exist two vertices w1, w2 from

those k ` 2 vertices that are not in X. Since w1, w2 appear after w and contain a label L, they are

adjacent to both v2 and v3. Therefore, we have that GzpX Y twuq has an induced subgraph isomorphic

to a graph in ΩN by Lemma 10.19.

In all cases, GzpX Y twuq has an induced subgraph isomorphic to a graph in ΩN . It contradicts to

the assumption that X Y twu is a thread vertex deletion set of G. Therefore, GzX is a thread graph,

and we conclude that pG, kq is a Yes-instance.

We say that pG, kq is reduced with respect to Lemma 10.18 if every thread block of GzT has size at

most pk ` 2qpp8 ¨ 8!pk ` 1q8 ` kq ` 2q2.

We now focus on the connected components of GzT . By Lemma 10.18, a connected component of

GzT is large if it contains a large number of thread blocks. We show that large components can be shrunk.

The idea is that if a component is formed by a large number of thread blocks, then we can identify a

sequence of consecutive thread blocks not touched by any obstruction. This allows us to contract one of

these “safe” thread blocks, say Bpx, yq, to a vertex v such that NGzT pvq “ pNGzT pxqYNGzT pyqqzBpx, yq,

hence reducing the input graph. We first prove that every obstruction in tβ1, β2, β3, β4u, see Figure 5.7,

either does not hit T or hits T in at least two vertices.

Lemma 10.20. Let U Ď T such that for every u P U , there exists Su Ď V such that Su X T “ tuu

and GrSus is a graph in tβ1, β2, β3, β4u. If |U | ą k, then pG, kq is a No-instance; otherwise, pG, kq is a

Yes-instance if and only if pGzU, k ´ |U |q is a Yes-instance.

Proof. We claim that every minimal thread vertex deletion set in G contains U . Let S be a minimal

thread vertex deletion set in G. Then there exists a vertex subset S1 Ď S such that S1 is a minimal

hitting set for graphs of ΩN in GrT s. From the property of T , S1 is also a minimal hitting set for graphs

of ΩN in G, and we must have U Ď S1 Ď S because S1 hits the sets Su for each u P U , that induces a

graph of tβ1, β2, β3, β4u. It also implies that if |U | ą k, then pG, kq is a No-instance. Otherwise, since U

is always contained in any minimal thread vertex deletion set of G, we have that pG, kq is a Yes-instance

if and only if pGzU, k ´ |U |q is a Yes-instance.

By Lemmas 10.18 and 10.20 we can assume now that each thread block has size at most pk` 2qpp8 ¨

8!pk ` 1q8 ` kq ` 2q2 and any obstruction from tβ1, β2, β3, β4u either does not hit T or contains at least

two vertices from T . We can with these assumptions prove that any connected component is small.

Lemma 10.21. If GzT has a connected component with at least 19p6p8 ¨8!pk`1q8`kq`1q thread blocks,

then we can in polynomial time transform G into a graph G1 with |V pG1q| ă |V pGq| such that pG, kq is

a Yes-instance if and only if pG1, kq is a Yes-instance.

Proof. Suppose that GzT has a component H such that H consists of at least 19p6p8 ¨8!pk`1q8`kq`1q

thread blocks. Let L be the sequence B1, B2, . . . , Bt of thread blocks of H.

We claim that every vertex v of T has neighbors in at most 6 thread blocks of H. Let v P T and

for contradiction, suppose that v has neighbors in at least 7 thread blocks. Then we can choose three

thread blocks Bt1 , Bt2 , Bt3 having a neighbor of v in G such that

– 133 –



1. Bt1 , Bt2 , Bt3 appear in this order in L, and

2. t2 ´ t1 ě 3, t3 ´ t2 ě 3.

So, every vertex in Bt1 has no neighbors on Bt2 in H, and every vertex in Bt2 has no neighbors on Bt3

in H. For each i P t1, 2, 3u, let pi be a neighbor of v in Bti . Since each thread block of H has at least

two vertices, we can choose a neighbor qi of pi in Bti for each i P t1, 2, 3u. Depending on the adjacency

between v and the vertices q1, q2, q3, we have an induced subgraph of G that is isomorphic to a graph in

tβ1, β2, β3, β4u such that it has exactly one vertex of T . This contradicts to the assumption that pG, kq

is an instance reduced with respect to Lemma 10.20.

Now, for each vertex v of T , we mark the thread blocks B of H if it has a neighbor in B. Since the

number of thread blocks in H is at least 19p6p8 ¨ 8!pk ` 1q8 ` kq ` 1q and 19p6p8 ¨ 8!pk ` 1q8 ` kq ` 1q ´

6p8 ¨ 8!pk ` 1q8 ` kq ě 18p6p8 ¨ 8!pk ` 1q8 ` kq ` 1q, there exist consecutive non-marked thread blocks

Bpvi1 , vi2q, Bpvi2 , vi3q, . . . , Bpvim , vim`1q in L where m ě 18.

