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Abstract. A group G is Q-admissible if there exists a G-crossed product division algebra over

Q. The Q-admissibility conjecture asserts that every group with metacyclic Sylow subgroups
is Q-admissible. We prove that the Mathieu group M11 is Q-admissible, in contrast to any

other sporadic group.

1. Introduction and statement of the main result

A finite dimensional division algebra D over its center k is a G-crossed product if it admits
a maximal subfield L that is Galois over k with Gal(L|k) ∼= G. A G-crossed product division
algebra is equipped with an explicit structure, which has a key role in the theory of division
algebras, cf. [20, Chapter 14-19]. A classical problem originating in [23] is to understand for
which groups G there exists a G-crossed product division algebra with center k. Such groups
G are said to be k-admissible. A Galois extension L|k with Galois group G such that L is a
maximal subfield of a G-crossed product division algebra is called adequate.

For k = Q, it is known that every Q-admissible group G has metacyclic Sylow subgroups [23].
The converse of this statement is known as the long standing open Q-admissibility conjecture,
cf. [2, Problem 11.2]. The conjecture is proved for solvable groups G by Sonn in a series of
papers [25, 4, 26], which moreover show that such groups G are strongly Q-admissible. That is
for every m ∈ N, there exists an adequate Galois extension L|k with Galois group G such that
L∩Q(µm) = Q. Moreover, the conjecture is reduced in [4] to proving the strong Q-admissibility
of an explicit list of five families of groups. The last family in this list is the Mathieu group M11,
the only sporadic group whose Sylow subgroups are metacyclic.

Analogues and generalisations of the Q-admissibility conjecture were proved over various fields,
including over fields such as C((x))(t) by Harbater–Hartmann–Krashen [8], C((x, y)) by Neftin-
Paran [16], and Qp(t) by Surendranath–Suresh [27]. Over number fields, the conjecture was
further generalized and studied in the works of Liedahl [19], and the second author and Vishne
[17], [15, Question 1.2]. These suggest that every group whose Sylow subgroups are metacyclic
and furthermore admit a certain presentation depending only on the maximal abelian subexten-
sion kab|Q in k|Q, is k-admissible infinitely often in the sense of [1], that is, there exist infinitely
many linearly disjoint adequate Galois extensions L|k with Galois group G. In the case G = M11,
this amounts to G being k-admissible infinitely often over every number field k that does not
contain any of the fields Q(

√
2), Q(

√
−1).

We prove this strong form of admissibility for G = M11 over the following fields:

Theorem 1. Let k be a number field in which at least one of the primes 2 and 11 splits completely.
Then M11 is infinitely often k-admissible.
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Via Schacher’s criterion (Theorem 3), the admissibilty of G = M11 reduces to realizing G
infinitely often as a Galois group of an extension L|k such that the noncyclic Sylow subgroups of
M11 (the generalized dihedral group and C3×C3) are contained in a decomposition group over at
least two primes of k. To do so, we apply Hilbert’s irreducibility theorem, weak approximation,
and a specialization result of Beckmann which connects the inertia group of primes of Q(t) in a
regular extension E|Q(t) with inertia groups of primes of Q in a specialization Ea|Q, for t = a.
The combination of these results gives us (infinitely many linearly disjoint) specializations of a
regular Galois extension E|Q(t) with Galois group M11 which satisfy Schacher’s criterion.

The group M11 has been realized as a Galois group of a regular Galois extension of Q(t)
in several different ways. Explicit polynomials can be found in [11, Chapter I, Cor. 9.11], [10,
Cor. 10.2]. However, we were unable to obtain specializations of these polynomials with the
required decomposition groups, since their inertia subgroups over Q(t) are not well-suited for
applying the above methods; in particular, none of them has order divisible by 3. We use
the recently constructed genus 0 polynomial from [9, Thm. 5], which admits both geometric
inertia groups of order 4 and of order 3. We find specializations of it with inertia groups of
order divisible by 8, and decomposition groups of order divisible by 16 and 9, as necessary for
Schacher’s critertion.

This research was supported by the Israel Science Foundation (grant No. 577/15).

