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CHAPTER V SECTION 5 BIRATIONAL TRANSFORMATIONS

5.8. A surface singularity.Let k be an algebraically closed field, and let X be the
surface in Ai defined by the equation 22+y3+2° = 0. It has an isolated singularity
at the origin P = (0,0,0).

(a). Show that the affine ring A = k[z,vy,2]/(2? + y® + 2°) of X is a unique factor-
ization domain, as follows. Let t = 2~ !; u = t32, and v = t?>y. Show that z is
irreducible in A; t € k[u,v], and A[z~!] = k[u,v,t"!]. Conclude that A is a UFD.

Claim. z is irreducible in A.
Proof. Notice that
z is irreducible in A.
& (z) is a prime ideal in A.
& A/(z), which is k[z,y]/(z® + y?), is an integral domain.
& 22 + 9 is irreducible in k[z,y].
We prove the last statement. Suppose that for some f, g in k[x, y], we have
fg=2a*+y>
(1) (case 1) Assume that deg,(f), the degree of f in x, is zero. Then f is a polynomial
in y, and we can write g = cz? + ax + b for some ¢ in kX and a, b in k[y]. Thus,

22+ = fg=cfz® + fazx + fb.

This implies that f = 1/¢, which is a unit in k[z, y].
(2) (case 2) Assume that deg, f = 1. Then, by multiplying a suitable constant in k>,
we may assume that f =z 4+ a and g = x + b for some a, b in k[y]. Then,

2+ =fg=2>+ (a+ bz + ab
so that a +b = 0 and ab = y>. Then, b?> = —y> and since y is irreducible in k[y],
b = yb' for some V' in k[y]. Hence y?(v')? = —33, thus (b')? = —y, which is impossible
because we then have 2 deg, (b') = 1.
(3) (case 3) Assume that deg,(f) = 2. Then, by symmetry, (case 1) shows that g must
be a unit.

Hence 22 + y3 is irreducible in k[z,y], and thus z is irreducible in A. O
Claim. t € k[u,v].

Proof. The equality z2 4 y3 4+ 2° = 0 implies that in the fraction field we have —22/26 —
t3/25 = 1/2. This is equivalent to t = —u? — v3. O

Claim. A[z71] = k[u,v,t71].

Proof. The equalities

show that A C k[u,v,t7!]. By the previous claim z=! = t € k[u,v], thus A[z71] C
k[u,v,t71].
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Conversely, we have

(z1)%z € Alz71],

(=71 € Alz71],
=z€cA

so that A[z~1] D k[u,v,t~!]. This finishes the proof. O

Claim. A is a UFD.

u
v
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Notice that, being a polynomial ring, A[z7!] = k[u,v,t~1] is a UFD.

Lemma (1). Let f be an irreducible element in A, that is not in (z). Then, f is irreducible
as an element in A[z71].

Proof. Suppose that (g/2™)(h/z") = f/1 for some integers m,n > 0 and g, h in A, so that
gh = 2"t f. If m > 0 or n > 0, then since the quantity gh = 2™t f is in the ideal (2),
either g € (2) or h € (z). By canceling a suitable number of 2’s if necessary, we may assume
that m = n = 0. Thus, gh = f in A. But, since f is irreducible in A, g or h must be a unit
in A. Hence g/1 or h/1 is a unit in A[z~}], thus, f/1 is irreducible in A[z~1]. O

Lemma (2). If a nonzero element f/1 € A[z71] is irreducible for some f in A, then
f=2"g for some integer m > 0 and an irreducible element g in A, where g & (2).

Proof. Since f is nonzero, we can write f = z™g for some integer m > 0 and an element
g € A that is not in the ideal (z). We need to check that this g is irreducible in A.

If not, then for some nonunits p,q in A, the equality ¢ = pg holds. Thus, f/1 =
(2™/1)(g/1) = (2™/1)(p/1)(g/1). Since f/1 is irreducible in A[z~!] and 2™ is a unit, one
of p/1 and ¢/1 must be a unit element in A[z~!], say p/1, without loss of generality. Thus,
for some 7 in A and an integer n > 0, we have (p/1)(r/2") = 1, that is, pr = 2". Thus,
pr € (z), and z being irreducible either p € (z) or r € (z). But since g € (2) and g = pq, the
element p must not be in (z). Hence r € (z). Thus, by repeating this argument, we may
assume that n = 0. Then, we have the equality pr = 1 in A, contradicting the assumption
that p is not a unit in A. O

We now prove that A is a UFD. For any nonzero f € A, since the ring A[z7!] is a UFD,
we have a factorization of f/1

i _u fl fn
1 Z™m zmi zZMn
for some nonnegative integers m,mi, -+ ,my, a unit w in A, and f,---, f, in A, where

fi/2™ are irreducible in A[z~!]. Since each 2™ is a unit, by replacing m +my + - - - + my,
by m, we may simplify the above equation as

f_vwh I
1 zm1 1

where f; are irreducible in A[z~!]. Thus, z™f = uf;--- f, in A. By the Lemma (2), each

fi = 2" g; for some integer r; > 0 and an irreducible element g; € A, where g; € (2), so that

2= w2 g gy

Note that we must have m > ry - - -1, since all g; is not in (z). Thus, f = uz®g; - - - g, where
s=r1+---+r, —m >0, gives a factorization of f into a product of irreducible elements

of A.
To show that this factorization is unique, suppose that we have two such factorizations
g:u.gl"'gnzvhl"‘hmv
where u,v in A are units, and g;,h; in A, 1 < i < n, 1 < j < m, are irreducible. Since
f = ugi---gn is in the ideal (h;), for some i, the element g; must be in (hy). We may
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assume that g; € (hy) so that g = h1k for some k in A. Since g; is irreducible and h; is
not a unit (being irreducible), k¥ must be a unit in A. Hence, continuing in this way, by
suitably renumbering them if necessary, we must have m = n and each irreducible element
g; is a unit multiple of h;. This finishes the proof.



