Robin Hartshorne's Algebraic Geometry Solutions by Jinhyun Park

Chapter III Section 10 Smooth morphisms

10.1. Over a nonperfect field, smooth and regular are not equivalent. For example, let k_0 be a field of characteristic p > 0, let $k = k_0(t)$, and let $X \subset \mathbb{A}^2_k$ be the curve defined by $y^2 = x^p - t$. Show that every local ring of X is a regular local ring, but X is not smooth over k.

Proof. We need to suppose that $\operatorname{char}(\mathbf{k}_0) = \mathbf{p} > 2$. Let $f = y^2 - x^p + t \in k[x, y]$. Then $\frac{\partial f}{\partial x} = 0, \ \frac{\partial f}{\partial y} = 2y$ so that $\operatorname{rk}\left(\frac{\partial f}{\partial x}\right) = \operatorname{rk}\left(\frac{0}{2y}\right) = 1$ everywhere on X because on $X \ y \neq 0$. Indeed, if y = 0, then $x^p = t$ over $k = k_0(t)$, which is not possible. Hence X is regular

everywhere and every local ring of X is a regular local ring. Let's now prove that $X \to \operatorname{Spec}(k)$ is not smooth. Toward contradiction, suppose that it is smooth. Then by base change via $\operatorname{Spec}(\overline{k}) \to \operatorname{Spec}(k)$, the morphism $X_{\overline{k}} \to \operatorname{Spec}(\overline{k})$ is smooth. But, this is not true: $X_{\overline{k}} \subset \mathbb{A}^2_{\overline{k}}$ is defined by the equation $y^2 = x^p - t = \left(x - t^{\frac{1}{p}}\right)^p$ over \overline{k} and the point $(x, y) = \left(t^{\frac{1}{p}}, 0\right)$ on $X_{\overline{k}}$ has multiplicity 2 so that it is not regular at this point. Contradiction. Hence $X \to \operatorname{Spec}(k)$ is not smooth. \Box

10.2. Let $f: X \to Y$ be a proper, flat morphism of varieties over k. Suppose for some point $y \in Y$ that the fibre X_y is smooth over k(y). Then show that there is an open neighborhood U of y in Y such that $f: f^{-1}(U) \to U$ is smooth.

Proof. Let n be the relative dimension of the flat morphism $f: X \to Y$. Since $X_y \to \operatorname{Spec}(k(y))$ is smooth, $\Omega_{X_y/k(y)}$ is a locally free coherent sheaf of rank n on X_y . That is, for each $x \in X_y$, $\dim_{k(x)}(\Omega_{X/Y} \otimes k(x)) = \dim_{k(x)}(\Omega_{X_y/k(y)} \otimes k(x)) = n$. But, $\Omega_{X/Y} \otimes k(x) = (\Omega_{X/Y})_x/\mathfrak{m}_x(\Omega_{X/Y})_x$ so that by Nakayama's lemma, there exist sections s_1, \dots, s_n of $\Omega_{X/Y}$ over a neighborhood U_x of x whose images in $\Omega_{X/Y} \otimes k(x) = (\Omega_{X/Y})_x/\mathfrak{m}_x(\Omega_{X/Y})_x$ form a k(x)-basis and they generate $\Omega_{X/Y}$ over U_x . This implies that for all $z \in U_x$, $\dim_{k(z)}(\Omega_{X/Y} \otimes k(z)) \leq n$. But, by Theorem II-8.6A, $\dim_{k(z)}(\Omega_{X/Y} \otimes k(z)) \geq n$ so that $\dim_{k(z)}(\Omega_{X/Y} \otimes k(z)) = n$ for all $z \in U_x$, i.e. $\Omega_{X/Y}|_{U_x}$ is locally free of rank n. Since $x \in X_y$ was arbitrary, by collecting all such U_x , we see that $\{U_x\}_{x \in X_y}$ is a cover of X_y such that $\Omega_{X/Y}$ is locally free on $\bigcup_{x \in X_y} U_x$.

The remaining point is to find a kind of tubular neighborhood of X_y . Since $f: X \to Y$ is proper, by base change Spec $(k(y)) \to Y$, $X_y \to \text{Spec}(k(y))$ is also proper. Thus, in particular, X_y is quasi-compact and there are finitely many points $x_1, \dots, x_m \in X_y$ such that U_{x_1}, \dots, U_{x_m} cover X_y . Since f is flat, it is an open map so that $f(U_{x_i} \subset Y)$ is open containing y. Let $U = \bigcap_{i=1}^m f(U_{x_i})$. This is then an open subset of Y containing y. Obviously, $f^{-1}(U) \subset \bigcup_{x \in X_y} U_x$ and thus $\Omega_{X/Y}|_{f^{-1}(U)}$ is locally free of $f^{-1}(U)$. Because flatness is stable under base change, that $\Omega_{X/Y}|_{f^{-1}(U)}$ is locally free of rank n on $f^{-1}(U)$ is equivalent to that $f^{-1}(U) \to U$ is smooth. This finishes the proof. \Box

10.3. A morphism $f: X \to Y$ of schemes of finite type over k is *étale* if it is smooth of relative dimension 0. It is *unramified* if for every $x \in X$, letting y = f(x), we have $\mathfrak{m}_y \cdot \mathcal{O}_x = \mathfrak{m}_x$, and k(x) is a separable algebraic extension of k(y). Show that the following conditions are equivalent:

(i) f is étale;

- (ii) f is flat, and $\Omega_{X/Y} = 0$;
- (iii) f is flat and unramified.