We choose a thread block Bpvid , vid`1
q “ pBid , σid , `idq where d ´ 1 ě 8 and m ´ d ě 9. Note

that since m ě 18, such a thread block exists. We transform the graph G into a smaller graph G1 by

removing the vertices of V pBidq and adding a new vertex z such that NG1pzq “ NGpxq YNGpyq. Let H 1

be the component of G1zT that is modified from the component H of GzT . Since we remove at least two

vertices from G and add one vertex, we have |V pG1q| ă |V pGq|.
Now, we show that pG, kq is a Yes-instance if and only if pG1, kq is a Yes-instance. Suppose that G

has a minimal thread vertex set X. We first assume that XXV pBidq ‰ H and let q P XXV pBidq. Since

X is a minimal thread vertex deletion set and all small obstructions of ΩN are contained in GzV pBidq, q

must hit an induced cycle of length at least 9 in G, and the cycle must pass through the vertices x and

y. Thus, pXzV pBidqq Y tzu is a thread vertex deletion set of G1 with |pXzV pBidqq Y tzu| ď k.

Let us assume that X X V pBidq “ H. Suppose G1zX is not a thread graph, otherwise, pG1, kq is a

Yes-instance. Then G1zX must have an induced cycle C of length at least 9 intersecting the new vertex

z. The cycle obtained from C by replacing z with the edge xy is also an induced cycle of length at least

9 in GzX. It contradicts to the assumption that GzX is a thread graph.

Now suppose that G1 has a minimal thread vertex deletion set X. If z P X, then z hits an induced

cycle of length at least 9 in G1 because of the minimality of X and the distance from x to the vertices of

T . Because x hits all induced cycles of length at least 9 in G having a vertex of V pBidq, pXztzuq Y txu

is again a thread vertex deletion set of G.

Assume that z R X. Suppose GzX is not a thread graph, otherwise, pG, kq is a Yes-instance. So,

GzX has an induced subgraph isomorphic to an induced cycle C of length at least 9 passing through x

and y. Let C 1 be the cycle obtained from C by replacing the edge xy with the vertex z. This cycle C 1

clearly exists in G1zX and it has length at least 9 because it should contain at least one vertex from the

thread blocks d´ 1 ě 8 and m´d ě 9. This contradicts to the assumption that G1zX is a thread graph.

We conclude that pG, kq is a Yes-instance if and only if pG1, kq is a Yes-instance.

We can now assume that every connected component of GzT has size bounded by

19p48 ¨ 8!pk ` 1q8 ` 6k ` 1q ¨ pk ` 2qp8 ¨ 8!pk ` 1q8 ` k ` 2q2.

It remains now to bound the number of connected components which we show in the next two lemmas.

Lemma 10.22. If GzT has at least 2p8 ¨ 8!pk ` 1q8 ` kq ` 1 connected components containing at least

two vertices, then we can find an irrelevant vertex in polynomial time.
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Proof. If a component H of GzT contains no vertices having a neighbor in T , then we do not need to

remove any vertex of H because H is a thread graph. Thus, pG, kq is a Yes-instance if and only if

pGzV pHq, kq is a Yes-instance. So, we may assume that every component of H contains a vertex having

a neighbor in T .

Let C be the set of components of GzT which consist of at least two vertices. Since every component

of H has a vertex having a neighbor in T , if |C| ą 2p8 ¨ 8!pk ` 1q8 ` kq, then there exists a vertex

u P T such that u has neighbors in three distinct components of C. Since each component of C has at

least two vertices, there exists a vertex subset S of G such that S induces a graph in tβ1, β2, β3, β4u

and S X T “ tuu. It contradicts to the assumption that pG, kq is an instance reduced with respect to

Lemma 10.20.

Lemma 10.23. If GzT has at least p8 ¨ 8!pk ` 1q8 ` kq2 ¨ pk ` 2q ` 1 isolated vertices, then we can find

an irrelevant vertex in polynomial time.

Proof. Let S be the union of isolated vertices in GzT . If a vertex in S has no neighbors in T , then it is

an irrelevant vertex. We may assume that every vertex in S has a neighbor in T .

We define a set Z, similarly in the proof of Lemma 10.18. For each pair of two vertices in T , choose

k ` 2 common neighbors in S, and add them to Z. If there are at most k ` 1 common neighbors, then

we add all of them into Z. Since |S| ą p8 ¨ 8!pk ` 1q8 ` kq2 ¨ pk ` 2q, there is a vertex w in SzZ.

