A Polynomial Kernel for Linear Rank-width One Vertex Deletion

O-joung Kwon

Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary

Joint work with M.M. Kanté (UNIV. CLERMONT-FERRAND - LIMOS, FRANCE) E.J. Kim (CNRS - LAMSADE, FRANCE) C. Paul (CNRS - LIRMM, FRANCE)

> IPEC 2015 September 16, 2015

1/15

Fixed parameter tractability

```
GRAPH MODIFICATION INTO A GRAPH CLASS C

Input : A graph G, an integer k

Parameter : k

Question : Is there a vertex subset S of G with |S| \le k such that G - S is

in C?
```

- ► FPT algorithm (fixed parameter tractable algorithm) : an algorithm that runs in time f(k) · |V(G)|^{O(1)}.
- ► Kernel of size g(k) :

A parameterized problem has a kernel of size g(k) if there is a polynomial-time algorithm to transform every instance (G, k) into an instance (G', k') such that

(1) (G, k) is a Yes-instance if and only if (G', k') is a Yes-instance, (2) $|V(G')| \le g(k)$ and $k' \le k$.

The generic problem

RANK-WIDTH-*c* VERTEX DELETION ($c \in \mathbb{N}^+$) **Input :** Graph G = (V, E), integer *k* **Question :** \exists ? $S \subseteq V$ such that $|S| \leq k$ and $\mathbf{rw}(G - S) \leq c$

-Graphs of bounded rank-width are well-quasi-ordered under the **vertex-minor** relation.

Lemma: [Oum'05] If G = (V, E) is a minimal vertex-minor such that $\mathbf{rw}(G) > c$, then $|V| \leq \frac{6^{c+1}-1}{5}$.

Lemma: [Courcelle,Oum'07] The vertex-minor inclusion can be expressed in MSO_1 .

-Graphs of bounded rank-width are well-quasi-ordered under the **vertex-minor** relation.

Lemma: [Oum'05] If G = (V, E) is a minimal vertex-minor such that $\mathbf{rw}(G) > c$, then $|V| \leq \frac{6^{c+1}-1}{5}$.

Lemma: [Courcelle,Oum'07] The vertex-minor inclusion can be expressed in MSO_1 .

Theorem [Oum'06]: For fixed c, there is an $O(n^3)$ algorithm that either finds a rank-decomposition of width 3k - 1 or confirms that $\mathbf{rw}(G) > c$.

Observation: Let G = (V, E) be a graph and $S \subseteq V$. Then $\mathbf{rw}(G - S) \leq c \Rightarrow \mathbf{rw}(G) \leq c + k$ -Graphs of bounded rank-width are well-quasi-ordered under the **vertex-minor** relation.

Lemma: [Oum'05] If G = (V, E) is a minimal vertex-minor such that $\mathbf{rw}(G) > c$, then $|V| \leq \frac{6^{c+1}-1}{5}$.

Lemma: [Courcelle,Oum'07] The vertex-minor inclusion can be expressed in MSO_1 .

Theorem [Oum'06]: For fixed c, there is an $O(n^3)$ algorithm that either finds a rank-decomposition of width 3k - 1 or confirms that $\mathbf{rw}(G) > c$.

Observation: Let
$$G = (V, E)$$
 be a graph and $S \subseteq V$. Then
 $\mathbf{rw}(G - S) \leq c \Rightarrow \mathbf{rw}(G) \leq c + k$

By the meta-theorem on graphs of bounded rank-width (or clique-width)[Courcelle, Makowsky, Rotics'00], we obtain:

 Theorem: RANK-WIDTH-c VERTEX DELETION parameterized by solution size is FPT.

Questions and results

- Can RANK-WIDTH-c VERTEX DELETION be solved in single exponential FPT-time ?
 TREE-WIDTH-c VERTEX DELETION admits a single exponential FPT-time algorithm. (Fomin et al. 2012; Kim et al 2013)
- Can RANK-WIDTH-ONE VERTEX DELETION be solved in single exponential FPT-time ?
- Do these problems admit a polynomial-size kernel ?

Questions and results

- Can RANK-WIDTH-c VERTEX DELETION be solved in single exponential FPT-time ?
 TREE-WIDTH-c VERTEX DELETION admits a single exponential FPT-time algorithm. (Fomin et al. 2012; Kim et al 2013)
- Can RANK-WIDTH-ONE VERTEX DELETION be solved in single exponential FPT-time ?
- Do these problems admit a polynomial-size kernel ?
 - \rightsquigarrow OPEN but

LINEAR RANK-WIDTH-ONE VERTEX DELETION (LRw1VD) can be solved in $O(8^k \cdot n^8)$ and has a polynomial size kernel

5/15

Obstructions for graphs of linear rank-width 1

• Class of graphs characterized by an infinite list of forbidden induced subgraphs. (Adler, Farley, Proskurowski 2014)

Basic approach

The FPT algorithm for LRw1VD:

- We kill the small obstructions by branching
- and then show that the problem can be solved in polynomial time on instances without small obstructions

Theorem: The LRw1VD problem can be solved in $O(8^k \cdot n^8)$ -time.