Proof. (i) \Leftrightarrow (ii) is obvious by definition. (ii) \Leftrightarrow (iii) is a direct consequence of Theorem II-8.6A.

10.4. Show that a morphism $f: X \to Y$ of schemes of finite type over k is étale if and only if the following condition is satisfied: for each $x \in X$, let y = f(x). Let $\widehat{\mathcal{O}}_x$ and $\widehat{\mathcal{O}}_y$ be the completions of the local rings at x and y. Choose fields of representatives (II, 8.25A) $k(x) \subset \widehat{\mathcal{O}}_x$ and $k(y) \subset \widehat{\mathcal{O}}_y$ so that $k(y) \subset k(x)$ via the natural map $\widehat{\mathcal{O}}_y \to \widehat{\mathcal{O}}_x$. Then our condition is that for every $x \in X$, k(x) is a separable algebraic extension of k(y), and the natural map

$$\widehat{\mathcal{O}}_y \otimes_{k(y)} k(x) \to \widehat{\mathcal{O}}_x$$

is an isomorphism.

Proof. By definition, $f: X \to Y$ is unramified if and only if for all $x \in X$ with y = f(x), k(x) is separable over k(y) and $\mathfrak{m}_y \cdot \mathcal{O}_x = \mathfrak{m}_x$. Also, Ex III-10.3 shows that f is étale if and only if f is flat and unramified. Thus, it is enough to show that f is flat if and only if for all $x \in X$ with y = f(x), $\widehat{\mathcal{O}}_y \otimes_{k(y)} k(x) \xrightarrow{\simeq} \widehat{\mathcal{O}}_x$.

Since flatness is a local condition, it follows from the following three statements. (All rings are supposed to be noetherian.)

Claim (1). A is a ring and $I \subset A$ is an ideal. Then, the *I*-adic completion $A \to \widehat{A}$ is faithfully flat if and only if $I \subset \sqrt{A}$. (It is always flat.)

Proof. See SGA 1, IV-Cor 3.2

Claim (2). Let (A, \mathfrak{m}) , (B, \mathfrak{n}) be local rings with a local homomorphism $A \to B$. Then,

$$grB \simeq grA \otimes_A B \Leftrightarrow \widehat{B} \simeq \widehat{A} \otimes_A B.$$

Proof. Easy.

Claim (3). Let $(A, \mathfrak{m}), (B, \mathfrak{n}), A \to B$ be as above. Then, $A \to B$ is flat if and only if $\widehat{B} \simeq \widehat{A} \otimes_A B$.

Proof. (\Rightarrow) Since $0 \to \mathfrak{m}^{r+1} \to \mathfrak{m}^r \to \mathfrak{m}^r/\mathfrak{m}^{r+1} \to 0$ is exact and $A \to B$ is flat, $0 \to \mathfrak{m}^{r+1} \otimes_A B \to \mathfrak{m}^r \otimes_A B \to \mathfrak{m}^r/\mathfrak{m}^{r+1} \otimes_A B \to 0$ is exact. Since $\mathfrak{m}B = \mathfrak{n}$ and $\mathfrak{m}^r/\mathfrak{m}^{r+1} \otimes_A B = \mathfrak{m}^r B/\mathfrak{m}^{r+1}B = (\mathfrak{m}B)^r/(\mathfrak{m}B)^{r+1}$, we immediately obtain that $grB \simeq grA \otimes_A B$ which implies that $\widehat{B} \simeq \widehat{A} \otimes_A B$ by Claim (2).

 $(\Leftarrow) \text{ Let } M \to N \text{ be an injective } A \text{-module homomorphism. We want to show that } M \otimes_A B \to N \otimes_A B \text{ is an injection. Since } A \to \widehat{A} \text{ is flat, } B \otimes_A \widehat{A} \text{ is also a flat } A \text{-module. Thus, } M \otimes_A \left(B \otimes_A \widehat{A} \right) \to N \otimes_A \left(B \otimes_A \widehat{A} \right) \text{ is an injection But, } - \otimes_A \left(B \otimes_A \widehat{A} \right) \simeq (- \otimes_A B) \otimes_A \widehat{A} \text{ is an injection and since } A \to \widehat{A} \text{ is faithfully flat by Claim (1), } M \otimes_A B \to N \otimes_A B \text{ is injective as desired. This finishes the proof.}$

Thus, taking $A = \mathcal{O}_y$, $B = \mathcal{O}_x$ gives the desired result because, when L = k(y), k = k(x), we have $L = B \otimes_A k$ so taht $- \otimes_k L = - \otimes_k k \otimes_A B = - \otimes_A B$.

 \Box

10.5. If x is a point of a scheme X, we define an *étale neighborhood* of x to be an *étale* morphism $f: U \to X$, together with a point $x' \in U$ such that f(x') = x. As an example of the use of *étale* neighborhoods, prove the following: if \mathcal{F} is a coherent sheaf on X, and if every point of X has an *étale* neighborhood $f: U \to X$ for which $f^*\mathcal{F}$ is a free \mathcal{O}_U -module, then \mathcal{F} is locally free on X.

Proof. The question being local, we may suppose that both U and X are affine. Furthermore, by localizing them at x and x', we reduce the problem to show the following:

 $A \to B$ is an étale local homomorphism of local rings and M is an A-module such that $M \otimes_A B \simeq B^n$. Then, $M \simeq A^n$.

But, this is easy: $M \otimes_A B \simeq B^n \simeq A^n \otimes_A B$ and since $B \neq 0$ and B is A-flat, B is a faithfully flat A-module (SGA1 IV-cor 2.2) so that $M \simeq A^n$. This finishes the proof. \Box