We claim that w is an irrelevant vertex of the problem. If pG, kq is a Yes-instance, then there exists

a vertex subset X of size at most k in G such that GzX is a thread graph. Since GzpX Y twuq is also a

thread graph, pGzw, kq is a Yes-instance.

Suppose that pGzw, kq is a Yes-instance. We choose a minimal vertex set X in Gzw such that

|X| ď k and GzpX Y twuq is a thread graph. We may assume that GzX is not a thread graph. Let

X 1 Ď X Y twu be a hitting set for ΩN in GrT s. Then by the property of T , X 1 also hits all induced

subgraphs in G that are isomorphic to a graph of ΩN . Since X already hits all small obstructions in G,

there exists an induced cycle C of length at least 9 in GzX containing w.

Let w1, w2 be the neighbors of w on the cycle C. Since w1, w2 have k`2 common neighbors in Z, we

may choose two vertices z1, z2 P ZzX that are common neighbors of w1 and w2. By Lemma 10.19, we have

that GzpXYtwuq has an induced subgraph isomorphic to a graph in ΩN , which implies that GzpXYtwuq

is not a thread graph. It is a contradiction, and we conclude that pG, kq is a Yes-instance.

10.3.3 Kernel size

Let us now piece everything together and analyze the kernel size.

Proof of Theorem 10.2. Let pG, kq be an instance of Thread Vertex Deletion. We may safely assume

that G has at most k connected components and that none of them is a thread graph. Let T Ă V be a

vertex subset satisfying Lemma 10.17.

By Lemma 10.20, we may assume that for every vertex subset S Ď V such that GrSs is a graph

of tβ1, β2, β3, β4u, |S X T | ě 2. Combining Lemma 10.18 and Lemma 10.21, we can assume that every

connected component of GzT has size at most pk` 2qp8 ¨ 8!pk` 1q8` k` 2q2 ¨ 19p6p8 ¨ 8!pk` 1q8` kq` 1q

(otherwise the instance can be reduced in polynomial time). Finally by Lemma 10.22 and Lemma 10.23,

we can assume that the number of non-trivial components of GzT is at most 2p8 ¨ 8!pk` 1q8` kq and the
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number of isolated vertices in GzT is at most p8 ¨ 8!pk ` 1q8 ` kq2pk ` 2q. It follows that

|V zT | ď 2p8 ¨ 8!pk ` 1q8 ` kq ¨ 19p6p8 ¨ 8!pk ` 1q8 ` kq ` 1q ¨ pk ` 2qpp8 ¨ 8!pk ` 1q8 ` kq ` 2q2

` p8 ¨ 8!pk ` 1q8 ` kq2 ¨ pk ` 2q “ Opk32q

Considering the number of components of G, we conclude that the kernel size is Opk33q.

– 136 –



Chapter 11. Rank-width 1 vertex deletion

We discuss a graph modification problem related to distance-hereditary graphs. We recall the

problem.

Distance-Hereditary Vertex Deletion (Rank-Width 1 Deletion)

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S Ď V pGq of size at most k such that GzS is distance-hereditary?

We investigate a fixed parameter tractable algorithm for Distance-Hereditary Vertex Dele-

tion.

Theorem 11.1. For fixed k and an input graph G with n vertices, the Distance-Hereditary Vertex

Deletion problem can be solved in time 2Opk log kq ¨ nOp1q.

Because the following sets are frequently used, we let

• ΩD :“ thouse, gem, domino, holeu.

We recall that G is distance-hereditary if and only if G has no induced subgraph isomorphic to a graph

in ΩD. For a graph G, a set S Ď V pGq is called a DH deletion set if GzS is distance-hereditary.

We use the technique, called iterative compression. The iterative compression tool was firstly devel-

oped for the Odd Cycle Transversal problem (vertex deleting to bipartite graphs) by Reed, Smith and

Vetta [164], and further developed for various problems [48, 52, 70, 108, 116, 91]. Especially, we use

a similar idea of Cao and Marx [45] to prove that Chordal Vertex Deletion (vertex deleting to chordal

graphs) can be solved in time 2Opk log kq ¨ nOp1q.

We formulate a new problem, usually called a compression problem, as follows.

Distance-Hereditary Compression pG, t, Sq

Input : A graph G, an integer t ď k, S Ď V pGq of size at most k`1 where GzS is distance-hereditary

Parameter : k

Question : Is there a vertex subset S1 Ď V pGqzS of size at most t such that GzS1 is distance-

hereditary?

We prove the following.