2. Preliminaries and notation

2.1.1. Dedekind domains. The following facts about primes in Dedekind domains are well known,
c.f. [24]. Let K be the fraction field of a Dedekind domain O, and p a prime of O. Denote the

residue field at p by Kp := O/p, and the completion of K at p by K̂p. For a Galois extension L|K,

the completions L̂Pi (resp. residue fields LPi) are Galois (resp. normal) over K̂p (resp. Kp) and

are isomorphic L̂P1
∼= L̂P2 (resp. LP1

∼= LP2), for every two primes Pi, i = 1, 2 of L lying over

p. Put L̂p := L̂P (resp. Lp := LP), which up to isomorphism are independent of the choice of a
prime P of L lying over p. The decomposition groups D(Pi|p) := {σ ∈ Gal(L|K) |σ(Pi) ⊆ Pi}
are conjugate for every two primes Pi, i = 1, 2 of L lying over p. Put Dp := D(P|p) for some
prime P of L lying over p. The restriction map Dp→Gal(Lp|Kp) is then surjective and its kernel
is the inertia group Ip at p. The prime p ramifies in L|K if Ip 6= 0, otherwise unramified.

Let f ∈ K[X] be a polynomial and L its splitting field. The polynomial f is called integral at
p if it is an element of Op[X] whose leading coefficient is a unit, where Op denotes the localization

at p. For such f , the reduction f := f (mod p) is defined, of degree deg f , and its roots α1, . . . , αn
are contained in Lp. Furthermore:

Lemma 2. Let K be the fraction field of a Dedekind domain O, and pCO a prime. Let f ∈ O[X]
be a monic polynomial with splitting field L such that D(f) 6∈ p. Then the splitting field of f̄
is Lp.

Proof. Let OP be the valuation ring of a prime P lying over p. Let α1, . . . , αn denote the roots
of f in L. The residue of D(f) ·OP mod P is contained in the Kp-vector space A generated by
α1, . . . , αn. As D(f) is invertible mod p, the entire field Lp = OP/P is contained in A. �

A polynomial f(x) :=
∑n
i=0 aiX

i ∈ O[X] such that aj ∈ p for j = 0, . . . , n − 1, a0 6∈ p2,
and an 6∈ p, is called an Eisenstein polynomial. Such a polynomial is irreducible over K, and
moreover the completion at p of K(α)|K, where α is a root of f , is of degree [K̂(α)P : K̂p] = n,
for a (unique) prime P over p [24, Chapter I, Proposition 17].
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2.1.2. Number fields and admissibility. For a number field k, we say that p is a prime of k if it
is a prime ideal of the ring of integers of k. The following criterion then reduces the problem of
determining whether a group is admissible to a realization problem with local constraints:

Theorem 3. (Schacher [23]) Let L|k be a Galois extension of number fields with Galois group G.
Then L is k-adequate if and only if for every prime p dividing |G|, there are at least two primes
qi of k such that the decomposition group Dqi contains a p-Sylow subgroup of G, for i = 1, 2.

We note that by Chebotarev density theorem there are infinitely many primes q of a number
field k such that Dq is isomorphic to any prescribed cyclic subgroup of Gal(L|k). It therefore suf-
fices to verify Schacher’s criterion for primes p such that the p-Sylow subgroup of G is noncyclic.
The noncyclic Sylow subgroups of M11 are C3×C3 and the semidihedral group SD16

∼= C8oC2.

For a Galois extension of number fields L|k and a prime p of k, the ramification of p in L|k
is tame if the characteristic of Lp is prime to |Ip|. In this case, Ip is known to be cyclic of order
dividing the cardinality |L×

p | of the multiplicative group of the residue field [24, Chapter IV,
Corollary 1].

2.1.3. Function fields and specializations. Let k(t) be the rational function field over a number
field k and E|k(t) a finite Galois extension. These are also fraction fields of Dedekind domains.
The extension E|k(t) is regular if k is algebraically closed in E. Denote the place corresponding
to the ideal (t − a) C k[t] by t→a, and the place corresponding to (1/t) C k[1/t] by t→∞. For
brevity, denote the residue field E(t−a) by Ea, the inertia group I(t−a) in E|k(t) by Ia, and say
a is a branch point if Ia 6= 0, for a ∈ k ∪ {∞}.

