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Abstract. We give a sufficient criterion for specializations of certain families of
polynomials to yield monogenic number fields. This generalizes constructions in
several earlier papers. As applications we give new infinite families of monogenic
number fields for several prescribed Galois groups.

1. Introduction

A number field K|Q is called monogenic if its ring of integers has a power basis,
i.e. is of the form Z + αZ + · · · + αnZ for some α ∈ K. An easy criterion for a
field to be monogenic is the following: Let f ∈ Z[x] be monic irreducible, and
K = Q[x]/(f). If the discriminant of f equals the field discriminant of K, then
K is monogenic, and a power basis is obtained via powers of a root α of f . While
quadratic fields are always monogenic, this is not the case any more for cubic fields.

It is unclear for which finite groups there are infinitely many monogenic number
fields with Galois group (of the Galois closure) isomorphic to G. While there are
infinitely many examples for the symmetric group Sn, it has been shown for cyclic
groups G of prime order > 5 that there is at most one monogenic G-number field
([8]).
Several recent works have obtained infinite families of monogenic fields for pre-
scribed Galois groups, including quinticD5-fields ([10]), sexticA4- ([5]) and PSL2(5)-
fields ([16]) and septimic PSL2(7)-fields ([11]).

In this work, we prove a general criterion which not only subsumes most of the
above existence results, but also makes verification of new results (under certain
conditions) very easy and comfortable. We demonstrate this with several new
infinite families of monogenic number fields.

2. Prerequisites

2.1. Some basics on number fields and function fields. We will later use
the following well-known statement about exponents of ramified primes in dis-
criminants, which holds in number fields as well as in function fields (cf. e.g. [9],
p. 100 and Prop. 6.3.1).
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Lemma 1. Let L|K be a finite separable extension of number fields or function
fields, M |K be its Galois closure, and ∆ =

∏r
i=1 p

ei
i the factorization of the dis-

criminant of L|K into prime ideals of K. If pi is tamely ramified in L|K, then
ei = ind(σi), where σi ∈ Gal(M |K) is a generator of the inertia group at pi, acting
naturally on the cosets of Gal(M |L), and the index ind(x) of a permutation x ∈ Sn
is defined as n minus the number of cycles of x.

Now, let K be a field of characteristic 0, K be its algebraic closure, t be a
transcendental over K, and N |K(t) be a Galois extension. A value ti ∈ K ∪∞ is
called a branch point of N |K(t) if the ideal (t−ti) (or (1/t) in the special case ti =
∞) is ramified in NK|K(t). Let G := Gal(NK|K(t)). Due to tame ramification,
the inertia subgroup at a branch point ti in N |K(t) is cyclic, generated by some
σi ∈ G.

We are particularly interested in the case that N |K(t) is the Galois closure of
an extension K(y)|K(t) of rational function fields, i.e. the splitting field of some
irreducible polynomial f(t, x) := f1(x) − tf2(x). In this case, information about
ramification is particularly easy to obtain.

In particular, the discriminant ∆(f) ∈ K[t] factors in K[t] as C ·
∏r

i=1(t−αi)ei ,
where the αi are exactly the finite branch points of N |K(t) and ei = ind(σi), where
σi is an inertia group generator at t 7→ αi in N |K(t), in the permutation action
on the roots of f .
This can be seen as a “polynomial version” of the Riemann-Hurwitz formula, and
is essentially due to the fact that the extension K(y)|K(t) is monogenic, in the
sense that {yi | i ∈ {0, ..., deg(f)− 1}} is a power basis over K[t].

2.2. Ramification in specializations. Let E|k(t) be a Galois extension of func-
tion fields. For t0 ∈ k, the specialization Et0|k is defined as the residue field in E
of any place extending the place t 7→ t0 of k(t) (this is independent of the choice
of place over t 7→ t0, since E|k(t) is Galois). If E|k(t) is the splitting field of a
polynomial f(t, x) ∈ k[t, x], then for all but finitely many t0 ∈ k, this is simply the
splitting field of f(t0, x).

Now let k be a number field, let a0 be an algebraic number, f ∈ k[X] be its
minimal polynomial, and p be a finite prime of k. Assume that a0 is p-integral.1

For a ∈ k, define Ip(a, a0) as the multiplicity of p in the fractional ideal generated
by f(a). Obviously, we have Ip(a, a0) 6= 0 only for finitely many prime ideals p of
k. With this notation, we can state an important criterion, relating ramification
regular Galois extensions to ramification in specializations. It can be found in [1],
Thm. 1.2 and Prop. 4.2; see also Theorem I.10.10 in [13] for a version close in
wording to the one below.

