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CHAPTER III COHOMOLOGY SECTION 5 THE COHOMOLOGY OF PROJECTIVE SPACE
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5.6.
(a) Identify Q@ = P! x P! and let |Y| = P! x %, |Z| = % x P!, First, observe that
Q is birational to P? and h'(X,Ox) is a birational invariant, so, h'(Q,0g) =
hl (]PQ, O]PJQ) = O

Claim (1). Let p > 0. Then, H'(Q, Og(p,0)) = 0.

Proof. Let Y = P! x {p-points}. Then, we have a short exact sequence 0 —
Og(—p,0) — Og — Oy — 0. Tensor it by Og(p,0) then, we obtain 0 — Og —
Og(p,0) — Oy(p,0) — 0. Then, from the cohomology long exact sequence, we

obtain
0=H'(Q,0q) — H'(Q,0q(p,0)) — P H' (P, Op (1|Y[*)) — 0,
P
but, |Y|? = 0, so, by Serre duality, H'(P!, Op1) ~ H°(P!, Op1(—2))* = 0. Hence,
HY(Q,00(p,0)) =0 for p > 0. This finishes the proof of Claim 1. O

By symmetry, we also have H(Q, 0 (0,q)) = 0 for ¢ > 0.
Claim (2). For allp > 0,q >0, HY(Q,Oq(p,q)) = 0.

Proof. If (p,q) = (0,0) or p = 0 or ¢ = 0, then, we already know this result, so,
assume that p,q > 0. Tensor the sequence 0 — Og(—p,0) — Og — Oy — 0 with
O¢q(p, q) to obtain a short exact sequence 0 — Og(0,q) — Oq(p,q) — Oy (p,q) — 0.
Then, from the cohomology long exact sequence we have

HY(Q,00(0,9)) — H'(Q,0q(p,q)) = E H'(P', Op1 (p|Y|* + ¢|Y']| 2]))
P
but p|Y |2 + q|Y].|Z| = q and by Serre duality, H' (P!, Op1(q)) ~ H°(P!, Op1(—q —
2))* = 0as —¢ —2 < 0. By Claim 1, we know that H*(Q,0¢(0,q)) = 0 so,
HY(Q,00(p,q)) = 0 consequently. This proves the result. O

Claim (3). For any p € Z, H'(Q,Og(p, —1)) ~ HY(Q, Og(0, —1)).

Proof. If p = 0, it is obvious. First consider the case when p > 0. From the
sequence 0 — Og(—p,0) — Og — Oy — 0, by tensoring with Og(p,—1), we
obtain 0 — Og(0,—-1) — Og(p,—1) — Oy(p,—1) — 0. Hence, the long exact
sequence gives

P HOE. Op (Y PH+(~1)|Y].|1Z] = —1) = H'(Q, 00(0, 1)) — H'(Q, Oq(p, ~1)) — €D H" (', Op: (-1)).
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Then, H°(P!, Opi1(—1)) = 0 and HY(P, Op1(—1)) ~ H'(P!, Op1(—1))* = 0, so,
HY(Q,00(p,—1)) ~ HY(Q,0g(0, 1)) indeed.

Now consider the case when p < 0. let p’ = —p > 0 and let Y’ = P! x {p’-points}.
Then we have 0 — Og(—p',0) — Og — Oy — 0 and by tensoring with Og (0, —1),
we obtain 0 — Og(—p’, —1) — Og(0, —1) — Oy~ (0, —1) — 0. Hence, the long exact
sequence gives us

D 1@, Op (-1) = H'(Q, Oq(—1', ~1)) = H'(Q, 0q(0, -1)) — €D H' (P, Op1 (-1))
P’ P’
and HO(P!, Op1(—1)) = HY(P!, Op1(—1)) = 0. This shows that H1(Q, Og(p, —1)) ~
HY(Q,Pg(0,-1)) for p < 0. O

Claim (4). (i) HY(Q,0q(0,q)) #0 if ¢ < —2.
(ii) HY(Q,00(0,-1)) = 0.

Proof. Let p > 0. From 0 — Og(—p,0) — Og — Oy — 0, by tensoring with
0q(0,q), we obtain 0 — Og(—p,q) — Oq(0,q) — Oy (0,q) — 0 so that the long
exact sequence gives

P HO (P, Opi (q)) — H'(Q, 0g(-p,q)) — H'(Q,00(0,9)) — @ H' (P, Opi (q)) — 0.
P P
When ¢ < -2, H(P!, Op1(—1)) = 0 and h' (P!, Op1(q)) = RO (P, Op1 (—q — 2)) >
0 so that H'(0,q) # 0. This proves (i) and by symmetry we also have H'(p,0) # 0
if p < —2. This proves (3).
When p =1,q = 0, we have

k=H’Q,0q) = H(P', Op) =k — H'(Q,0q(~1,0)) — H'(Q,0q) = 0

so that H*(Q, Og(—1,0)) = 0. This proves (ii) and similarly we have H(Q, Og(0, 1)) =
0. 0

Now, we prove (2). From V. 1.4.4, the canonical line bundle K ~ Og(-2, —2),
so, when a,b < 0, by Serre duality,

HY(Q,00(a,b)) ~ H(Q,0g(—a — 2, —b — 2))*.

If a,b < —2, then, by Claim 2, this group vanishes.

In case (a,b) = (0,—1),(-1,0),(-2,-1),(—1,—-2),(—1,—1), the previous claims
already show it. Hence, it is 0 for any a,b < 0. This proves (2). (1) is trivial once
we have (2) and the previous claims.