The following theorem and proposition are the key to finding the desired specializations in
Theorem 1. Denote by ordp(a) the multiplicity of p in the factorization of the fractional ideal
(a), for a ∈ k.

Theorem 4. (Beckmann [3, Theorem 1.2]) Let k be a number field and E|k(t) a regular Galois
extension with Galois group G. Then for all but finitely many primes p of k, the following holds:
If a ∈ k is not a branch point of E|k(t) and e := ordp(a − b) > 0 for some branch point b ∈ k,
then the inertia group Ip in the specialization Ea|k is conjugate in G to 〈τe〉, where Ib = 〈τ〉.

Theorem 4 follows from [3] by increasing the finite set of exceptional primes to ensure that
ordp(b) ≥ 0 for all branch points b ∈ k. In case the latter condition does not hold at p, the
theorem can still be applied but with a differently defined exponent e.

Proposition 5. ([21, Prop. 2.1]) Let k be a number field, and E|k(t) be a finite regular Galois
extension with Galois group G. Let S be a finite set of primes of k. For each p ∈ S, choose
tp ∈ k and let E(p) denote the completion at p of Etp . Then there exists t0 ∈ k such that Et0 |k
has Galois group G and its completion at p is isomorphic to E(p)|k̂p for all p ∈ S.

2.1.4. Genus 0 extensions. Let k be a field and k(t) the rational function field over k. For a
separable polynomial f ∈ k(t)[X], let Gal(f |k(t)) be the Galois group of the splitting field E of
f over k(t). Then Gal(f |k(t)) is a permutation group on n letters via its action on the roots of
f in E. Moreover, it is transitive if and only if f is irreducible. We focus on polynomials of the
form f(t,X) = f1(X)− tf2(X) which correspond to (rational) genus 0 extensions and make use
of the following lemma to ensure 2-transitivity.

Lemma 6. Assume f1, f2 ∈ k[X] are such that f(t,X) := f1(X) − tf2(X) ∈ k(t)[X] is a
separable polynomial. Then Gal(f |k(t)) is 2-transitive if the following 2-variable polynomial is
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irreducible:

Ff (X,Y ) :=
f1(X)f2(Y )− f2(X)f1(Y )

X − Y
∈ k[X,Y ].

Proof. By [13, Lemma 9.24], f ∈ k(t)[X] is irreducible, so G := Gal(f |k(t)) is transitive on the set
S of roots of f . Let y ∈ S, so that f1(y)/f2(y) = t. Then H := Gal(f |k(y)) is the stabilizer of y ∈
S under the G-action. Since Ff (X,Y ) ∈ k[X,Y ] is irreducible, Ff (X, y) ∈ k(y)[X] is irreducible
by Gauss’s lemma. Since Ff (X, y) = f2(y)·f(t,X)/(X−y), we get that f(t,X)/(X−y) ∈ k(y)[X]
is irreducible. Hence H acts transitively on S \ {y} and G is 2-transitive. �

The following statement describes the ramification in rational genus 0 extensions and is well
known, cf. [14, Lemma 3.1]. Let k̃ denote the algebraic closure of k. We write k̃ ∪ {∞} for the

projective line over k̃, so that a rational function u ∈ k̃(x) defines a map u : k̃ ∪ {∞}→k̃ ∪ {∞}.
If u(∞) = α ∈ k̃ then the multiplicity of ∞ is defined as deg u2 − deg u1, where u1, u2 are the

numerator and denumerator of u(X)− α ∈ k̃(X). If u(∞) =∞ then the multiplicity of ∞ is its
multiplicity in (1/u)−1(0).

Lemma 7. Assume f(t,X) := f1(X) − tf2(X) ∈ k(t)[X] is separable, and L the splitting field

of f over k(t). For α ∈ k̃ ∪ {∞}, denote by m1, . . . ,mr the multiplicities of the elements in

( f1f2 )−1(α) ⊆ k̃ ∪ {∞}. Then the orbits of the (cyclic) inertia group Iα in L|k(t) on the roots of

f(t,X) are of length m1, . . . ,mr.

