Robin Hartshorne's Algebraic Geometry Solutions by Jinhyun Park

CHAPTER V SECTION 5 BIRATIONAL TRANSFORMATIONS

5.8. A surface singularity. Let k be an algebraically closed field, and let X be the surface in \mathbb{A}^3_k defined by the equation $x^2 + y^3 + z^5 = 0$. It has an isolated singularity at the origin P = (0, 0, 0).

(a). Show that the affine ring $A = k[x, y, z]/(x^2 + y^3 + z^5)$ of X is a unique factorization domain, as follows. Let $t = z^{-1}$; $u = t^3x$, and $v = t^2y$. Show that z is irreducible in A; $t \in k[u, v]$, and $A[z^{-1}] = k[u, v, t^{-1}]$. Conclude that A is a UFD.

Claim. z is irreducible in A.

Proof. Notice that

z is irreducible in A.

 \Leftrightarrow (z) is a prime ideal in A.

 $\Leftrightarrow A/(z)$, which is $k[x, y]/(x^2 + y^3)$, is an integral domain.

 $\Leftrightarrow x^2 + y^3$ is irreducible in k[x, y].

We prove the last statement. Suppose that for some f, g in k[x, y], we have

$$fg = x^2 + y^3.$$

(1) (case 1) Assume that $\deg_x(f)$, the degree of f in x, is zero. Then f is a polynomial in y, and we can write $g = cx^2 + ax + b$ for some c in k^{\times} and a, b in k[y]. Thus,

$$x^2 + y^3 = fg = cfx^2 + fax + fb.$$

This implies that f = 1/c, which is a unit in k[x, y].

(2) (case 2) Assume that $\deg_x f = 1$. Then, by multiplying a suitable constant in k^{\times} , we may assume that f = x + a and g = x + b for some a, b in k[y]. Then,

$$x^{2} + y^{3} = fg = x^{2} + (a+b)x + ab$$

so that a + b = 0 and $ab = y^3$. Then, $b^2 = -y^3$ and since y is irreducible in k[y], b = yb' for some b' in k[y]. Hence $y^2(b')^2 = -y^3$, thus $(b')^2 = -y$, which is impossible because we then have $2 \deg_y(b') = 1$.

(3) (case 3) Assume that $\deg_x(f) = 2$. Then, by symmetry, (case 1) shows that g must be a unit.

Hence $x^2 + y^3$ is irreducible in k[x, y], and thus z is irreducible in A.

Claim. $t \in k[u, v]$.

Proof. The equality $x^2 + y^3 + z^5 = 0$ implies that in the fraction field we have $-x^2/z^6 - t^3/z^6 = 1/z$. This is equivalent to $t = -u^2 - v^3$.

Claim.
$$A[z^{-1}] = k[u, v, t^{-1}].$$

Proof. The equalities

$$\begin{cases} x = (t^{-1})^3 t^3 x = (t^{-1})^3 u, \\ y = (t^{-1})^2 t^2 y = (t^{-1})^2 v, \\ z = t^{-1} \end{cases}$$

show that $A \subset k[u, v, t^{-1}]$. By the previous claim $z^{-1} = t \in k[u, v]$, thus $A[z^{-1}] \subset k[u, v, t^{-1}]$.

 $\mathbf{2}$

Conversely, we have

$$\begin{cases} u = (z^{-1})^3 x \in A[z^{-1}], \\ v = (z^{-1})^2 y \in A[z^{-1}], \\ t^{-1} = z \in A \end{cases}$$

so that $A[z^{-1}] \supset k[u, v, t^{-1}]$. This finishes the proof.

Claim. A is a UFD.

Notice that, being a polynomial ring, $A[z^{-1}] = k[u, v, t^{-1}]$ is a UFD.

Lemma (1). Let f be an irreducible element in A, that is not in (z). Then, f is irreducible as an element in $A[z^{-1}]$.

