4.

Put $f(z) = z^2$. Write C_f as $p_1((S_1^1 \times I) \bigsqcup S_2^1)$. Here, p_1 is the quotient map, $S_1^1 = S_2^1 = S^1 \subset \mathbb{C}$, and \bigsqcup means the disjoint union. Define a map $g: (S_1^1 \times I) \bigsqcup S_2^1 \to \mathbb{P}^2 = p_2(D^2)$ by

$$\begin{cases} g(x,t) = p_2((1-t)x) \text{ if } (x,t) \in S_1^1 \times I, \\ g(y) = p_2(\sqrt{y}) \text{ if } y \in S_2^1, \end{cases}$$

where p_2 is the quotient map of the 2-dimensional disk $D^2 \subset \mathbb{C}$ onto \mathbb{P}^2 , and $\sqrt{y} = \exp(\frac{i}{2}\arg(y))$, $-\pi < \arg < \pi$. Since arg is continuous on $S_2^1 \setminus \{-1\}$, so is g. And we have $g(y) = p_2(-i\exp(\frac{i}{2}\arg'(y)))$ for every $y \in S_2^1 \setminus \{1\}$, where $0 < \arg' < 2\pi$. So, g is continuous on $S_2^1 \setminus \{1\}$. By the gluing lemma for open subsets, we find that it is continuous on S_2^1 . Evidently, g is continuous on $S_1^1 \times I$ and thus continuous everywhere.

Now, $g(x, 1) = p_2(0)$ for every $x \in S_1^1$, and if y = f(x) for some $y \in S_2^1$ and some $x \in S_1^1$, then $x = \pm \sqrt{y}$ and so g(x, 0) = g(y). We can take a canonical map h of C_f into \mathbb{P}^2 with $h \circ p_1 = g$.

Then, h is a homeomorphism between C_f and \mathbb{P}^2 . Since g is continuous and surjective, so is h. To check that h is injective, suppose h(z) = h(w) for some $z, w \in C_f$. Since $p_1(S_1^1 \times I) = C_f$, we write $z = p_1(x_1, t_1)$ and $w = p_1(x_2, t_2)$ for some $x_j \in S_1^1, t_j \in I, j = 1, 2$. We have $p_2((1 - t_1)x_1) = p_2((1 - t_2)x_2)$. By the definition of p_2 and by the usual norm on D^2 , we obtain the following result:

$$t_2 = 0$$
 and $x_2 = \pm x_1$ if $t_1 = 0$,

and

$$t_2 = t_1$$
 and $x_2 = x_1$ if $t_1 \neq 0$.

Thus, we have $z = p_1(x_1, t_1) = p_1(x_2, t_2) = w$, that is, h is one-to-one. Note that C_f is compact due to the compact space $(S_1^1 \times I) \bigsqcup S_2^1$, and that \mathbb{P}^2 is a T_2 space. By a theorem, h is a homeomorphism between C_f and \mathbb{P}^2 .

6.

For $0 \le \theta < 2\pi$, put

$$H(\exp(\theta i), t) = \begin{cases} \exp(4\theta i) & \text{if } 0 \le \theta < \pi/2, \\ \exp(4t(\theta - \pi/2)i) & \text{if } \pi/2 \le \theta < \pi, \\ \exp(-2t(\theta - \pi)i + 2\pi ti) & \text{if } \pi \le \theta < 2\pi, \end{cases}$$

and put $f_j(\exp(\theta i)) = H(\exp(\theta i), j), j = 0, 1$. Since H is a homotopy of maps from S^1 to S^1 , we have $f_1 \simeq f_0$. Then, f_0 is obviously homotopic to 1_{S^1} . Explicitly, the

following map $G: S^1 \times I \to S^1$ is a homotopy between f_0 and 1_{S^1} :

$$G(\exp(\theta i), t) = \begin{cases} \exp(\frac{2\pi}{M(t)}\theta i) & \text{if } 0 \le \theta < M(t), \\ 1 & \text{if } M(t) \le \theta < 2\pi, \end{cases}$$

where $0 \le \theta < 2\pi$, and $M(t) = \pi/2 + (3\pi/2)t$. Then, by a theorem, we have $C_{f_1} \simeq C_{1_{S^1}}$.

Let us consider C_{f_1} . We observe that $f^{-1}(\{\exp(\theta i)\}) = \{\exp((\theta/4)i), \exp((\pi/2)i + (\theta/4)i), \exp((2\pi - \theta/2)i)\}$ for each $\theta \in [0, 2\pi)$. Hence, we obtain the following diagram:

This means that C_{f_1} is homeomorphic to the dunce cap space. On the other hand, $C_{1_{S^1}} \cong D^2$ can be explained as follows:

In conclusion, the dunce cap space is contractible since it is homotopy equivalent to the contractible space D^2 .

8.

Let X be a contractible space, and let A be a retract of X with a retraction $f : X \to A$. By the choice of X and by a theorem, there exists a homotopy $H : X \times I \to X$ with a point $x_0 \in X$, such that $H(x, 0) = 1_X(x)$ and $H(x, 1) = x_0$ for every $x \in X$. Take $G = f \circ (H|_{A \times I})$. Trivially, G is a continuous mapping of $A \times I$ into A. Also, $G(a, 0) = 1_A(a)$ and $G(a, 1) = f(x_0)$ for every $a \in A$. Here, $f(x_0)$ is a point fixed in A. Therefore, A is contractible.

9.

Put

$$\bar{g}(x) = \frac{g(x) - (f(x) \cdot g(x))f(x)}{\|g(x) - (f(x) \cdot g(x))f(x)\|},$$
$$w(x) = \cos^{-1}(f(x) \cdot g(x))$$

and

$$H(x,t) = \begin{cases} \cos(w(x)t)f(x) + \sin(w(x)t)\overline{g}(x) & \text{if } f(x) \neq g(x), \\ f(x) & \text{if } f(x) = g(x), \end{cases}$$

for every $x \in X$ and every $t \in I$. Now, since $f(x) \neq -g(x)$ in S^n for any $x \in X$, $g(x) - (f(x) \cdot g(x))f(x) \neq 0$ on Y, and we find that $\overline{g}|_Y$ is a well-defined continuous map, where $Y = \{x \in X | f(x) \neq g(x)\}$. Note that $||H(y,t) - f(y)|| \leq \frac{1}{2}(w(y)t)^2 + w(y)t$ for every $y \in Y$ and every $t \in I$, and thus that $w(y) \to 0$ and so $||H(y,t) - f(y)|| \to 0$ as $y \in Y$ goes outside Y. Hence, H is continuous. By a simple calculation, together with $\sin(w(x)) = ||g(x) - (f(x) \cdot g(x))f(x)||$, we have H(x,0) = f(x) and H(x,1) = g(x) for every $x \in X$. It follows that $f \simeq g$.