Proof. Let x be a root of f(t,X) ∈ k̃(t)[X], and αi ∈ k̃ ∪ {∞} the preimages in ( f1f2 )−1(α)

with multiplicity mi, i = 1, . . . , r. Then the places x→α1, . . . , x→αr lie over t→α and have
ramification indices m1, . . . ,mr, respectively. The ramification indices over t→α then correspond
to the lengths of orbits of Iα, e.g. by [11, Thm. I.9.1]. �

3. Polynomials with regular Galois group M11

We begin with proving that the polynomials in [9, Thm. 5] have Galois group M11.

Proposition 8. Let

f1(X) := (77X3 + 10989X2 + 129816X + 496368)3(77X2 + 2376X + 15472), and

f2(X) := (11X2 − 1296)4(11X2 + 143X + 621) ∈ Q[X].

Furthermore, let

g1(X) := (X2 + 6X + 91/11)3(X3 − 3/4X2 − 285/22X + 951/44), and

g2(X) := (X2 + 2X − 89/11)4(X2 + 5X + 113/22)2.

Then the polynomials f(t,X) := f1(X)− tf2(X) and g(t,X) := g1(X)− tg2(X) ∈ Q(t)[X] have
Galois group M11 over Q(t).

Proof. In the rational function field Q(x), let w := w(x) := (−9x2 − 30x + 44)/(x2 − 11) and

t := f1(w)/f2(w). Then t = h1(x)
h2(x)

is a rational function of degree 22 with

h1(x) = 212 · 55 · 13 · (x3 − 11
8 x

2 − 11
3 x−

121
9 )3(x3 + 21

2 x
2 + 154

3 x+ 814
9 )3·

(x2 − 88x− 264)(x2 − 44
13x−

132
13 ), and

h2(x) = 36 · (x2 − 44
3 x−

616
9 )4(x2 − 44

9 )4(x2 + 11
3 x+ 11)2(x2 − 11).
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Let L be the Galois closure of Q(w) over Q(t), and let E be the Galois closure of Q(x) over Q(t).
(In fact, the proof will show that L = E.) Let G := Gal(L|Q(t)) = Gal(f(t,X)|Q(t)), and let
H := Gal(E|Q(t)) = Gal(h1(X) − th2(X)|Q(t)). As [Q(w) : Q(t)] = 11 and [Q(x) : Q(t)] = 22,
G acts transitively on 11 points, and H acts transitively on 22 points, cf. Section 2.1.4.

Lemma 7 shows that G contains an element of order 4 (namely, an inertia group generator
over t 7→ ∞). The transitive groups of degree 11 are well-known, and the only ones containing
an element of order 4 are M11, A11 and S11. To exclude the latter two groups, let ĝ2(X) :=
113

73·510 g2(X) and let y be a root of g1 − tĝ2 over Q(t) (i.e. t = g1(y)/ĝ2(y)).
A verification using Magma (cf. Remark 2) shows that (g1(X)ĝ2(y) − ĝ2(X)g1(y))/(X − y) is

irreducible over Q(y). Hence, Ĝ := Gal(g1(X) − tĝ2(X)|Q(t)) is 2-transitive by Lemma 6, and

in particular primitive. The point stabilizer of Ĝ is therefore a maximal subgroup, and hence
Q(y)|Q(t) has no proper intermediate fields. This means that either Q(y)∩E is Q(t) or Q(y) ⊂ E.
We claim that the latter holds.

Set p(X, y) := ĝ2(y)h1(X) − g1(y)h2(X) = ĝ2(y) · (h1(X) − th2(X)) ∈ Q(y)[X]. A straight-
forward verification using Magma shows that p is reducible over Q(y). More precisely, it factors
into a product of two polynomials of degree 11 in X. In particular, h1(X)− th2(X) is reducible
over Q(y). This means that Gal(Q(y)E|Q(y)) acts intransitively on the roots of h1(X)− th2(X).
Then however, Gal(E|Q(y) ∩ E) also acts intransitively on these roots, since the restriction of
Gal(Q(y)E|Q(y)) to E yields a permutation isomorphism of these two groups. This shows that
Q(y)∩E is strictly larger than Q(t). Since Q(y)/Q(t) is minimal, we get Q(y) ⊂ E. Furthermore,
we obtain that H must have an intransitive subgroup U (in the degree 22 action on the roots of
h1(X)− th2(X)) of index 12, namely the group fixing Q(y).