Proof. Suppose that $(g/z^m)(h/z^n) = f/1$ for some integers $m, n \ge 0$ and g, h in A, so that $gh = z^{m+n}f$. If m > 0 or n > 0, then since the quantity $gh = z^{m+n}f$ is in the ideal (z), either $g \in (z)$ or $h \in (z)$. By canceling a suitable number of z's if necessary, we may assume that m = n = 0. Thus, gh = f in A. But, since f is irreducible in A, g or h must be a unit in A. Hence g/1 or h/1 is a unit in $A[z^{-1}]$, thus, f/1 is irreducible in $A[z^{-1}]$.

Lemma (2). If a nonzero element $f/1 \in A[z^{-1}]$ is irreducible for some f in A, then $f = z^m g$ for some integer $m \ge 0$ and an irreducible element g in A, where $g \notin (z)$.

Proof. Since f is nonzero, we can write $f = z^m g$ for some integer $m \ge 0$ and an element $g \in A$ that is not in the ideal (z). We need to check that this g is irreducible in A.

If not, then for some nonunits p, q in A, the equality g = pq holds. Thus, $f/1 = (z^m/1)(g/1) = (z^m/1)(p/1)(q/1)$. Since f/1 is irreducible in $A[z^{-1}]$ and z^m is a unit, one of p/1 and q/1 must be a unit element in $A[z^{-1}]$, say p/1, without loss of generality. Thus, for some r in A and an integer $n \ge 0$, we have $(p/1)(r/z^n) = 1$, that is, $pr = z^n$. Thus, $pr \in (z)$, and z being irreducible either $p \in (z)$ or $r \in (z)$. But since $g \notin (z)$ and g = pq, the element p must not be in (z). Hence $r \in (z)$. Thus, by repeating this argument, we may assume that n = 0. Then, we have the equality pr = 1 in A, contradicting the assumption that p is not a unit in A.

We now prove that A is a UFD. For any nonzero $f \in A$, since the ring $A[z^{-1}]$ is a UFD, we have a factorization of f/1

$$\frac{f}{1} = \frac{u}{z^m} \frac{f_1}{z^{m_1}} \cdots \frac{f_n}{z^{m_n}}$$

for some nonnegative integers m, m_1, \dots, m_n , a unit u in A, and f_1, \dots, f_n in A, where f_i/z^{m_i} are irreducible in $A[z^{-1}]$. Since each z^{m_i} is a unit, by replacing $m + m_1 + \dots + m_n$ by m, we may simplify the above equation as

$$\frac{f}{1} = \frac{u}{z^m} \frac{f_1}{1} \cdots \frac{f_n}{1}$$

where f_i are irreducible in $A[z^{-1}]$. Thus, $z^m f = u f_1 \cdots f_n$ in A. By the Lemma (2), each $f_i = z^{r_i} g_i$ for some integer $r_i \ge 0$ and an irreducible element $g_i \in A$, where $g_i \notin (z)$, so that $z^m f = u z^{r_1 + \cdots + r_n} g_1 \cdots g_n$.

Note that we must have $m \ge r_1 \cdots r_n$ since all g_i is not in (z). Thus, $f = uz^s g_1 \cdots g_n$, where $s = r_1 + \cdots + r_n - m \ge 0$, gives a factorization of f into a product of irreducible elements of A.

To show that this factorization is unique, suppose that we have two such factorizations

$$g = ug_1 \cdots g_n = vh_1 \cdots h_m$$

where u, v in A are units, and g_i, h_j in $A, 1 \leq i \leq n, 1 \leq j \leq m$, are irreducible. Since $f = ug_1 \cdots g_n$ is in the ideal (h_1) , for some i, the element g_i must be in (h_1) . We may

assume that $g_1 \in (h_1)$ so that $g_1 = h_1 k$ for some k in A. Since g_1 is irreducible and h_1 is not a unit (being irreducible), k must be a unit in A. Hence, continuing in this way, by suitably renumbering them if necessary, we must have m = n and each irreducible element g_i is a unit multiple of h_i . This finishes the proof.