Theorem 11.2. The Distance-Hereditary Compression problem can be solved in time 2Opk log kq ¨

nOp1q where n is the number of vertices of G.

We first prove Theorem 11.1 assuming Theorem 11.2.

Proof of Theorem 11.1. Let G be a graph such that V pGq “ tv1, v2, . . . , vnu and let k be a positive

integer. For each 1 ď i ď n, let Gi :“ Grtv1, v2, . . . , vius. Note that H is a DH deletion set of G1 because

G1 is distance-hereditary.
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Assume Si is a DH deletion set of size at most k for Gi. Then clearly Gi`1zpSi Y tvi`1uq is also

distance-hereditary. If there exists a DH deletion set of size at most k in G, then Gi`1 must have a DH

deletion set of size at most k. We show how to find one for Gi`1, if exists.

We guess a subset S1 of Si Y tvi`1u that will be included in a DH deletion set of size at most k for

Gi`1. This means that we will not remove the vertices of pSi Y tvi`1uqzS
1. We have at most 2k`1 many

branchings from this point, and for each subset S1, we solve the Distance-Hereditary Compression

problem with the instances

pGi`1zS
1, k ´ |S1|, pSi Y tvi`1uqzS

1q.

We can easily see that G has a DH deletion set of size at most k if and only if one of the Distance-

Hereditary Compression problems is a Yes-instance.

Since the Distance-Hereditary Compression problem is solved in time 2Opk log kq ¨ nOp1q by

assumption, the Distance-Hereditary Vertex Deletion problem can be solved in time n ¨ 2k`1 ¨

p2Opk log kq ¨ nOp1qq “ 2Opk log kq ¨ nOp1q.

From now on, we concentrate on the Distance-Hereditary Compression problem. For each

compression, we will branch at most Opk4q subproblems of the Distance-Hereditary Compression

problem with smaller k. Since each branching will decrease k, these branchings appear pOpk4qqk`1 in

total. Therefore, we can solve the Distance-Hereditary Compression problem in time pOpk4qqk`1 ¨

2Opk log kq ¨ nOp1q “ 2Opk log kq ¨ nOp1q.

We have three steps to design an algorithm for the Distance-Hereditary Compression problem.

Let k be a positive integer and let t ď k ` 1, and let G be a graph with n vertices and let S Ď V pGq of

size at most t where GzS is distance-hereditary,

1. We first search a house, a gem, or a domino in G in time Opn6q and if we find one of the subgraph,

then we branch by removing one of the vertices in the subgraph, that are not contained in S.

Since we are not allowed to remove vertices in S, if the obstruction is contained in S, then it is a

No-instance. By this preprocessing, we may assume that G is thouse, gem, dominou-free.

2. We find a shortest hole X in G, and branch by removing some vertex on the hole. To do this,

we pick some vertices of X, and we will call them junctions. We find a shortest hole X in time

Opn4pn`mqq as follows. We guess four consecutive vertices v1, v2, v3, v4 in G and find a shortest

path from v1 to v4 in

Gztv2, v3uzppNpv2q YNpv3qqztv1, v4uq.

3. We show that the number of junctions in the hole is bounded by Opk3q. If each interval has

length at most 6, then we branch along all vertices of H. Otherwise, we have some intervals with

length longer than 6. For such a long interval, we will show that we can find a same solution

from other solution by replacing the part on that interval with some vertex separator between two

end junctions. We will show that in a distance-hereditary graph, we can find a minimum vertex

separator of two distinct vertices in polynomial time. We branch along a minimum vertex separator

for each long interval to have a smaller instance. This finalizes the algorithm.

For easier discussion, we introduce one notion in canonical split decompositions. A walk in a graph

G is a nonempty sequence v1v2 ¨ ¨ ¨ vk of vertices in G such that vivi`1 P EpGq for each 1 ď i ď k ´ 1.

Let D be the canonical split decomposition of a connected graph G. For two unmarked vertices v, w in
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D, a walk in D from v to w is called a semi-alternating walk W in D if there are no two consecutive

marked edges in W . We sometimes remove vertices to break a certain structure, and it makes a given

decomposition disconnected. Note that two vertices are connected by a path in the original graph, then

there exists a semi-alternating walk between the two vertices (they can use the same edges even if the

corresponding structure in the original graph is a path), and if two vertices are disconnected, then there

is no semi-alternating walk between the vertices.

We prove that a shortest hole in thouse, gem, dominou-free graphs has a special property that for

every vertex v outside the hole, the number of the neighbors of v on this hole is at most 3 and they

are close to each other. This is an essential property to obtain an FPT algorithm for the Distance-

Hereditary Vertex Deletion problem. We again use Lemma 10.4 to show it.