(b) (1) For Y, 0 — Og(-=Y) — Og — Oy — 0 is exact and Og(-Y) ~ Og(—a, —b).
Thus,

0 — HYQ,Pg(—a, b)) — H*(Q,0q) — H*(Y,0y) — H(Q,0g(—a, b)) — 0

so, H(Y,Oy) ~ H%(Q,0q) ~ k. Hence Y has only 1 connected component,
i.e. connected.

(2) Let £ be a line bundle on @ of type (a,b) with a > 0,6 > 0. Then, by IL
7.6.2, L is very ample so that it gives an embedding of @ into a projective
space PY. Then, by Bertini’s theorem (I1, 8.18), there is a hyperplane H C PN
whose intersection with @ is a nonsingular projective curve Y and this Og(Y')
is isomorphic to £, i.e. Y is of type (a,b).

(3) By Ex. II 5.14-(d), X C P', is projectively normal if and only if it is normal
and for all n > 0, the natural map I'(P", Opr(n)) — I'(X, Ox(n)) is surjective.
We will use this.
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Since we have a sequence of closed embeddings ¥ — Q — P3, it gives a
commutative diagram

['(P?, Ops(n)) L(Y, Oy (n))

\/

I'(Q, Oq(n))

so, if, T(Q, Og(n)) — T(Y,Oy(n)) is not surjective, then, I'(P?, Ops(n)) —
['(Y,Oy(n)) cannot be surjective.

On the other hand, since Q = V(zy — zw) C P3, the ideal sheaf of Q Ig ~
Ops(—2) so that the sequence 0 — Ops(—2) — Ops — Og — 0 is exact. Hence,
by tensoring with Ops(n), we have 0 — Ops(n — 2) — Ops(n) — Pg(n) — 0
whose cohomology long exact sequence gives

HO(P3, Ops(n)) — H*(Q, Og(n)) — H*(P?,Ops(n —2)) = 0.

Consequently, the map I'(P?, Ops(n)) — I'(Q, Og(n)) is always surjective and it
implies that T'(P3, Ops(n)) — T'(Y, Oy (n)) is surjective if and only if I'(Q, Og(n)) —
[(Y,Oy(n))) is surjective if and only if Y C P? is projectively normal, because
being nonsingular, Y is already normal.

Hence, it remains to show that I'(Q, Og(n)) — I'(Y, Oy (n)) is surjective if and
only if |a — b < 1.

(<) Suppose that |a — b| < 1. Then, from 0 — Og(—a, —b) — Og — Oy — 0,

we obtain 0 — Og(n —a,n —b) — Og(n,n) — Oy(n) — 0 which gives us

[(Q,0q(n)) — (Y, Oy(n)) — HY(Q.Oq(n — a,n —b).

But, |a—b| < 1 means [(n—a)—(n—>b)| < 1 so, by part (a) - (1), H(Q, Og(n—
a,n — b)) vanishes and the natural map is surjective.

(=) Conversely, suppose that the natural map is surjective for all n > 0. Then,
the same sequence gives

[(Q, Og(n)) — (Y, Oy(n)) — HY(Q, Og(n — a,n — b)) — H(Q, Og(n,n))

where the last one is 0 by Claim 2 of (a) and the first map is surjective. Hence,
we must have H1(Q,Og(n —a,n — b)) =0 for all n > 0.

Toward contradiction, so, suppose that |[a —b| > 2, i.e. a >b+2o0r b > a+ 2.
For the first case, when n = b, n —a < —2 so that by (a)- (3), we have
HY(Q,0g(n—a,n—b)) # 0, which is a contradiction. For the second case, we
will have the same contradiction. Hence |a — b| < 1.

Hence, a nonsingular Y C @ of type (a,b) with a,b > 0 is projectively normal
in P? if and only if |a — b| < 1.

(c) First, we reduce this problem to a nonsingular Y. By part (b)-(2), Y is linearly
(hence rationally) equivalent to a nonsingular projective curve lying on @) and this
new curve has the same bidegree. Also, since this is a rational equivalence, they
belong to the same flat family, so, the arithmetic genera are unchanged (which
are defined to be h'(Y,0y)). Hence, we may replace Y by its linearly equivalent
nonsingular Y. Then, for this Y, the arithmetic genus pq(Y') = py(Y), the geometric
genus, and we can compute it in terms of a, b as follows: Og(Y) = Og(a,b) and the
first Chern class ¢1(Ng/y) = degy (Ng/y) = Y.Y = (ah+bk)? = ab(h.k)+ba(k.h) =
2ab where h, k are generators of PicQ ~ Z®Z with intersection product h? = k? = 0,
h.k=knh=1.
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On the other hand, Tp1 yp1 = <Q%>1x1P>1) implies that c1 (Tp1yp1) = ¢1 (A Tpiypr) =
a1 (Kg;lxpl) = —(c1(Ep),er(Kpt)) = —(2-0—2,2-0—2) = (2,2) = 2 + 2k and

so, c1(Tgly) = degy (T ®o, Oc) = degy (AT ®o, Oc) = [KQ) - (ah + bk) =
(2h + 2k) - (ah + bk) = 2(a + ).
Of course, ¢1(Ty) = —degy (Ky) = —(2g9 — 2) = 2 — 2g. Hence the short exact
sequence
O—>Ty—>TQ‘y—>NQ/Y—>O
gives c1(Ty) + c1(Ngyy) = c1(Tg|Y') and it is equivalent to 2(a +b) = 2 — 2g + 2ab,
ie. g=ab—a—b+1=(a—1)(b—1). This proves the result.



