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1.

Let p : S2 → P2 be the covering map induced by p(−x) = p(x) with S2 ⊂ R3.

And let f be a map of P2 to itself with f#(π1(S2, e)) 6= 1, where e = (1, 0, 0). Choose

e′ ∈ p−1(f(p(e))). Then, p : (S2, e′) → (P2, f(p(e))) is also a covering map. Put

g = f ◦ p. Since S2 is simply connected, by the lifting theorem, there exists a lift ḡ

of g such that ḡ(e) = e′.

From p◦ḡ = g = f ◦p, it follows that ḡ(−x) = ±ḡ(x) for each x ∈ S2. Then, since
S2 is connected and a mapping x ∈ S2 7→< ḡ(−x), ḡ(x) >∈ {−1, 1} is continuous,

x 7→< ḡ(−x), ḡ(x) > is a constant map −1 or 1, where < ·, · > is the usual inner

product.

Assume that ḡ(−x) = +ḡ(x) for every x ∈ S2. Then, ḡ factors through P2. Since

p is a quotient map, ḡ = h ◦ p defines a continuous map h : (P2, p(e)) → (S2, e′).
Then, h is a lift of f since p is surjective, and so f#(π1(P2, p(e))) ⊆ p#(π1(S2, e′)) =
p#(1) = 1. This contradicts that f#(π1(S2, e)) 6= 1.

Hence, ḡ(−x) = −ḡ(x) for every x ∈ S2. This yields the map T .

2.

Let π : R → S ⊂ C be the exponential map and let f : (S, 1) → (S, 1) be a map.

Suppose that f is of degree 1. This implies that every lift of f ◦ π|[0,1] having value

0 at 0 has value 1 at 1.

Now, since R is simply connected, by the lifting theorem, there exists a lift

g : (R, 0) → (R, 0) of f ◦ π. Then, g|[0,1] forms a lift of f ◦ π|[0,1] with g|[0,1](0) = 0,

and so g(1) = 1. By the mapping of π, we may find that g(x + 1) − g(x) ∈ Z for

each x ∈ R. Since R is connected and a mapping x ∈ R 7→ g(x + 1) − g(x) ∈ Z is

continuous, together with g(0) = 0 and g(1) = 1, we have g(x + 1) − g(x) = 1 for

every x ∈ R.
Put h(x) = g(x) − x. Then, h is periodic with period 1 and factors through S.

Since π is an identification map, h = h′ ◦ π defines a continuous map h′ : S → R.
Note that (f ◦ π)(x) = (π ◦ g)(x) = (π ◦ h)(x)π(x) = (π ◦ h′ ◦ π)(x)π(x) and so

f(z) = z(π ◦ h′)(z) since π is surjective.

From the fact that R is contractible, it follows that h′ ' c0 and so π ◦ h′ ' c1.

By multiplying a homotopy between π ◦ h′ and c1 by z, we may obtain a homotopy

between f and idS, that is, f ' idS.

1.

Suppose that these actions coincide. To show that π1(Y, y0) is abelian, choose

α and β there. Then, for every x in a fiber F = p−1(y0), x · (αβ) = Θ(αβ) · x =

(Θ(α) ◦ Θ(β)) · c = Θ(α) · (Θ(β) · x) = Θ(α) · (x · β) = (x · β) · α = x · (βα), or
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x · (αβα−1β−1) = x, which means that αβα−1β−1 ∈ p#(π1(X,x)) = p#(1) = 1.

Thus, αβ = βα and so π1(Y, y0) is abelian.

Conversely, suppose that π1(Y, y0) is abelian. Choose x0 ∈ F = p−1(y0). For

every x ∈ F , there exists β ∈ π1(Y, y0) such that x0 · β = x since the monodromy

action of π1(Y, y0) on F is transitive. Then, we have Θ(α) · x = Θ(α) · (x0 · β) =

(Θ(α) · x0) · β = (x0 · α) · β = x0 · (αβ) = x0 · (βα) = (x0 · β) · α = x · α. Here, we

used Proposition 6.2 and our supposion. The actions coincide.

1.

Write G = {g1 = e, g2, · · · , gn}, where gi’s are all distinct. Let x ∈ X. Then,

G(x) = {g1 ·x, g2 ·x, · · · , gn ·x}. If gi ·x = gj ·x, then (g−1
j gi) ·x = x and this implies

g−1
j gi = e, i.e., gi = gj . So, all of gi · x are distinct. Since X is Hausdorff, there

exist mutually disjoint open sets U1, U2, · · · , Un in X such that gi · x ∈ Ui for every

i = 1, 2, · · · , n. Put U = ∩n
i=1g

−1
i (Ui). Obviously, U is an open set inX containing x.

Suppose gk(U)∩U 6= ∅. Then, we have ∅ 6= gk(U)∩U ⊆ gk(g
−1
k (Uk))∩U1 = Uk∩U1.

By the choice of Ui’s, we obtain k = 1. Thus, gk = g1 = e. The action of G is prop-

erly discontinuous.

4.
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