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Chapter 4.Curves, Section 1.Riemann-Roch Theorem.

1. Choose Q ∈ C. Choose n big enough so that deg n(2P − Q) > 2g − 2, g, 1.
⇒ h0(n(2P −Q)) = 1− g+ n(2P −Q) > 1⇒ ∃ effective divisor D ∈ |n(2P −Q)| ⇒
∃f ∈ K(C) such that D + nQ − 2nP = (f). Since deg D = n, so D cannot cancel
−2nP i.e. f has a pole only at P .//

2. Let F = {P1, · · · , Pr}. Multiplying functions of Ex.IV.1.1 might give cancellation
of poles and zeros, so we need slightly different approach.
Let Q ∈ C − F . Consider D′ = n(P1 + · · ·Pr − (r − 1)Q). Choose n > 2g − 2, g.
Then, ∃D ∈ |D′| i.e. ∃f ∈ K(c) such that D + (r − 1)Q − nP1 − · · · − nPr = (f).
Note that deg D = n. Each Pi occurs with order −n so, if Pi ∈ SuppD, then either
(i) ordPi

D < n or (ii) D = nPi for some i, in this case, WMA i = 1 WLOG.

For (i) there is no problem.
For (ii) f has ples only at P2, · · · , Pr not at P1. By Ex.IV.1.1, ∃g ∈
K(C) which has a pole only at P1. Let ordPi

g = ni 2 ≤ i ≤ r. Then, if
we choose m > 1, n2, · · · , nr, then, fmg has poles at and only at F .//

3. Proof 1) By I-(6.10), there is a projective nonsingular curve X̄ over k such that X
is an open subset of X̄, i.e. X̄ −X is a finite set, say, {P1, · · · , Pr} 6= φ because X is
not proper.
Then, by Ex.IV.1.2, ∃f ∈ k(X̄) = k(X) such that f has poles only at P1, · · · , Pr.
We can consider f ∈ k(X̄) as a morphism f : X̄ → P

1.Then, f−1(An) = X, so,
g = f |X : X → A

1 is a morphism.
f((̄X)) is proper over k(because X̄ is proper) and irreducible and, f(X̄) 6=a point.
Hence, f(X̄) = P

1. And by (II-6.8), f is a finite morphism, in particular, affine
morphism. Hence, f−1(A1) = X is affine.

Proof 2) As above, let F = {P1, · · · , Pr} = X̄ − X. Choose m such that mr > 2g
Then, D = m(P1 + · · ·Pr has a degree > 2g, so by (3), it is very ample. Then, it
gives an embedding of X̄ into a projective space P

N for some N , and D = X̄.H for
a hyper plane H of P

N . Then, X̄ − F = a closed subscheme of A
N = P

N −H which
is affine, so, X = X̄ − F is also affine.//
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