E

L

Q(x)

Q(y) Q(w)

Q(t)

N

U

G 2

1112

Figure 1. The tower of field extensions of Q(t)

Now N := Gal(E|L) is a 2-group, as E|L is generated by the Galois conjugates of L(x), all
of which are (Galois) of degree at most 2 over L. Therefore |NU | equals |U | · 2k with some
k ∈ N0. In particular, the fixed field Q(y)∩L of NU is strictly larger than Q(t), as [Q(y) : Q(t)]
is divisible by 3. Since Q(y)|Q(t) is minimal, once more either Q(y) ∩ L = Q(y) or Q(y) ⊆ L.
Thus, G has a subgroup of index 12, and among our three candidate groups, only G = M11 has
this property. Therefore, M11 is the Galois group of f as well as of g1(X) − tĝ2(X), and thus
also of g(t,X).

�
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Remark 1.

(a) The main idea behind the above proof is that the field EV is of genus 0 not only for the
index 11 subgroup V ≤M11, but also for the index 12 maximal subgroup V ≤M11, and
the index 22 nonmaximal subgroup V ≤ M11. The polynomials appearing in the proof
arise from an explicit parameterization of the corresponding rational function fields.

(b) The general idea of using the reducibility of a variable separated equation to show that
two polynomials have the same Galois closure, is in the spirit of Fried’s result [7, Prop. 2].

(c) Let 2A, 3A, 4A be the unique conjugacy class of M11 of order 2, 3, 4, respectively. The
Galois extension E|Q(t) is obtained by descending a Galois extension of C(t) that has
four branch points over which its inertia groups are 2A, 2A, 3A, and 4A.1 In fact one can
show that, up to equivalence of coverings, f is the only polynomial in the M11-family of
type (2A, 2A, 3A, 4A) which is defined over Q.
The reason is that the reduced Hurwitz space of this family is a genus-2 curve and
(through explicit computations) turns out to be birationally equivalent to the hyperel-
liptic curve given by y2 = (x2 − x + 3)(x2 + 1)(x2 + x + 1). For such curves, there are
methods to explicitly determine, under a few assumptions, the complete set of rational
points. Using Magma, we found that the Jacobian of the above curve is of rank 1, and
Chabauty’s method (as described e.g. in [12]) then yields that there are exactly four
rational points; only one of these corresponds to a nondegenerate (i.e. 4 branch points)
cover. See [9] for more details on the computation of such families, as well as [22] for
general information on Hurwitz spaces.

4. Specializations with prescribed decomposition groups: Proof of Theorem 1

In this section, we prove Theorem 1. Let f = f(t,X) ∈ Q[t,X] be the polynomial from Propo-
sition 8 and E its splitting field over k(t). The proof of Theorem 1 is by finding specializations
f(t0, X) ∈ Q[X], t0 ∈ k, such that the splitting field L of f(t0, X) satisfies Schacher’s crite-
rion. The following two lemmas give specializations f(tp, X), tp ∈ k, the splitting field of which
satisfies Schacher’s criterion for each of the primes p = 2, 3 (but not necessarily simultaneously).

Lemma 9. Assume that f0(X) := 77X3+10989X2+129816X+496368 ∈ k(t)[X] is irreducible.
There are infinitely many primes p of k such that for all but finitely many t0 ∈ k \ {0} with
ordp(t0) > 0 and ordp(t0) 6= 0 mod 3, the decomposition group of the splitting field of f(t0, X)
over p contains a 3-Sylow subgroup of M11.

Proof. For a prime p of k, let Tp be the set of t0 ∈ k\{0} such that ordp(t0) > 0, ordp(t0) is prime
to 3, and t0 is not a branch point of E|k(t). By Lemma 2, the splitting field of f(t0, X) ∈ k[X]
is Et0 , for all t0 ∈ Tp.