1What follows is defined in the non-p-integral case as well. We keep the integrality assumption
to avoid a distinction into cases which is not necessary for the purpose of this paper.
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Proposition 2. Let k be a number field and N |k(t) be a Galois extension with
Galois group G. Then there is a finite set S of primes of k (depending on N |k(t))
such that for all primes p /∈ S, the following holds:
If a ∈ k is not a branch point of N |k(t) then the following condition is necessary
for p to be ramified in the specialization Na|k:

ei := Ip(a, ai) > 0 for some (automatically unique) branch point ai.

Furthermore, the inertia group of a prime extending p in the specialization Na|k
is then conjugate in G to 〈τ ei〉, where τ is a generator of an inertia subgroup over
the branch point t 7→ ai of k(t).

The finite set S of exceptional (“bad”) primes in the above statement can also
be described explicitly. For sake of simplicity, we do this under a few extra as-
sumptions, all of which are fulfilled in our later examples.

Proposition 3. Assume in Prop. 2 that N |k(t) is k-regular, i.e. N ∩ k = k, and
that Z(G) = 1. Then it suffices to take the set S of “bad” primes as the union of
the following sets:

i) The set of primes dividing |G|,
ii) the set of primes p at which two branch points t1, t2 of N |k(t) meet (i.e.

Ip(t1, t2) > 0),
iii) the set of primes dividing the discriminant of the minimal polynomial of

some branch point.

Proof. See Theorem 1.2 and Prop. 4.2 in [1]. �

3. A general criterion

Let f(t, x) := f1(x)− tf2(x) ∈ Z[t, x] be monic in x, with coprime f1, f2 ∈ Z[x].
Let ∆(t) ∈ Z[t] be the discriminant of f with respect to x. Write ∆(t) =∏r

i=1 pi(t)
ei with pairwise distinct irreducible elements pi(t) in Z[t] (including con-

stants pi(t) ≡ pi ∈ P) and ei ∈ N. Then we denote by ∆red(t) :=
∏r

i=1 pi(t) the
reduced discriminant of f .

The following is a sufficient criterion for f to possess specializations yielding
monogenic number fields. We use without further mention the well-known fact
that if p ∈ Z[x] is monic irreducible with a root α ∈ Q, such that the polynomial
discriminant of p equals the field discriminant of Q(α), then Q(α) is monogenic,
with {αi | i ∈ {0, ..., deg(p)− 1}} forming a power basis of the ring of integers.

Theorem 4. Let f(t, x) := f1(x)− tf2(x) ∈ Z[t, x] be as above, with Galois group
G over Q(t), and let ∆red(t) ∈ Z[t] be its reduced discriminant (with respect to x).
Assume that the following hold:
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i) ∆red(t) has no irreducible factor of degree ≥ 4.2

ii) ∆red(t) has no fixed prime divisor, i.e. there exists no prime p ∈ P dividing
all integer values of ∆red.

Then there are infinitely many t0 ∈ Z such that Q(α)|Q is a monogenic number
field with Galois group G, where α denotes a root of f(t0, x) = 0. More precisely,
{αi | i ∈ {0, ..., deg(f)− 1}} is a power basis of the ring of integers of Q(α).

Proof. Let F |Q(t) be a splitting field of f and let S = {p1, ..., pn} be the set of bad
primes for F |Q(t), in the sense of Prop. 2. By condition ii), for each i ∈ {1, ..., n},
there exists an integer ti such that ∆red(ti) 6= 0 mod pi. By the Chinese remainder
theorem, there then exists a ∈ Z such that ∆red(a) is coprime to all of p1, ..., pn
(for short, say that it is coprime to S). The same then of course holds for all
∆red(a+ t0b) with t0 ∈ Z and b := p1 · · · pn.

Let g(t) := ∆red(a + tb). Note that g cannot have a fixed prime divisor p. For
p ∈ {p1, ..., pn}, this is clear from the definition of g. For any other p, the set
a + bZ of course intersects every mod-p residue class, and the assertion follows
from condition ii).