Lemma 11.3. Let G be a thouse, gem, dominou-free graph and let X be a shortest hole in G. If

v P V pGqzV pXq, then v has at most 3 neighbors on X that have pairwise distance at most 2 on X.

Proof. Let X “ v1v2 ¨ ¨ ¨ vtv1 and let I “ ti : vvi P EpGqu. Suppose there exist two vertices vi, vj in I

such that one of the two paths from vi to vj in C has length ` where 3 ď ` ď t ´ 3. By Lemma 10.4,

G contains an induced subgraph isomorphic to either a house, a gem, a domino, or an induced cycle of

length ` where 5 ď ` ď t´1. It contradicts to that G is thouse, gem, dominou-free and X is the shortest

hole of G.

Let X be a shortest hole in G. Since we are solving the Distance-Hereditary Compression

problem, we have V pXq X S ‰ H, and V pXq X S forms a disjoint union of induced paths in G. Note

that the number of paths of V pXq X S is at most k ` 1 because |S| ď k ` 1.

In the next section, we define junctions on V pXq X S.

11.1 Junctions on the shortest hole

As we discussed before, we will mark some vertices of the hole to divide it into intervals, and call

them junctions. We first analyze general properties of induced paths between two vertices in a distance-

hereditary graph using its canonical split decomposition, and we will adapt those properties into GzS.

11.1.1 Induced paths between two vertices in a distance-hereditary graph

Let H be a connected distance-hereditary graph with at least two vertices and let DH be the

canonical split decomposition of H, and x, y be two distinct vertices of H.

Let Bx, By be the bags of H such that x P Bx and y P By. Then there is a path P of bags

Bx “ B1, B2, . . . , Bt “ By

of D connecting Bx and By because H is connected. In the order of bags from B1 to Bt on P , let

B11, B
1
2, . . . , B

1
r

be the star bags whose centers are neither adjacent to a vertex of the previous bag nor the next bag.

For each 1 ď i ď r, we let wi be the center of B1i and let Ui be the set of unmarked vertices of DH

represented by wi.

We characterize induced paths from x to y in H.
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Lemma 11.4. Let Q be an induced subgraph of H. Then the following are equivalent.

1. Q is an induced path from x to y in H.

2. For each 1 ď i ď r, |V pQq X Ui| “ 1 and V pQqzp
Ť

1ďiďr Uiq “ tx, yu.

Proof. For convenience, let q0 :“ x and qr`1 :“ y. First suppose that for each 1 ď i ď r, V pQqXUi “ tqiu

and V pQqzp
Ť

1ďiďr Uiq “ tx, yu. Note that for each 0 ď i ď r, qi is adjacent to all vertices in Ui`1 because

they are linked by alternating paths in DH . Thus, it is easy to observe that xq1q2 ¨ ¨ ¨ qry is an induced

path in H.

If Q is an induced path from x to y in H, then |V pQq X Ui| ě 1 otherwise, there is no semi-

alternating walk from x to y in DH , which means that x and y are disconnected in H. If |V pQqXUj | ě 2

for some 1 ď j ď r, then two vertices in V pQq X Uj will be adjacent to at least two of x, y, a vertex

of V pQq X Uj´1 and a vertex of V pQq X Uj`1. It implies that Q contains a subgraph isomorphic to C4.

Thus, |V pQq X Ui| “ 1 for each 1 ď i ď r, and since the set

˜

ď

1ďiďr

pV pQq X Uiq

¸

Y tx, yu

already forms an induced path from x to y in H, there are no other vertices of Q in H.

As a corollary, we can easily determine the distance from x to y in H, and minimal separators of x

and y in H.

Lemma 11.5. The distance from x to y in H is r ` 1.

Proof. This is clear from Lemma 11.4.

Lemma 11.6. A vertex set S of H is a minimal separator between x and y if and only if S “ Ui for

some 1 ď i ď m.

Proof. If S “ Ui, then there is no semi-alternating walk from x to y in DH , and therefore, S is a separator

between x and y in H. For S1 Ĺ S, we can choose a vertex s in SzS1 so that we can link from x to y by

a semi-alternating walk using s. This means that S is a minimal separator between x and y in H.

Suppose S is a minimal separator between x and y in H. If |V pGzSqXUi| “ 1 for each 1 ď i ď r, then

by Lemma 11.4, there exists an induced path from x to y in GzS, which contradicts to the assumption.

Thus, Ui Ď S for some i, and by the above argument, Ui “ S.

Note that p
Ť

1ďiďr Uiq separates H into several connected components, where two of them, say Cx

and Cy, contain x and y, respectively. Since each component of Hzp
Ť

1ďiďr Uiq may connect at most

two sets Ui directly, we can naturally partition the components C of Hzp
Ť

1ďiďr Uiq except Cx and Cy

as follows.

