1.

Let *i* be the inclusion map of S^n into $\mathbb{R}^{n+1}\setminus\{0\}$. Then, there exists a map *j* of $S^n/\sim_1 = \pi_1(S^n)$ into $\mathbb{R}^{n+1}\setminus\{0\}/\sim_2 = \pi_2(\mathbb{R}^{n+1}\setminus\{0\})$, defined by $j \circ \pi_1 = \pi_2 \circ i$, where π_1 and π_2 are the quotient maps.

To show that j is continuous, choose an open set U in $\mathbb{R}^{n+1} \setminus \{0\}/\sim_2$. Since π_2 and i is continuous, and $\pi_1^{-1}(j^{-1}(U)) = i^{-1}(\pi_2^{-1}(U))$ holds, we find that $\pi_1^{-1}(j^{-1}(U))$ is open in S^n . And $j^{-1}(U)$ is open in S^n/\sim_1 , for π_1 is an identification map. Thus j is continuous.

If $y \in \mathbb{R}^{n+1}\setminus\{0\}$, then we have $j(\pi_1(y/||y||)) = \pi_2(y)$. And, if both z and tz are in S^n for some $t \in \mathbb{R}\setminus\{0\}$, then $t = \pm 1$, and so $\pi_1(z) = \pi_1(tz)$. Consequently, j is bijective.

We claim that $\mathbb{R}^{n+1}\setminus\{0\}/\sim_2$ is a T_2 space. Let $\pi_2(a)$ and $\pi_2(b)$ be contained in $\mathbb{R}^{n+1}\setminus\{0\}/\sim_2$ with $\pi_2(a) \neq \pi_2(b)$. We can suppose that ||a|| = 1 = ||b||. Put $f(x) = ||x - (x \cdot a)a|| - ||x - (x \cdot b)b||$ on $\mathbb{R}^{n+1}\setminus\{0\}$. Then f is continuous. Letting $V_1 = f^{-1}((-\infty, 0))$ and $V_2 = f^{-1}((0, \infty))$, we have $\pi_2^{-1}(\pi_2(V_i)) = V_i$, i = 1, 2, and we obtain two open sets $\pi_2(V_1)$ and $\pi_2(V_2)$ in $\mathbb{R}^{n+1}\setminus\{0\}/\sim_2$ with $\pi_2(a) \in \pi_2(V_1), \pi_2(b) \in$ $\pi_2(V_2)$ and $\pi_2(V_1) \cap \pi_2(V_2) = \emptyset$. So, $\mathbb{R}^{n+1}\setminus\{0\}/\sim_2$ is a T_2 space. And obviously, S^n/\sim_1 is compact. Since j is a bijective continuous map, j is thus open.

In conclusion, $S^n / \sim_1 \cong \mathbb{R}^{n+1} \setminus \{0\} / \sim_2$.

2.

Let O be a open set in $A \times B$. Then $O = \bigcup_{\alpha \in \Phi} U_{\alpha} \times V_{\alpha}$ for some U_{α} open in A, V_{α} open in B. Now we have

$$(f \times g)^{-1}(O) = \bigcup (f \times g)^{-1}(U_{\alpha} \times V_{\alpha}) = \bigcup (f^{-1}(U_{\alpha}) \times g^{-1}(V_{\alpha})).$$

Since f and g are continuous, $f^{-1}(U_{\alpha}) \times g^{-1}(V_{\alpha})$'s are open in $X \times Y$. Hence, $(f \times g)^{-1}(O)$ is open, and so $f \times g$ is continuous.

Let $P = \bigcup_{\beta \in \Psi} W_{\beta} \times \Omega_{\beta}$ be open in $X \times Y$. Note that each of $f(W_{\beta})$ (respectively, $g(\Omega_{\beta})$), $\beta \in \Psi$, is open in A (respectively, B) since f (respectively, g) is an open map. Therefore, $(f \times g)(P) = \bigcup f(W_{\beta}) \times g(\Omega_{\beta})$ is open, which means that $f \times g$ is an open map.

We conclude that $f \times g$ is an open identification map.

5.

Let us see the following diagram.

6.

Assume that \mathbb{R}/\sim is countable. Write it as $\{\pi(x_i) : i \in A\}$, where π is the quotient map, and $A = \emptyset, \{1, 2, \dots, n\}$ or \mathbb{Z}^+ . We know that $\mathbb{R} = \bigcup_{i \in A} \pi(x_i)$. Since \mathbb{Q} is countable, we find that each of $\pi(x_i)$'s is countable. Thus, \mathbb{R} is a countable union of countable sets, and so it is countable. But \mathbb{R} is uncountable. Hence, \mathbb{R}/\sim is uncountable.

