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(a) Identify Q = P

1 × P
1 and let |Y | = P

1 × ∗, |Z| = ∗ × P
1. First, observe that

Q is birational to P
2 and h1(X,OX) is a birational invariant, so, h1(Q,OQ) =

h1(P2,O
P2) = 0.

Claim (1). Let p > 0. Then, H1(Q,OQ(p, 0)) = 0.

Proof. Let Y = P
1 × {p-points}. Then, we have a short exact sequence 0 →

OQ(−p, 0) → OQ → OY → 0. Tensor it by OQ(p, 0) then, we obtain 0 → OQ →
OQ(p, 0) → OY (p, 0) → 0. Then, from the cohomology long exact sequence, we
obtain

0 = H1(Q,OQ)→ H1(Q,OQ(p, 0))→
⊕

p

H1(P1,O
P1(p|Y |2))→ 0,

but, |Y |2 = 0, so, by Serre duality, H1(P1,O
P1) ' H0(P1,O

P1(−2))∗ = 0. Hence,
H1(Q,OQ(p, 0)) = 0 for p > 0. This finishes the proof of Claim 1. �

By symmetry, we also have H1(Q,OQ(0, q)) = 0 for q > 0.

Claim (2). For all p ≥ 0, q ≥ 0, H1(Q,OQ(p, q)) = 0.

Proof. If (p, q) = (0, 0) or p = 0 or q = 0, then, we already know this result, so,
assume that p, q > 0. Tensor the sequence 0 → OQ(−p, 0) → OQ → OY → 0 with
OQ(p, q) to obtain a short exact sequence 0→ OQ(0, q)→ OQ(p, q)→ OY (p, q)→ 0.
Then, from the cohomology long exact sequence we have

H1(Q,OQ(0, q))→ H1(Q,OQ(p, q))→
⊕

p

H1(P1,O
P1(p|Y |2 + q|Y |.|Z|))

but p|Y |2 + q|Y |.|Z| = q and by Serre duality, H1(P1,O
P1(q)) ' H0(P1,O

P1(−q −
2))∗ = 0 as −q − 2 < 0. By Claim 1, we know that H1(Q,OQ(0, q)) = 0 so,
H1(Q,OQ(p, q)) = 0 consequently. This proves the result. �

Claim (3). For any p ∈ Z, H1(Q,OQ(p,−1)) ' H1(Q,OQ(0,−1)).

Proof. If p = 0, it is obvious. First consider the case when p > 0. From the
sequence 0 → OQ(−p, 0) → OQ → OY → 0, by tensoring with OQ(p,−1), we
obtain 0 → OQ(0,−1) → OQ(p,−1) → OY (p,−1) → 0. Hence, the long exact
sequence gives⊕

p

H0(P1,O
P1(p|Y |2+(−1)|Y |.|Z| = −1)→ H1(Q,OQ(0,−1))→ H1(Q,OQ(p,−1))→

⊕
p

H1(P1,O
P1(−1)).
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Then, H0(P1,O
P1(−1)) = 0 and H1(P1,O

P1(−1)) ' H0(P1,O
P1(−1))∗ = 0, so,

H1(Q,OQ(p,−1)) ' H1(Q,OQ(0,−1)) indeed.
Now consider the case when p < 0. let p′ = −p > 0 and let Y ′ = P

1×{p′-points}.
Then we have 0→ OQ(−p′, 0)→ OQ → OY ′ → 0 and by tensoring with OQ(0,−1),
we obtain 0→ OQ(−p′,−1)→ OQ(0,−1)→ OY ′(0,−1)→ 0. Hence, the long exact
sequence gives us⊕

p′

H0(P1,O
P1(−1))→ H1(Q,OQ(−p′,−1))→ H1(Q,OQ(0,−1))→

⊕
p′

H1(P1,O
P1(−1))

and H0(P1,O
P1(−1)) = H1(P1,O

P1(−1)) = 0. This shows that H1(Q,OQ(p,−1)) '
H1(Q,PQ(0,−1)) for p < 0. �

Claim (4). (i) H1(Q,OQ(0, q)) 6= 0 if q ≤ −2.
(ii) H1(Q,OQ(0,−1)) = 0.