1. For each 1 ď i ď r, let Ci be the set of components C of Hzp
Ť

1ďiďr Uiq such that C has a vertex

linked to a vertex of Ui, and no vertex linked to a vertex of Uj where j ‰ i.

2. For each 1 ď j ď r ´ 1, let Di be the set of components C of Hzp
Ť

1ďiďr Uiq such that C has a

vertex linked to a vertex of Ui or Ui`1, and no vertex linked to a vertex of Uj where j ‰ i, i` 1.

It is not hard to observe that for 1 ď i ď r and C P Ci, NHpCq Ď Ui.
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11.1.2 Junctions

We recall that we are solving the Distance-Hereditary Compression problem with an instance

pG, t, Sq where t ď k and G is thouse, gem, dominou-free, and X is a shortest hole of G. Let D be the

canonical split decomposition of GzS. We remind that pGzSqrXs is a disjoint union of paths.

Let P :“ p0p1 ¨ ¨ ¨ pm`1 be one of the paths of pGzSqrV pXqs. Consider the two end vertices p0 and

pm`1 in GzS, and let Bp0 , Bpm`1
be the bags of GzS such that p0 P Bp0 and pm P Bpm`1

. In the order

of bags from Bp0 to Bpm`1
in D, let

B11, B
1
2, . . . , B

1
r

be the star bags whose centers are neither adjacent to a vertex of the previous bag or the next bag. For

each 1 ď i ď r, we let wi be the center of B1i and let Ui be the set of unmarked vertices of D represented

by wi, and we define sets Ci, Di for each 1 ď i ď r similarly in the previous section. From Lemma 11.5,

we can easily deduce that r “ m.

For each 1 ď i ď r ´ 1, we define

Mi :“ Ui Y

˜

ď

CPCi

C

¸

Y

˜

ď

CPDi

C

¸

,

and

Mr :“ Ur Y

˜

ď

CPCr

C

¸

.

Note that if i ‰ j, then Mi XMj “ H.

A vertex p on the path P is called a junction if p “ p0, or pm`1, or there exists a vertex v P Mi

having a neighbor in S where 1 ď i ď m. We say a vertex s P S witnesses a junction pi if either s is

adjacent to p0 or pm`1, or there exists a vertex v PMi such that v is adjacent to s.

The following lemma gives a bound on the number of junctions.

Lemma 11.7. If a vertex s P S witnesses at least 5k ` 5 junctions on P , then G has k ` 1 holes where

the intersection of them is exactly s. This implies that pG, t, Sq is a No-instance.

Proof. Let s P S, and let pj1 , pj2 , . . . , pj` be the junctions on P in the order that are witnessed by s. We

assume that ` ě 5k ` 5. For each 1 ď m ď `, we choose a vertex wjm PMjm adjacent to s.

For each 0 ď m ď k, we choose an induced path Pm from wj5m`1
to wj5m`4

in GzS. Since the

two bags Bj5m`2
and Bj5m`3

are on the path from the bag containing wj5m`1
to the bag containing

wj5m`4 , by Lemma 11.4, this path Pm has length at least 3. Note that for each 0 ď m ď k ´ 1,

V pPmq X V pPm`1q “ H, because Bj5m`5 is a separator between V pPmq and V pPm`1q, and moreover, if

i ‰ j, then V pPiq X V pPjq ‰ H.

Since G is thouse, gem, dominou-free, by Lemma 10.4, each graph GrV pPmq Y tsus contains a hole

having s. So, G has k`1 holes whose pairwise intersection is exactly the vertex s. Since we are solving the

Distance-Hereditary Compression problem, it is not allowed to remove this vertex s, and therefore,

pG, t, Sq is a No-instance.

From Lemma 11.7, we may assume that the total number of junctions on P is at most p5k`4qpk`1q

because |S| ď k` 1. Since pGzSqrXs has at most k` 1 components, the total number of junctions on X

is at most p5k ` 4qpk ` 1q2.

Now we describe the branching step based on these junctions. If we do not break the hole using the

vertices near junctions, we need to remove some minimum separator between two consecutive junctions,
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otherwise, we still have a hole of same size. Lemma 11.6 gives a way to find a minimum separator

between two vertices in GzS.

11.1.3 Breaking long intervals

Lemma 11.8. Let pi and pj be two consecutive junctions on P such that j ´ i ě 4. Every hole in

G containing a vertex of U` for some i ` 2 ď ` ď j ´ 2 also contains one vertex from each U`1 for

i` 1 ď `1 ď j ´ 1.

