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(a). Here, we assume that there exists at least one lefting g : A — B’. We prove all the
required propositions.

Claim. I has a natural structure of B-module.

Let b€ B, x € I. Let b/ € B’ be a lifting of b under the given surjection p : B’ — B.
Define b-x = b'x € 1. If b” € B’ is another lifting of b, then p(d” —V') = 0 implies b -V’ € I.
Hence, bz — bz = (b —b')x € I? =0, i.e. b-z is well defined. It proves the claim.

Since we have a k-algebra homomorphism f: A — B and g : A — B’ is a lifting, in fact,
b-x = g(b)x by above claim for any lifting g.

If ¢ : A — B’ is another such lifting, then obviously the image of § = g — ¢’ lies in I.

Claim. 0: A — [ is a k-derivation.

Obviously, it is additive because g, g’ are. For a € k, since g(1) = ¢'(1), 8(a) = g(a) —
g'(a) = ag(1l) —ag’(1) = 0. We now need to prove that for a,b € A, 6(ab) = af(b) + bh(a),
ie.

g(ab) — ¢'(ab) = alg(b) — ¢'(8)) + blg(a) — ¢ (@).
Recall how the action of A was defined on I. Hence,
RHS = g(a)(g(b) — ¢'(b)) + ¢'(b)(9(a) — ¢'(a)) = g(ab) — g(a)g'(b) + ¢'(b)g(a) — ' (ab)
= g(ab) — ¢'(ab) = LHS
so that 0 is a k-derivation, i.e. § € Dery(A,I) = Homa(Q4 4, 1). It proves the claim.

Now, conversely, let 6 € Homa (244, I) = Derg(A, I).
Claim. ¢’ := g + 0 is another lifting of f.

Since 6 is additive, so is ¢’. Now,

g'(ab) = g(ab) + 0(ab) = g(ab) + ad(b) + bO(a)
= g(a)g(b) + g(a)d(b) + g(b)6(a) 4 6(a)0(b)
= (9(a) + 0(a))(g(b) + 0(b)) = g'(a)g'(b)

so that ¢’ is multiplicative.

If a € k, then 0 is a k-derivation so that #(a) = 0. Hence ¢'(a) = g(a) = ag(1) = a. Hence

¢ is a k-algebra homomorphism. Now, (pog’)(a) = p(g(a)+6(a)) = pog(a)+p(f(a)) = f(a)
because 6(a) € I and p(I) = 0. Hence ¢’ is another lifting of f.

(b). For each i, choose b; € B’ such that p(b;) = f(&;). Define h : P = k[z1,--- ,x,] — B’ be
the k-algebra homomorphism determined by h(z;) := b;. Obviously, the diagram commutes
by construction.

Let g : P — A be the given surjection. If j € J, then since ¢(j) = 0, we have f(q(j)) =
p(h(j)) = 0 i.e. h(j) € I. Hence we have h|; : J — I. But I? = 0 implies that we have a

k-homomorphism h : J/J? — I.
Claim. This map is even A-linear.

First, we note that .J/J? has a canonical A-action. Let a € A, [j] € J/J?. Choose any
lifting @’ € P of a and define a-[j] = [d’j]. If we have another lifting a” of a, then a” —a’ € J
so that (a” —a')j € J?, i.e. [a'j] = [a"§] so, this action is well-defined.

In part (a), we noted that the action of A on I is well-defined. To show that h : J/J? — I
is A-equivariant, it is enough to show that the action of A is preserved. This is easy: Let
a € A and choose a lifting @’ € P. Then by the commutativity of the diagram, h(a’) is a
lifting of f(a) so that for [j] € J/J?,

h(a - [5]) = h([d'5]) = h(aj) = h(a")h(5) = a - h(j) = a-j([j]).



It proves the required A-linearity.

(c). By the hypothesis, SpecA — A} is a nonsingular subvariety. Hence by (8.17), we have
an exact sequence

0—J/J? — Qp/, ® A — Qu — 0.

A being nonsingular, €24, is projective (because the sheaf Qgpec 4,y is locally free). Hence,
above sequence splits and so by applying Hom 4(—1I), we obtain

0 HHOHIA(QA/]C,I) HHOH]A(QP/]C ®A,I) HHOmA(J/JQ,I) —0.

|

Homp(Qp/y, [) — Dery(P, )

Let § € Homp(Qp/y, I) be an element mapped to A € Homa(.J/J?, 1) defined in part (b).
Regard 6 as a k-derivation of P to B’ D I. Let h' = h — 6.

Claim. b’ : P — B’ is a k-homomorphism such that h'(J) = 0.
Obviously, 6 being a k-derivation, h'(a) = a for a € k and b’ is additive. If a,b € P, then

h'(ab) = h(ab) — 0(ab) = h(ab) — bd(a) — ab(b) + 6(a)6(b)

= (h(a) — 6(a))(h(b) — (b)) = I ()} (b).

If j € J, 0(j) = h(j) = h(j) so that h(j) = h(j) — 6(j) = 0. Hence h' gives a rise to a
k-homomorphism ¢ : A — B’. Since h was a lifting of f from P to B’, obviously, g is indeed
a required lifting.

8.7. As an application of the infinitesimal lifting property, we consider the fol-
lowing general problem. Let X be a scheme of finite type over k, and let
F be a coherent sheaf on X. We seek to classify schemes X’ over k, which
have a sheaf of ideals Z such that 72> = 0 and (X/,0x//Z) ~ (X,0x), and such
that 7 with its resulting structure of Ox-module is isomorphic to the given
sheaf F. Such a pair X', F we call an infinitesimal extension of the scheme X
bye the sheaf 7. One such extension, the trivial one, is obtained as follows.
Take Ox: = Ox & F as sheaves of abelian groups, and define multiplication by
(a® f) (d®f)=0ad ® (af +d'f). Then the topological space X with the sheaf
of rings Ox- is an infinitesimal extension of X by F.

The general problem of classifying extensions of X by F can be quite com-
plicated. So for now, just prove the following special case: if X is affine and
nonsingular, then any extension of X by a coherent sheaf F is isomorphic to the
trivial one. See (III, Ex. 4.10) for another case.

Proof. Suppose that we have an infinitesimal extension

0—-T—-A 3 A-0
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defined by a ring A’ and its square-zero ideal I with I? = 0. By the infinitesimal lifting
property we have a lifting f, that is a k-algebra homomorphism, of the identity map of A:

0

and it gives a splitting of A’ ~ A®I as k-modules. We show that it is in fact an isomorphism
of k-algebras, where A & [ is seen as given the structure of the trivial extension as in the
statement of the problem.

For each x,y € A’ we have  — f(a(x)),y — f(a(y)) € I. Since I? = 0 we have
(@ = fle(@)))(y — fla(y))) =
that gives 7y = — f(a(2))(a(y)) + 2 (@) + f(a(2))y. Thus?
zy — fla(zy)) = zy— fla@))flaly) = =2f(a(z)) flaly) + 2 f(ay)) + flalz))y

= (z— fla@)))f(ay) + flalz))(@ - f(a(y))).
This immediately implies that, when we identify z € A" with the pair (f(a(z)),z — f(a(x)))
of A@® I, the product structure of A’ is identical to that of A @ I, as desired. Thus there is
only one extension up to isomorphism. O

8.8.