Proof. Let p > 0. From 0 → OQ(−p, 0) → OQ → OY → 0, by tensoring with
OQ(0, q), we obtain 0 → OQ(−p, q) → OQ(0, q) → OY (0, q) → 0 so that the long
exact sequence gives⊕

p

H0(P1,O
P1(q))→ H1(Q,OQ(−p, q))→ H1(Q,OQ(0, q))→

⊕
p

H1(P1,O
P1(q))→ 0.

When q ≤ −2, H0(P1,O
P1(−1)) = 0 and h1(P1,O

P1(q)) = h0(P1,O
P1(−q− 2)) >

0 so that H1(0, q) 6= 0. This proves (i) and by symmetry we also have H1(p, 0) 6= 0
if p ≤ −2. This proves (3).

When p = 1, q = 0, we have

k = H0(Q,OQ) '→ H0(P1,O
P1) = k → H1(Q,OQ(−1, 0))→ H1(Q,OQ) = 0

so that H1(Q,OQ(−1, 0)) = 0. This proves (ii) and similarly we have H1(Q,OQ(0,−1)) =
0. �

Now, we prove (2). From V. 1.4.4, the canonical line bundle K ' OQ(−2,−2),
so, when a, b < 0, by Serre duality,

H1(Q,OQ(a, b)) ' H1(Q,OQ(−a− 2,−b− 2))∗.

If a, b ≤ −2, then, by Claim 2, this group vanishes.
In case (a, b) = (0,−1), (−1, 0), (−2,−1), (−1,−2), (−1,−1), the previous claims

already show it. Hence, it is 0 for any a, b < 0. This proves (2). (1) is trivial once
we have (2) and the previous claims.

(b) (1) For Y , 0 → OQ(−Y ) → OQ → OY → 0 is exact and OQ(−Y ) ' OQ(−a,−b).
Thus,

0→ H0(Q,PQ(−a,−b))→ H0(Q,OQ)→ H0(Y,OY )→ H1(Q,OQ(−a,−b))→ 0

so, H0(Y,OY ) ' H0(Q,OQ) ' k. Hence Y has only 1 connected component,
i.e. connected.

(2) Let L be a line bundle on Q of type (a, b) with a > 0, b > 0. Then, by II.
7.6.2, L is very ample so that it gives an embedding of Q into a projective
space P

N . Then, by Bertini’s theorem (II, 8.18), there is a hyperplane H ⊂ P
N

whose intersection with Q is a nonsingular projective curve Y and this OQ(Y )
is isomorphic to L, i.e. Y is of type (a, b).

(3) By Ex. II 5.14-(d), X ⊂ P
r
A is projectively normal if and only if it is normal

and for all n ≥ 0, the natural map Γ(Pr,OPr(n))→ Γ(X,OX(n)) is surjective.
We will use this.
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Since we have a sequence of closed embeddings Y ↪→ Q ↪→ P
3, it gives a

commutative diagram

Γ(P3,O
P3(n))

((QQQQQQQQQQQQ
// Γ(Y,OY (n))

Γ(Q,OQ(n))

77nnnnnnnnnnnn

so, if, Γ(Q,OQ(n)) → Γ(Y,OY (n)) is not surjective, then, Γ(P3,O
P3(n)) →

Γ(Y,OY (n)) cannot be surjective.
On the other hand, since Q = V (xy − zw) ⊂ P

3, the ideal sheaf of Q IQ '
O

P3(−2) so that the sequence 0→ O
P3(−2)→ O

P3 → OQ → 0 is exact. Hence,
by tensoring with O

P3(n), we have 0 → O
P3(n − 2) → O

P3(n) → PQ(n) → 0
whose cohomology long exact sequence gives

H0(P3,O
P3(n))→ H0(Q,OQ(n))→ H1(P3,O

P3(n− 2)) = 0.