Proof. Let Y be a hole in G, and suppose that Y contains a vertex of U` for some i` 2 ď ` ď j ´ 2, but

does not contain a vertex from U`1 for some i` 1 ď `1 ď j´ 1. Since U` is a separator between Ui`1 and

Uj´1 in GzS and the hole Y cannot end inside of GzS, this hole Y should intersect on one of Ui`1 and

Uj´1 with at least two vertices. By symmetry, we may assume that ` ă `1 and thus |V pY q X Ui`1| ě 2.

If |Y XMi| ď 1, then Y is contained in GzS, which is a contradiction. Therefore, we may choose two

vertices x, y in Ui`1 that have distinct two neighbors x1, y1 in Mi. However, by the definition of splits,

x, y should be completely adjacent to x1, y1, which contradicts that they are vertices on an induced cycle.

It is clear that Y cannot have two vertices from some U`1 , otherwise, H contains a subgraph isomor-

phic to a cycle of length 4 with two vertices in U`1´1 and U`1`1.

From the previous lemma, if we do not remove some vertex on X that has distance ď 1 from

junctions, we need to remove some minimal separator between two junctions in GzS. Therefore, we

guess one of the intervals between two consecutive junctions pi and pj to clear, and for that interval, it is

enough to find a minimal separator between Ui`1 and Uj´1 in GzS, and remove it. Note that if pG, t, Sq

is a Yes-instance, then the number of total intervals is at most p5k ` 5qpk ` 1q2 by Lemma 11.7.

11.2 Distance-Hereditary Compression problem

Now we prove the main result of this chapter.

Proof of Theorem 11.2. Let pG, t, Sq be an instance of the Distance-Hereditary Compression prob-

lem. We first search an induced subgraph isomorphic to either a house, a gem, or a domino and if we find

one, then we branch into instances pGzv, t´ 1, Sztvuq by removing one of the vertices v in the subgraph.

It takes Opn6q time. By this processing, we may assume that G is thouse, gem, dominou-free. We find

a canonical split decomposition D of GzS in time Opn `mq. Next, we find a shortest hole X of G in

time Opn4 ¨ pn`mqq as follows. We guess four consecutive vertices v1, v2, v3, v4 as a part of X and find

a shortest path from v1 to v4 in Gztv2, v3uzppNpv2q YNpv3qqztv1, v4uq.

Now we mark the junctions of the hole X. Let P :“ p0p1 ¨ ¨ ¨ pm`1 be a component of pGzSqrXs.

Let Bp0 , Bpm`1 be the bags of GzS such that p0 P Bp0 and pm P Bpm`1 . In the order of bags from Bp0

to Bpm`1
in D, we mark all bags

B11, B
1
2, . . . , B

1
r

that are the star bags whose centers are neither adjacent to a vertex of the previous bag or the next bag.

It can be done in time Opnq. For each 1 ď i ď r, we let wi be the center of B1i and let Ui be the set of

unmarked vertices of D represented by wi, and we define sets Ci, Di, Mi for each 1 ď i ď m as defined

in Sections 11.1.1 and 11.1.2. Since the set of components of pGzSqzp
Ť

1ďiďm Uiq can be computed

in polynomial time, we can also compute all of Ci, Di, Mi in polynomial time, for each component

pGzSqrXs. If Mi contains a neighbor of some vertex of S, then we mark pi as a junction. If the number
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of all junctions in X is at least p5k ` 4qpk ` 1q2 ` 1, then there exists a vertex s that witnesses at least

5k` 5 junctions on one of the components of pGzSqrXs, and by Lemma 11.7, it is a No-instance. Thus,

we may assume that X contains at most p5k ` 4qpk ` 1q2 junctions.

We first branch along all vertices on X that have distance at most 1 from some junction in X. Since

the number of all junctions on X is at most p5k ` 4qpk ` 1q2, it needs Opk3q branchings. Now we may

assume that any solution of the instance pG, t, Sq does not contain a vertex in X that has distance at

most 1 from some junction in X.

Let S1 be a minimum DH deletion set of pG, t, Sq where S1 Ď V pGqzS. If S1 does not contain any

vertex separator fully between two junctions p and p1 of X for all pairs of two consecutive junctions of

X, then GzS1 contains another hole by choosing remaining vertices from each Ui. It implies that S1

should contain at least one vertex separator T between two consecutive junctions p and p1. Let T 1 be a

minimum separator between p and p1 in GzS. Note that it can be computed easily from Lemma 11.6.