Basic approach

The FPT algorithm for LRw1VD:

- We kill the small obstructions by branching
- and then show that the problem can be solved in polynomial time on instances without small obstructions

Theorem: The LRw1VD problem can be solved in $O(8^k \cdot n^8)$ -time.

The polynomial kernel for LRw1VD:

- We identify a small set of vertices S containing every minimal hitting set of the small obstructions
- We show how to reduce G S in polynomial time

(Same approach used for PATHWIDTH-ONE VERTEX DELETION)

Theorem: The LRw1VD problem admits a kernel of size $O(k^{33})$.

Thread blocks and thread graphs

 (G, x, y, σ, ℓ) with $x, y \in V(G)$, σ is a (linear) ordering on V and $\ell : V(G) \rightarrow \{\{L\}, \{R\}, \{L, R\}\}$, is a thread block if:

•
$$\ell(x) = \{R\}$$
 and $\ell(y) = \{L\}$,

► for
$$v, w \in V(G)$$
, $vw \in E(G)$
iff $v <_{\sigma} w$, $R \in \ell(v)$, $L \in \ell(w)$.

Thread blocks and thread graphs

 (G, x, y, σ, ℓ) with $x, y \in V(G)$, σ is a (linear) ordering on V and $\ell : V(G) \rightarrow \{\{L\}, \{R\}, \{L, R\}\}$, is a thread block if:

•
$$\ell(x) = \{R\}$$
 and $\ell(y) = \{L\}$,

▶ for
$$v, w \in V(G)$$
, $vw \in E(G)$
iff $v <_{\sigma} w$, $R \in \ell(v)$, $L \in \ell(w)$.

A connected thread graph is a graph that can be obtained by substituting a thread block to every arc of a directed path P.

Theorem [Ganian'09] A graph G is a thread graph iff $Irw(G) \le 1$.

Necklace graphs

A connected necklace graph is a graph that can be obtained by substituting a thread block to every arc of a circuit C.

Lemma: Removing one vertex to a connected necklace graph is enough to obtain a thread graph.

An FPT algorithm for LRw1VD

Let Ω_N be the subset of forbidden induced subgraphs of thread graphs that have size at most 8.

Lemma: A connected Ω_N -free graph is either a thread graph or a necklace graph built on a circuit of length at least 9.

Algorithm

- ► As long as, G has a forbidden induced subgraph H of size at most 8, branch on the vertices of H
- Remove one vertex per connected component of G that is not a thread graph

Kernel for LRw1VD – Hitting small obstructions

Lemma: There is a polynomial time algorithm that finds a non-empty set $T \subseteq V$ such that

- 1. G T is a thread graph,
- 2. $\forall S \subseteq V$, $|S| \leq k$, S is a minimal hitting set for Ω_N in G iff it is a minimal hitting set for Ω_N contained in G[T], and

$$3. |T| \leq 8 \cdot 8!(k+1)^8 + k.$$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet T$

or concludes that (G, k) is a NO-instance. (Sunflower lemma)

Kernel for LRw1VD – Hitting small obstructions

Lemma: There is a polynomial time algorithm that finds a non-empty set $T \subseteq V$ such that

- 1. G T is a thread graph,
- 2. $\forall S \subseteq V$, $|S| \leq k$, S is a minimal hitting set for Ω_N in G iff it is a minimal hitting set for Ω_N contained in G[T], and

$$3. |T| \leq 8 \cdot 8!(k+1)^8 + k.$$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet T \bullet$

or concludes that (G, k) is a NO-instance. (Sunflower lemma)

Crucial part : bounding the size of each thread block of G - T

We set $\mu(k) = 8 \cdot 8!(k+1)^8 + k$

Lemma: If G - T contains a thread block B(x, y) of size at least $(k+2)(\mu(k)+2)^2 + 1$, then we can find an irrelevant vertex in B(x, y) in polynomial time.

We set $\mu(k) = 8 \cdot 8!(k+1)^8 + k$

Lemma: If G - T contains a thread block B(x, y) of size at least $(k+2)(\mu(k)+2)^2 + 1$, then we can find an irrelevant vertex in B(x, y) in polynomial time.

Proof sketch

 \rightsquigarrow For every $v \in \mathcal{T}$ mark the k+2 first vertices with label R and k+2 last vertices with label L

We set $\mu(k) = 8 \cdot 8!(k+1)^8 + k$

Lemma: If G - T contains a thread block B(x, y) of size at least $(k+2)(\mu(k)+2)^2 + 1$, then we can find an irrelevant vertex in B(x, y) in polynomial time.

