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4.

Let N be a neighborhood of e in G. There exists an open set U in G with

e ∈ U ⊂ N . Define f : G × G → G by f(x, y) = xyx−1. As a composition of

multiplications and an inversion, f is continuous. Take V = f(G× (U c))c.

We may prove that V is open with e ∈ V ⊂ N as follows. Suppose that e ∈ V c.

Then, for some g ∈ G and some u′ ∈ U c, e = gu′g−1 and so e = u′ ∈ U c. But e ∈ U .

So, e is in V . Let v ∈ V . Assume that v 6∈ U . Then, (e, v) ∈ G × (U c), which

means that v ∈ f(G× (U c)) = V c. This is a contradiction. We find that V ⊂ U and

thus V ⊂ N . And we notice that U c is compact as a closed subset of the compact

space G, and that G× (U c) is also compact as a finite Cartesian product of compact

spaces, which implies that f(G× (U c)) is compact since f is continuous. Note that

the topological group G is Hausdorff. Hence, f(G × (U c)) is closed in G and its

complement V is open in G.

Now, we claim that V is invariant under conjugation. Let w ∈ V and let g1 ∈ G.

Suppose that g1wg
−1
1 6∈ V . We have g1wg

−1
1 = g2u

′′g−1
2 for some g2 ∈ G and some

u′′ ∈ U c. Then, w = (g−1
1 g2)u

′′(g−1
1 g2)

−1 = f(g−1
1 g2, u

′′) ∈ f(G× (U c)). However, w

was chosen in V and we obtain a contradiction. So, g1V g−1
1 ⊂ V for every g1 ∈ G.

Also, for each g1 ∈ G, V = g1(g
−1
1 V (g−1

1 )−1)g−1
1 ⊂ g1V g−1

1 . Therefore, g1V g−1
1 = V

for every g1 ∈ G.

5.

Let X be an open and closed subset of G. Replacing X by Xc if necessary, we

can suppose that X intersects with the nonempty set H. Then, X ∩H is nonempty,

open and closed in the connected space H. So, X ∩ H = H and thus X ⊃ H.

Also, since X 6= ∅, p−1(p(X)) = XH = X and p−1(p(X)c) = Xc, we find that

p(X) is nonempty, open and closed in the connected space G/H, which means that

p(X) = G/H and thus X = p−1(p(X)) = p−1(G/H) = G. Actually, by the replace-

ment, we have X = ∅ or G. Therefore, G is connected.

8.

To prove that SO(n) is connected, one can use the mathematical induction. First,

SO(1) is connected as an one-point space {[1]}. Next, suppose that SO(n − 1) is

connected for some positive integer n ≥ 2. For this n, we know that SO(n)/SO(n−
1) ∼= Sn−1, and that Sn−1 is connected. By a theorem, SO(n) is connected. The

induction gives the connectedness of SO(n) for each positive integer n.

In ∈ SO(n) is trivial. And, since SO(n) is connected, SO(n) ⊂ C for some compo-

nent C of O(n). Note that det is a continuous map with +1 ∈ det(C) ⊂ {−1,+1},
and that {+1} is open and closed in {−1,+1}. Thus, (det |C)−1(+1) is C as a

nonempty, open and closed subset of the component C. We have C = SO(n), and
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so SO(n) is a component of O(n).

11.

Obviously, O(n+1) acts on RPn by A·p(x) = p(Ax), A ∈ O(n+1), x ∈ Rn+1\{0},
where p : Rn+1 \ {0} → RPn is the quotient map. Then, the action is transitive. For

showing, choose p(x) and p(y) in RPn with p(x) 6= p(y). Here, x and y are linearly

independent by the mapping of p. Then, by Gram-Schmidt orthonormalization,

there exists an orthonormal basis v1, v2, · · · , vn+1 for Rn+1 with v1 = x/‖x‖ and

v2 = (y−(v1 ·y)v1)/‖(y−(v1 ·y)v1)‖. Put L(v) = (v1 ·v)u1+(v2 ·v)u2+
∑n+1

i=3 (vi ·v)vi
for each v ∈ Rn+1, where u1 = cos θv1 + sin θv2, u2 = − sin θv1 + cos θv2 and

θ = cos−1((x ·y)/‖x‖‖y‖). We observe that u1, u2, v3, · · · , vn+1 form an orthonormal

basis for Rn+1, and that L is a linear transformation mapping between orthonormal

bases. Hence, L ∈ O(n + 1). And a simple calculation gives L(x) = (‖x‖/‖y‖)y,
which implies that L · p(x) = p(L(x)) = p((‖x‖/‖y‖)y) = p(y).

By a theorem, we have O(n + 1)/O(n + 1)p(e) ∼= O(n + 1)(p(e)) = RPn, where

e = (0, 0, · · · , 0, 1) ∈ Rn+1. Let us find O(n+ 1)p(e). Take S in O(n+ 1)p(e). Then,

Se = λe for some nonzero real number λ. If c1, c2, · · · , cn+1 are the column vectors

of S, then thay are orthonormal with cn+1 = λe. Thus, λ = ±1, and c1, c2, · · · , cn
are orthonormal in Rn × {0}. So, S = diag(S′,±1) for some S′ ∈ O(n). Writing

O(n) × O(1) = {diag(A1, A2)|A1 ∈ O(n), A2 ∈ O(1)}, we obtain O(n + 1)p(e) ⊂
O(n)×O(1). Evidently, the reverse inclusion also holds. O(n+1)p(e) = O(n)×O(1).

In conclusion, RPn ∼= O(n+ 1)/O(n)×O(1).

Similarly, we can prove that CPn ∼= U(n + 1)/U(n) × U(1). But we use the

Hermitian inner product < ·, · > instead of the Euclidean inner product. And,

modify L by L(v) =< v1, v > (< v1, y/‖y‖ > v1+ < v2, y/‖y‖ > v2)+ < v2, v >

(−< v2, y/‖y‖ >v1 + < v1, y/‖y‖ >v2) +
∑n+1

j=3 < vj , v > vj . Moreover, it follows

that |µ| = 1 from the corresponding equation: Te = µe, T ∈ U(n+ 1), µ ∈ C \ {0}.
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