We claim that S1zT Y T 1 is again a minimum DH deletion set of pG, t, Sq. Let t be the vertex of

T X V pXq. Since S1 is a minimum DH deletion set of pG, t, Sq, GzpS1zttuq contains a hole X 1 having the

vertex t. From our assumption, t has distance at least two from p and p1. By Lemma 11.8, this hole X 1

should contain a vertex from each set Ui between p and p1 in GzS. However, X 1 X T 1 ‰ H because T 1

is a separator between p and p1 in GzS, thus pS1zT q Y T 1 is again a DH deletion set of pG, t, Sq. Since

|T 1| ď |T |, pS1zT q Y T 1 is a minimum DH deletion set of pG, t, Sq.

So, we choose one of the intervals between two consecutive junctions that have distance at least

4 and find a minimum separator T between them, and branch into instances pGzT, t ´ |T |, SzT q by

removing it. Since the number of intervals are at most Opk3q, it needs Opk3q branchings.

Each branching decrease k by at least 1, and the number of all subproblems will be at most Opk3qk`1.

This would give that total running time Opk3qk`1 ¨ 2Opk log kq ¨ nOp1q “ 2Opk log kq ¨ nOp1q.
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[2] I. Adler and M. M. Kanté. Linear rank-width and linear clique-width of trees. Theoretical Computer

Science, http://dx.doi.org/10.1016/j.tcs.2015.04.021, 2015.
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Summary

On the structural and algorithmic properties of linear rank-width

이 논문에서는 linear rank-width의 성질들에 대해서 알아보았다. 알려진 path-width와 tree-width의

관계와 같이 linear rank-width는 rank-width의 선형형태로 볼 수 있다. Path-width에 대해 알려진 결과

들로부터 동기를 부여받아, linear rank-width와 관련된 질문들을 던지고 그 질문들에 답을 하였다.

첫 번째로, linear rank-width와 연관된 그래프의 구조적 성질에 대해 관찰하였다. 본 저자는 linear

rank-width가 k 이하인 그래프 모임에 대해 vertex-minor 관계로 최소인 그래프들의 개수가 적어도

2Ωp3k
q 개 이상 있음을 증명하였다. 주어진 그래프 G와 상수 k에 대해 G의 linear rank-width가 k이하

임을 테스트하는 문제에 대한 constructive한 fixed parameter tractable 알고리즘이 알려진 것이 없는데,

vertex-minor 관계로 최소인 그래프들을 모두 구할 수 있으면, 이런 알고리즘을 제시할 수 있다. Linear

rank-width가 k 이하인그래프모임에대한 vertex-minor관계로최소인그래프의크기의상한을구하는

것에 대해 알려진 것이 없으며, 이를 알아내는 것은 흥미로운 미해결 문제이다.

Split과 prime 그래프 개념은 이 논문에서 가장 중요하게 쓰인 도구 중 하나이다. 본 저자는 고정된

트리 그래프 T에 대해 충분히 linear rank-width가 큰 그래프는 T를 반드시 vertex-minor로 가진다는

질문을 던졌다. 이에 대해 이 질문을 증명하는 것은 이 질문을 prime 그래프 상에서 증명하는 것과

동치임을 증명하였다. 또한, 고정된 상수 n에 대해, 다른 상수 N이 존재하여 점의 개수가 N개 이상인

prime 그래프는 반드시 길이 n인 원 그래프를 가지거나 아니면 완전 이분그래프 K2,n의 선 그래프를

vertex-minor로 가짐을 증명하였다.

두번째는, linear rank-width와관련된그래프의알고리즘을개발하였다. 먼저,본저자는처음으로

n개의 점을 가지는 distance-hereditary 그래프 상에서 linear rank-width를 다항식 시간에 계산하는 알

고리즘을 고안하였다. 이 결과를 이용하면 independent set 오라클이 있다는 가정 하에 branch-width가

2 이하인 매트로이드의 path-width도 다항식 시간에 계산할 수 있음을 증명하게 된다. 이를 일반화하

는 문제로서 rank-width가 상한된 그래프에 대해서도 linear rank-width를 계산하는 다항식 알고리즘을

생각해 볼 수 있는데, 이에 대해 아직 알려진 바가 없다.

마지막으로, 본 저자는 Linear rank-width w 점 지우기과 Rank-width w 점 지우기 문제를

w가 1인 경우에 대하여 연구하였다. 다음으로 연구해볼 수 있는 것은 1보다 큰 w에 대해서 비슷한

fixed parameter tractable 알고리즘과 다항식 kernel의 존재 여부이다. 본 저자는 특히, Rank-width 1

점 지우기 문제를 2Opk log2 kq ¨ nOp1q 시간에 해결할 수 있음을 증명하였는데, 이를 어떤 상수 c에 대해

ck ¨ nOp1q 시간에 풀 수 있음을 미해결 문제로 제시한다.
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