Let τ ∈M11 be a generator of an inertia group over t→0, so that τ is of order 3 by Lemma 7.
Since M11 is simple and E|k(t) is nonconstant, it is a regular extension, so we can apply Theo-
rem 4. By Theorem 4 with t→0, there is a set S1 containing all but finitely many primes of k,
such that the inertia subgroup Ip ≤ Gal(Et0 |Q) of a prime P over p is generated by a conjugate

of τordp(t0), for all t0 ∈ Tp, p ∈ S1. Since τ is of order 3, and ordp(t0) is prime to 3, we get

|Ip| = |〈τordp(t0)〉| = 3 for t0 ∈ Tp, p ∈ S1.

For p ∈ S1, let Dp be the decomposition group of P in Et0 |k, so that |Dp/Ip| = [(Et0)P : kp].
We claim that there is an infinite set S2 ⊆ S1 such that |Dp/Ip| is divisible by 3 for every t0 ∈ Tp,

1The classes of the inertia groups follow immediately via factoring the corresponding specializations of f(t,X)
and applying Lemma 7.
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p ∈ S2. For each p ∈ S2, we then have |Ip| = 3 and 3 | |Dp/Ip|, so 9 | |Dp| and hence Dp contains
a 3-Sylow subgroup of M11, proving the theorem.

To prove the claim, note that for all t0 with ordp(t0) > 0, we have

f(t0, X) ≡ f(0, X) = (77X3 + 10989X2 + 129816X + 496368)3(77X2 + 2376X + 15472) mod p.

Since f is integral at the place t→0, the splitting field F of f0 ∈ k[X] is contained in the residue
extension E0|k.

Let S3 be the set of primes p of k for which f0,p := f0 mod p is separable, so that S3 contains
all but finitely many primes of k. By Lemma 2, the splitting field of f0,p is the residue field
Fp, and hence contained in (E0)p|kp, for all p ∈ S3. Since f(t0, X) = f(0, X) mod p, the same
argument shows that the splitting field of f(t0, X) mod p is Fp and hence contained in (Et0)p|kp,
for all p ∈ S3, t0 ∈ Tp.

By Chebotarev’s density theorem, as f0 is irreducible over Q and S1, S3 contain all but finitely
many primes of k, there is an inifinite subset S2 ⊆ S1 ∩ S3 of primes p such that f0 remains
irreducible mod p. Therefore 3 divides [Fp : kp] and hence also [(Et0)p : kp] = |Dp/Ip| for all
p ∈ S2, t0 ∈ Tp, proving the claim, and hence the theorem. �

The above proof relies on the fact that inertia group at the place t 7→ 0 has order 3, and
that its index in the decomposition group is again divisible by 3. This method can and will be
generalized in a more general context of Grunwald problems. However, this argument does not
apply to the 2-Sylow subgroups of M11, since E|k(t) has no inertia group of order 8, and the
2-Sylow subgroups of M11 can only be written as metacyclic groups of the form C8.C2.

Lemma 10. Let p ∈ {2, 11} and assume p splits completely in k. There exists t0 ∈ k such
that the decomposition groups of the splitting field L of f0(X) := f(t0, X) ∈ k[X] over primes
dividing p, are of order divisible by 16.

Proof. Let p be a prime of k over p. Since k̂p ∼= Q̂p, it suffices to show that the completions

L̂p|Q̂p have degree divisible by 16. To do so, we factor the polynomial f0 (multiplied by a
suitable scalar, if necessary) mod pk, with some fixed precision k. Assuming that this precision

is sufficiently high, Hensel’s lemma then yields that f0 factors over Q̂p into polynomials of the
same degrees as the mod pk factors.

For p = 2, set t0 := 2. One finds that f0 factors into polynomials of degrees 8 and 3. This
shows that Gal(L̂2|Q̂2) is a subgroup of M11 with orbit lengths 8 and 3. A verification using
Magma shows that there are only two classes of such subgroups in M11, one of order 48 and one
of order 24 isomorphic to SL2(3).

To exclude the latter group, we replace X by X + 1, so that the second factor takes the form
u(X) := X3 + a2X

2 + a1X + a0, with 2-adic valuation ν2(ai) = 1 for all i = 0, 1, 2. Since the
latter is an Eisenstein polynomial, its root field is a totally tamely ramified degree-3 extension
of Q̂2, cf. Section 2.1.1. Since Q̂2 has no totally tamely ramified Galois extension of degree 3,
the splitting field F of u is of degree [F : Q̂2] = 6. If Gal(L̂2|Q̂2) ∼= SL2(3), then the degree 6

Galois subextension F |Q̂2 yields a degree 6 quotient of SL2(3). As SL2(3) has no such quotient,

we deduce that |Gal(L̂2|Q̂2)| = 48.