Proof sketch

 \rightsquigarrow For every $v \in \mathcal{T}$ mark the k+2 first vertices with label R and k+2 last vertices with label L

 \rightsquigarrow For every $u, v \in T$ mark the k + 2 vertices with label R, L

We set $\mu(k) = 8 \cdot 8!(k+1)^8 + k$

Lemma: If G - T contains a thread block B(x, y) of size at least $(k+2)(\mu(k)+2)^2 + 1$, then we can find an irrelevant vertex in B(x, y) in polynomial time.

Proof sketch

→ For every $v \in T$ mark the k + 2 first vertices with label R and k + 2 last vertices with label L

 \rightsquigarrow For every $u, v \in T$ mark the k + 2 vertices with label R, L

 \rightsquigarrow Mark first k + 2 vertices with R and last k + 2 vertices with L

We set $\mu(k) = 8 \cdot 8!(k+1)^8 + k$

Lemma: If G - T contains a thread block B(x, y) of size at least $(k+2)(\mu(k)+2)^2 + 1$, then we can find an irrelevant vertex in B(x, y) in polynomial time.

Proof sketch

→ For every $v \in T$ mark the k + 2 first vertices with label R and k + 2 last vertices with label L

- \rightsquigarrow For every $u, v \in T$ mark the k + 2 vertices with label R, L
- \rightsquigarrow Mark first k + 2 vertices with R and last k + 2 vertices with L
- \rightsquigarrow unmarked vertices in the middle are irrelevant

Claim that a vertex w in middle is irrelavent. Let S be the minimum deleting set of G - w, but not deleting set for G. $\rightsquigarrow G - S$ has an obstruction containing w. Claim that a vertex w in middle is irrelavent.

Let S be the minimum deleting set of G - w, but not deleting set for G. $\rightsquigarrow G - S$ has an obstruction containing w.

 \rightsquigarrow This chosen vertex w should be contained in a long cycle of G - S. (a minimal hitting set for small obstructions is contained in T) Claim that a vertex w in middle is irrelavent. Let S be the minimum deleting set of G - w, but not deleting set for G. $\rightsquigarrow G - S$ has an obstruction containing w.

 \rightsquigarrow This chosen vertex w should be contained in a long cycle of G - S. (a minimal hitting set for small obstructions is contained in T)

Claim that a vertex w in middle is irrelavent. Let S be the minimum deleting set of G - w, but not deleting set for G. $\rightsquigarrow G - S$ has an obstruction containing w.

 \rightsquigarrow This chosen vertex w should be contained in a long cycle of G - S. (a minimal hitting set for small obstructions is contained in T)

Kernel for LRw1VD – Remaining part

- 1. a connected component C with at least $19(6\mu(k) + 1)$ thread blocks $\rightarrow \exists$ a block which can be shrunk into a vertex.
- 2. at least $2\mu(k) + 1$ connected components containing at least two vertices $\rightarrow \exists$ an obstruction intersecting T with one vertex.
- 3. at least $\mu(k)^2 \cdot (k+2) + 1$ isolated vertices
 - \rightarrow identify an irrelavent vertex.

Kernel for LRw1VD – Remaining part

- 1. a connected component C with at least $19(6\mu(k) + 1)$ thread blocks $\rightarrow \exists$ a block which can be shrunk into a vertex.
- 2. at least $2\mu(k) + 1$ connected components containing at least two vertices $\rightarrow \exists$ an obstruction intersecting T with one vertex.
- 3. at least $\mu(k)^2 \cdot (k+2) + 1$ isolated vertices \rightarrow identify an irrelayent vertex.

-

Theorem: The LINEAR RANK-WIDTH-ONE VERTEX DELETION problem admits a kernel with $O(k \cdot \mu(k)^4) = O(k^{33})$ vertices.

Open problems

- ► Improve the time complexity of the FPT algorithm and the kernel size (Is O^{*}(c^k) reasonable for c < 4?).</p>
- Does RANK-WIDTH-c VERTEX DELETION has a single exponential FPT algorithm? Does RANK-WIDTH-c VERTEX DELETION has a polynomial kernel? Even for c = 1.

Open problems

- Improve the time complexity of the FPT algorithm and the kernel size (Is O*(c^k) reasonable for c < 4?).</p>
- Does RANK-WIDTH-c VERTEX DELETION has a single exponential FPT algorithm? Does RANK-WIDTH-c VERTEX DELETION has a polynomial kernel? Even for c = 1.
- ▶ What about the CIRCLE GRAPH VERTEX DELETION problem?

 Circle-*F*-vertex-minor deletion admits a polynomial kernel? (Like a planar-*F*-minor deletion)
 If *F* contains a cycle or a path?