Now for N ∈ N, let M(g,N) := {t0 ∈ {1, ..., N} | g(t0) is squarefree }. Then
by Theorem 1.1 in [2], there exists k ∈ N such that |M(g,N)| � N/ log(N)k (this
generalizes a classical result by Erdös ([6]), proving infinity of squarefree values
for cubic polynomials). We claim that all t0 ∈M(g,N) lead to monogenic number
fields Q(α)|Q, where α denotes a root of f(a+ t0b, x).

This is because for all those t0, the polynomial discriminant ∆red(a+ t0b) (and
then a fortiori the field discriminant of Q(α)|Q) is not divisible by any bad primes
of F |Q(t). Now let ∆red(t) = ±

∏m
i=1 hi(t) be the factorization into irreducibles

over Z (note that the leading coefficient has to be ±1 by ii)). Let p be a prime
divisor of ∆red(a + t0b), then p divides a unique hi, and exactly once. Therefore
Ip(a + t0b, ti) = 1, where ti is a root of hi. Prop. 2 then implies that an inertia
group generator at p in Gal(f(a + t0b, x) | Q) equals an inertia group generator
σi at t 7→ ti in F |Q(t). So the exponent of p in the field discriminant of Q(α)|Q
equals degx(f) minus number of cycles of σi. From Section 2.1, this is however
exactly the exponent of p in ∆(a+ t0b). So the two discriminants are equal. This
shows the claim.

Lastly, |M(g,N)| � N/ log(N)k, but by Hilbert’s irreducibility theorem (see
e.g. [3] for a very general version) the set of values t0 ∈ {1, ..., N} such that
f(a + t0b, x) is reducible has cardinality � N1/2+ε. Therefore, infinitely many
t0 ∈ ∪N∈NM(g,N) (and in fact almost all, in a density sense) also lead to ex-
tensions Q(α)|Q with Galois group G. The fact that this creates infinitely many

2In other words, the splitting field of f over Q(t) has no branch point of degree ≥ 4 over Q.
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distinct number fields follows immediately from the fact that the corresponding
field discriminants are unbounded from above. �

Remark 1. A few remarks on the conditions in Theorem 4:

• Condition i) can be dropped, conditional on the abc-conjecture. Namely,
it was only used in the above proof to ensure the existence of sufficienty
large sets of squarefree specializations. As shown by Granville ([7]), the
abc-conjecture implies that for every integer polynomial g(t) ∈ Z[t] which
does not have a fixed prime divisor, the set of t0 ∈ N such that g(t0) is
squarefree has positive density.
• Condition ii) is obviously somewhat restrictive, since ∆red is in particular

required to be a primitive polynomial (otherwise, every value would be di-
visible by the gcd of the coefficients).
However, even in the case that ∆red has a constant prime factor, the con-
clusions of the theorem may still be obtained in certain cases; see Section
4.3 for an example.
• The condition that f is of t-degree 1 is of course not strictly necessary either

to obtain the conclusion. It is however the most convenient assumption to
ensure that every root of the discriminant of f is in fact a branch point.

It should also be noted that the assertion of Theorem 4 can be combined with
local conditions imposed on the monogenic number fields. In particular, the proof
shows that the discriminants obtained can be chosen coprime to any given finite
set of primes. Under modest extra assumptions, we can show more.

Corollary 5. In the setting of Theorem 4, assume additionally that the splitting
field L of f is a Q-regular extension of Q(t) (i.e. L∩Q = Q). Let P be a finite set
of sufficiently large prime numbers (with the bound only depending on f), and for
each p ∈ P let Cp be a conjugacy class of G. Then the monogenic number fields
Q(α) can additionally be required to fulfill the following:
For each p ∈ P , the extension Q(α)|Q is unramified at p, with Frobenius class Cp.

3

Proof. Let p ∈ P . By Prop. 5.1 in [4], we can assume (for p sufficiently large)
the existence of a residue class ap + pZ such that for all integers t0 in this class,
the splitting field of f(t0, x) has Frobenius Cp at p, and additionally ∆red(t0) 6= 0
mod p. By the Chinese remainder theorem, there is then a residue class c + NZ,
with N :=

∏
p∈S p, such that for all t0 ∈ a + NZ, the above requirements are

fulfilled for all p ∈ S. Now simply repeat the proof of Theorem 4, replacing the
residue class a + bZ occurring there by (a + bZ) ∩ (c + NZ), which is non-empty
under the assumption that no p ∈ P is a bad prime. All one needs to note is that

3Of course, by the Frobenius of a number field extension, we mean the Frobenius of its Galois
closure.
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the polynomial g(t) arising in the proof still has no fixed prime divisor, which is
guaranteed by the above requirement ∆red(t0) 6= 0 mod p for p ∈ P . �

4. New examples

In the following, we apply Theorem 4 to some families of polynomials f(t, x)
with prescribed Galois groups. In particular, we show:

Theorem 6. Let G be one of PGL2(7), AGL3(2) or PSL2(11). Then there are
infinitely many monogenic number fields with Galois group (of the Galois closure)
isomorphic to G.