For p = 11, set t0 := 1/112. Then f0 factors into degrees 8, 2, and 1. Again, one verifies that
there are only two classes of subgroups of M11 with these orbit lengths: 2-Sylow subgroups, and
cyclic subgroups of order 8.
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Assume on the contrary that Gal(L̂11|Q̂11) ∼= C8. The degree-2 factor of f0 takes the form
X2 + b1X + b0, with 11-adic valuations ν11(b1) = 0 and ν11(b0) = −1. Upon substituting X/11

for X (and multiplying by 112), this becomes an Eisenstein polynomial u(X) ∈ Q̂11[X]. The

splitting field of u is a ramified degree-2 subextension of L̂11|Q̂11. As L̂11|Q̂11 is cyclic of order 8,

it follows that L̂11|Q̂11 is totally ramified. This contradicts the fact that Q̂11 has no totally

ramified cyclic degree 8 extension. Thus |Gal(L̂11|Q̂11)| = 16. �

Proof of Theorem 1. Recall that E is the splitting field of f over k(t). By assumption there are
at least two degree 1 primes q1, q2 of k whose restriction to Q is in {2, 11}. Also note that in a
root field of the factor f0(X) = 77X3 + 10989X2 + 129816X + 496368 from Lemma 9, both 2
and 11 do not split completely. As 2 and 11 split completely in k, the factor f0 has to remain
irreducible over k, and hence we may apply Lemma 9.

By Lemmas 9 and 10, there are primes p1, p2 of k and specializations t→ti, t→si, for ti, si ∈ k,
i = 1, 2, such that the decomposition groups of Eti |k (resp. Esi |k) over pi (resp. qi) contain
3-Sylow (resp. 2-Sylow) subgroups of M11. By Proposition 5, there exists t0 ∈ k such that
Gal(Et0 |k) ∼= M11, the completion of Et0 at pi identifies with the completion of Eti at pi, and
its completion at qi identifies with the completion of Esi at qi, for i = 1, 2. Since every p-Sylow
subgroup of M11 is cyclic for p 6= 2, 3, each such group appears as a decomposition group of
Et0 |k over infinitely many primes. Thus, Et0 is k-adequate by Schacher’s criterion.

Since Lemma 9 gives infinitely many choices for the primes p1, p2, and each resulting spe-
cialization Et0 |k has only finitely many primes with decomposition group containing a 3-Sylow
subgroup (as it has only finitely many ramified primes), by varying the the primes p1, p2 we
get infinitely many distinct k-adequate Galois extensions with Galois group M11. Since M11 is
simple and nonabelian these extensions are linearly disjoint over k.

�

Remark 2. It should be emphasized that while computer calculations were used in some of the
proofs, no “black-box” algorithms are needed. Rather, all that is needed is polynomial factor-
ization over Q(y) (in Proposition 8) and over a p-adic field given to a sufficient precision (in
Lemma 10), as well as information about the subgroups of M11 and their orbits (accessible e.g.
in Magma via the Subgroups command).
For p-adic polynomial factorization, the Magma command Factorization(f) was used for a
polynomial f in the structure PolynomialRing(pAdicField(p,k)), with a prime p and a pre-
cision k (precisions much larger than 100 may be used). To verify the irreducibility of a monic
factor g ∈ Zp[X] returned by this procedure, we used the following method. One may assume a
factorization g ≡ h1 · h2 mod pr, where r ≤ k, h1 =

∑n1

i=0 αiX
i and h2 =

∑n2

i=0 βiX
i. Now the

existence of such a factorization may be excluded by a Groebner basis computation in the ring
Z[α1, ..., αn1

, β1, ..., βn2
] (with the α’s and β’s viewed as transcendentals). This approach was

successfully used to verify irreducibility of the (2-adic and 11-adic) degree 8 factors occurring in
Lemma 10, by showing that these factors are irreducible mod 28 and mod 115, respectively.
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