Let us show that the quotient topology on \mathbb{R}/\sim is indiscrete. Let U be a nonempty open set in \mathbb{R}/\sim , and let $\pi(a) \in U$. Note that $\pi^{-1}(U)$ is open in \mathbb{R} containing the point a in \mathbb{R} . By the usual topology on \mathbb{R} , there exists a positive real number ϵ such that $(a - \epsilon, a + \epsilon) \subset \pi^{-1}(U)$. So, $\pi((a - \epsilon, a + \epsilon)) \subset U$. Let $\pi(b) \in \mathbb{R}/\sim$. By the density of \mathbb{Q} , there exists $q \in \mathbb{Q}$ such that $|(a - b) - g| < \epsilon$. Therefore, $\pi(b) = \pi(b+q) \in \pi((a - \epsilon, a + \epsilon)) \subset U$, for $|(b+q) - a| < \epsilon$ holds. Finally, we have $U = \mathbb{R}/\sim$, and thus \emptyset and \mathbb{R}/\sim are all of open sets in \mathbb{R}/\sim .

7.

Assume that $B \cong A = p_1(\mathbb{R})$ with a homeomorphism $f : B \to A$, where p_1 is the quotient map. We observe that $B \setminus \{(0,0)\}$ consists of countably many connected components, and that each of components has exactly one of points $(1/n, 1/n), n = 1, 2, \cdots$. Put $X = \{(1/n, 1/n) : n = 1, 2, \cdots\}$. We know that $B \setminus \{(0,0)\} \cong A \setminus \{f(0,0)\}$ with a homeomorphism $f|_{B \setminus \{(0,0)\}}$. By the observation, f(0,0) must be $p_1(0)$, and each element of f(X) is contained in exactly one of $p_1((m, m + 1)), m \in \mathbb{Z}$. Then, $(0,0) = \lim_{n\to\infty} (1/n, 1/n)$ is not in X. So, X is not closed in B. But, considering the subspace topology on $\mathbb{R} \setminus \mathbb{Z} \subset \mathbb{R}$, we find that f(X) is closed in A, which is a contradiction. We conclude that $B \ncong A$. Similary, we find that $C \ncong A \ncong D$.

C is noncompact since *C* is unbounded in \mathbb{R}^2 . But the bounded and closed set *B* in \mathbb{R}^2 is compact. Also, the fact that S^1 in \mathbb{C} is compact, ensures that so is *D*. Thus, $B \not\cong C \not\cong D$.

Let g be a mapping of S^1 into B, defined by

$$g(\exp(\theta i)) = \begin{cases} (0,0) &, \ \theta = 0, \\ (\frac{1}{n+1}\cos(a_n(\theta)), \frac{1}{n+1}\{1 + \sin(a_n(\theta))\}) &, \ \frac{\pi}{n+1} \le \theta < \frac{\pi}{n}, n \in \mathbb{Z}^+, \\ (\cos(2\theta - \pi/2), 1 + \sin(2\theta - \pi/2)) &, \ \pi \le \theta < 2\pi; \end{cases}$$

for $\theta \in [0, 2\pi)$, where

$$a_n(\theta) = \frac{3\pi}{2} + 2\pi \frac{\theta - \frac{\pi}{n+1}}{\frac{\pi}{n} - \frac{\pi}{n+1}}.$$

 $g|_L$ is obviously continuous, where $L = \{\exp(\theta i) : \pi \leq \theta \leq 2\pi\}$. Also, since $|g(z)| \leq 2/(n+1)$ for every $z = \exp(\theta i), 0 \leq \theta \leq \pi/n, g|_U$ is continuous at the point 1, where $U = \{\exp(\theta i) : 0 \leq \theta \leq \pi\}$. From the gluing lemma for closed subsets, together

with the continuity at the point 1 and the Archimedean property, it follows that $g|_U$ is continuous at each point in U. Again from the gluing lemma, it comes that g is continuous. Since $g(\exp((\pi/n)i)) = (0,0)$ for every $n \in \mathbb{Z}^+$, there exists a canonical map h of $D = p_2(S^1)$ into B with $h \circ p_2 = g$, where p_2 is the quotient map. Then, his a continuous surjection, for g is so and p_2 is an identification map. And it is easily shown that h is injective. Note that $p_2(S^1)$ is compact due to the compact space S^1 , and that B is a T_2 space as a subspace of \mathbb{R}^2 . Thus, h is a homeomorphism, and so $D \cong B$.