For those examples, we will also make the results of Theorem 4 more explicit.
It should be understood that using Theorem 4, many more examples can be pro-
duced, using polynomials from the literature. Also, several existing results, such
as those of [10], [11] or [16], can be regained as immediate corollaries of Theorem
4.

4.1. The group AGL3(2). Let AGL3(2) = (F2)
3 o GL3(2) be the affine linear

group, in its natural transitive degree-8 action.
The following example is a special case of a multi-parameter family computed by
Malle in [12]. However, computation of the individual example below is standard
nowadays, e.g. using Gröbner basis methods.

Proposition 7. Let f(t, x) := x6(x − 2)2 − t(5x2 + 5x + 2)(x − 1)2. Then f has
Galois group AGL3(2) over Q(t).

One computes, e.g. with Magma, that the discriminant of f with respect to t
equals ∆(t) = t6(288000t2 + 40747t + 221184)2. This has no fixed prime divisor,
since e.g. t(288000t2 + 40747t + 221184), evaluated at −1, equals −292 · 557, and
evaluated at 1 equals 37 ·89 ·167. The monogeneity result now follows readily from
Theorem 4.

To be more explicit, note that bad primes for the splitting field of f over Q(t)
are only 2, 3, 7 (prime divisors of the group order), 5 (modulo which the degree-3
branch points are not integral, hence they meet the branch point at infinity) and
29, 71 (modulo which disc(t · (288000t2 + 40747t + 221184)) = 0, hence two finite
branch points meet).
Let N := 2 ·3 ·5 ·7 ·29 ·71. Since ∆(1) is coprime to N , the same holds for all ∆(t0)
with t0 ≡ 1 mod N . Furthermore ∆(Nt+1) is a primitive polynomial, so the proof
of Theorem 4 shows that all t0 ≡ 1 mod N such that Gal(f(t0, x) | Q) = AGL3(2)
and ∆red(t0) is squarefree yield monogenic octic AGL3(2)-number fields.
Furthermore, f(t0, x) factors mod 2 into irreducible polynomials of degree 7 and
1, mod 3 into irreducible polynomials of degree 6 and 2, and mod 5 into two



A NOTE ON FAMILIES OF MONOGENIC NUMBER FIELDS 7

irreducible polynomials of degree 4. By Dedekind’s reduction theorem, the Galois
group of f(t0, x) over Q then contains elements of cycle structures (7.1), (6.2) and
(4.4). One verifies that no proper subgroup of AGL3(2) has this property, hence
the result follows for all t0 ≡ 1 mod N such that ∆red(t0) is squarefree.

4.2. The group PSL2(11). LetG be the projective special linear group PSL2(11),
in its (exceptional) transitive permutation action on 11 points. We use the follow-
ing family of polynomials, given e.g. in the appendix of [13].

Proposition 8. The polynomial f(t, x) := x11−3x10 +7x9−25x8 +46x7−36x6 +
60x4−121x3 + 140x2−95x+ 27 + tx2(x−1)3 ∈ Z[t, x] has Galois group PSL2(11)
over Q(t).

One computes that the discriminant ∆(t) ∈ Z[t] of f ∈ Z[t, x] (as a polynomial
in x) equals (108t3− 7472t2 + 267408t+ 7987117)4, which again can easily be seen
to have no fixed prime divisor. Again, the monogeneity result follows directly from
Theorem 4.

For more explicit results, note that the bad primes (in the sense of Prop. 2) are
exactly 2, 3, 5, 11, 19 and 101, and ∆(1) is coprime to all of them. In fact ∆ has
no roots at all modulo 2, 3, 5 and 11, so here it suffices e.g. to set N = 19 · 101 and
t0 ≡ 1 mod N .