Consequently, the map Γ(P3,O
P3(n))→ Γ(Q,OQ(n)) is always surjective and it

implies that Γ(P3,O
P3(n))→ Γ(Y,OY (n)) is surjective if and only if Γ(Q,OQ(n))→

Γ(Y,OY (n))) is surjective if and only if Y ⊂ P
3 is projectively normal, because

being nonsingular, Y is already normal.
Hence, it remains to show that Γ(Q,OQ(n))→ Γ(Y,OY (n)) is surjective if and
only if |a− b| ≤ 1.
(⇐) Suppose that |a− b| ≤ 1. Then, from 0→ OQ(−a,−b)→ OQ → OY → 0,
we obtain 0→ OQ(n− a, n− b)→ OQ(n, n)→ OY (n)→ 0 which gives us

Γ(Q,OQ(n))→ Γ(Y,OY (n))→ H1(Q,OQ(n− a, n− b).

But, |a−b| ≤ 1 means |(n−a)−(n−b)| ≤ 1 so, by part (a) - (1), H1(Q,OQ(n−
a, n− b)) vanishes and the natural map is surjective.
(⇒) Conversely, suppose that the natural map is surjective for all n ≥ 0. Then,
the same sequence gives

Γ(Q,OQ(n))→ Γ(Y,OY (n))→ H1(Q,OQ(n− a, n− b))→ H1(Q,OQ(n, n))

where the last one is 0 by Claim 2 of (a) and the first map is surjective. Hence,
we must have H1(Q,OQ(n− a, n− b)) = 0 for all n ≥ 0.
Toward contradiction, so, suppose that |a− b| ≥ 2, i.e. a ≥ b + 2 or b ≥ a + 2.
For the first case, when n = b, n − a ≤ −2 so that by (a)- (3), we have
H1(Q,OQ(n− a, n− b)) 6= 0, which is a contradiction. For the second case, we
will have the same contradiction. Hence |a− b| ≤ 1.
Hence, a nonsingular Y ⊂ Q of type (a, b) with a, b > 0 is projectively normal
in P

3 if and only if |a− b| ≤ 1.
(c) First, we reduce this problem to a nonsingular Y . By part (b)-(2), Y is linearly

(hence rationally) equivalent to a nonsingular projective curve lying on Q and this
new curve has the same bidegree. Also, since this is a rational equivalence, they
belong to the same flat family, so, the arithmetic genera are unchanged (which
are defined to be h1(Y,OY )). Hence, we may replace Y by its linearly equivalent
nonsingular Y . Then, for this Y , the arithmetic genus pa(Y ) = pg(Y ), the geometric
genus, and we can compute it in terms of a, b as follows: OQ(Y ) = OQ(a, b) and the
first Chern class c1(NQ/Y ) = degY (NQ/Y ) = Y.Y = (ah+bk)2 = ab(h.k)+ba(k.h) =
2ab where h, k are generators of PicQ ' Z⊕Z with intersection product h2 = k2 = 0,
h.k = k.h = 1.
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On the other hand, T
P1×P1 =

(
Ω1

P1×P1

)∗
implies that c1 (T

P1×P1) = c1

(
∧2T

P1×P1

)
=

c1

(
K∗

P1×P1

)
= −(c1(K

P1), c1(K
P1)) = −(2 · 0 − 2, 2 · 0 − 2) = (2, 2) = 2h + 2k and

so, c1(TQ|Y ) = degY

(
TQ ⊗OQ

OC

)
= degY

(
∧2TQ ⊗OQ

OC

)
= [K∗Q] · (ah + bk) =

(2h + 2k) · (ah + bk) = 2(a + b).
Of course, c1(TY ) = −degY (KY ) = −(2g − 2) = 2 − 2g. Hence the short exact

sequence
0→ TY → TQ|Y → NQ/Y → 0

gives c1(TY ) + c1(NQ/Y ) = c1(TQ|Y ) and it is equivalent to 2(a + b) = 2− 2g + 2ab,
i.e. g = ab− a− b + 1 = (a− 1)(b− 1). This proves the result.
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