The mod-19 reduction of f(t0, x) is irreducible, while the one mod 101 factors
into irreducible polynomials of degree 6, 3 and 2. So Gal(f(t0, x) | Q) is a subgroup
of PSL(11) containing elements of order 11 and 6, and in particular is of order
divisible by 66. However, the largest proper subgroup of PSL2(11) is of order 60.
Therefore Gal(f(t0, x) | Q) ∼= PSL2(11) for all t0 ≡ 1 mod 19 · 101. We therefore
obtain monogenic number fields of degree 11 with group PSL2(11) for all t0 ≡ 1
mod 19 · 101 such that ∆red(t0) is squarefree.

Remark 2. So far we have used the elementary Dedekind criterion to ensure arith-
metic progressions of specializations with the correct Galois group. Stronger results
could be obtained using Siegel’s finiteness theorem about integral points on curves.
We only sketch this approach very briefly. See [15] for a much deeper introduction
into the connection between Siegel’s theorem and Hilbert’s irreducibility theorem.
Siegel’s theorem ensures that a curve covering X → P1 over Q (corresponding to
a function field extension K|Q(t)) with infinitely many integral points has to have
genus zero and an inertia group generator with at most two orbits (and of equal
length) at t 7→ ∞. This translates to the assertion that a polynomial f(t, x) with
Galois group G over Q(t) can only have a strictly smaller Galois group U < G for
infinitely many specializations t 7→ t0 ∈ Z if G has a genus zero tuple including
an element with at most two orbits in the coset action on G/U . Since PSL2(11)
has no genus zero action fulfilling these requirements, we conclude that f(t0, x)
remains irreducible for all but finitely many t0 ∈ Z (this is a very special case of
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a general theorem by Müller ([14])). We then obtain the above result on mono-
genic PSL2(11)-extensions for all but finitely many t0 ∈ Z such that ∆red(t0) is
squarefree and coprime to 19 · 101.

4.3. The group PGL2(7). Here we give an example that demonstrates how the
restrictive condition ii) in Theorem 4 may be softened. Many more similar ex-
amples can be found. Again the polynomial below is a special case of a family
computed in [12].

Proposition 9. Let f(t, x) := x7(x+1)+ t(7x2 +x+1). Then f has Galois group
PGL2(7) over Q(t).

The discriminant of f with respect to x equals ∆(t) = 77t6(108t − 1)3. This
shows that the bad primes for the splitting field of f over Q(t) are only 2, 3 and 7.
Ignoring the constant factor 77 of ∆(t), one verifies, just as in the proof of Theorem
4, that there are infinitely many t0 ∈ Z such that the root field of f(t0, x) is a
PGL2(7) number field whose discriminant differs from the discriminant of f(t0, x)
at most by a 7-power ≤ 77. Now let t0 := 1. The discriminant of a root field of
f(1, x) equals 77·1073. More precisely, this extension is totally tamely ramified at 7,
which can be seen easily from the fact that f(1, x−1) is a 7-Eisenstein polynomial.
Now by Krasner’s lemma, every t0 ∈ Z which is 7-adically sufficiently close to 1
leads to the same behaviour at the prime 7 (in fact, t0 ≡ 1 mod 7 is sufficient here
due to Eisenstein, since f(t, x−1) has constant coeficient 7t). We therefore obtain
a whole arithmetic progression of integers t0 such that a root field of f(t0, x) has
discriminant divisible by 77. But now it follows exactly as in the proof of Theorem
4 that infinitely many of those fields are monogenic PGL2(7)-fields (by looking at
suqarefree specializations of the reduced discriminant t(108t− 1)).

Remark 3. As in Remark 2, Siegel’s theorem may be used to ensure the full Galois
group PGL2(7). Firstly, note that for t0 ≡ 1 mod 7, the decomposition group of
f(t0, x) at the prime 7 is of order 16 (and equals the normalizer of a cyclic subgroup
of order 8 in PGL2(7)). This is because this decomposition group has to contain
a cyclic normal subgroup of order 8 (the inertia subgroup), but cannot equal this
subgroup, as Q7 has no totally ramified C8-extension. Therefore Gal(f(t0, x)|Q)
contains a subgroup of order 16 and can then only equal either this subgroup
(which is maximal in PGL2(7)) or PGL2(7). By simple order arguments, no
element of PGL2(7) has two or less cycles in the (degree-21) action on the cosets
of the order-16 subgroup. Therefore, Siegel’s theorem yields that for all but finitely
many t0 ≡ 1 mod 7, f(t0, x) has Galois group PGL2(7).
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