Robin Hartshorne's Algebraic Geometry Solutions

by Jinhyun Park

	Chapter II Section 8, Differentials
8.1.	
<i>(a).</i>	
<i>(b).</i>	
<i>(c)</i> .	
<i>(d)</i> .	
8.2.	
8.3.	
<i>(a)</i> .	
<i>(b)</i> .	
<i>(c)</i> .	
8.4.	
<i>(a)</i> .	
<i>(b)</i> .	
<i>(c)</i> .	
(d).	
<i>(e)</i> .	
(f).	
(g).	
8.5.	
<i>(a).</i>	
<i>(b)</i> .	
8.6.	

(a). Here, we assume that there exists at least one lefting $g: A \to B'$. We prove all the required propositions.

Claim. I has a natural structure of B-module.

Let $b \in B$, $x \in I$. Let $b' \in B'$ be a lifting of b under the given surjection $p: B' \to B$. Define $b \cdot x = b'x \in I$. If $b'' \in B'$ is another lifting of b, then p(b''-b') = 0 implies $b''-b' \in I$. Hence, $b''x - b'x = (b''-b')x \in I^2 = 0$, i.e. $b \cdot x$ is well defined. It proves the claim.

Since we have a k-algebra homomorphism $f : A \to B$ and $g : A \to B'$ is a lifting, in fact, $b \cdot x = g(b)x$ by above claim for any lifting g.

If $g': A \to B'$ is another such lifting, then obviously the image of $\theta = g - g'$ lies in I.

Claim. $\theta: A \to I$ is a k-derivation.

Obviously, it is additive because g, g' are. For $a \in k$, since g(1) = g'(1), $\theta(a) = g(a) - g'(a) = ag(1) - ag'(1) = 0$. We now need to prove that for $a, b \in A$, $\theta(ab) = a\theta(b) + b\theta(a)$, i.e.

$$g(ab) - g'(ab) = a(g(b) - g'(b)) + b(g(a) - g'(a)).$$

Recall how the action of A was defined on I. Hence,

$$RHS = g(a)(g(b) - g'(b)) + g'(b)(g(a) - g'(a)) = g(ab) - g(a)g'(b) + g'(b)g(a) - g'(ab)$$
$$= g(ab) - g'(ab) = LHS$$

so that θ is a k-derivation, i.e. $\theta \in Der_k(A, I) = Hom_A(\Omega_{A/k}, I)$. It proves the claim.

Now, conversely, let $\theta \in \operatorname{Hom}_A(\Omega_{A/k}, I) = Der_k(A, I)$.

Claim. $g' := g + \theta$ is another lifting of f.

Since θ is additive, so is g'. Now,

$$g'(ab) = g(ab) + \theta(ab) = g(ab) + a\theta(b) + b\theta(a)$$

= $g(a)g(b) + g(a)\theta(b) + g(b)\theta(a) + \theta(a)\theta(b)$
= $(g(a) + \theta(a))(g(b) + \theta(b)) = g'(a)g'(b)$

so that g' is multiplicative.

If $a \in k$, then θ is a k-derivation so that $\theta(a) = 0$. Hence g'(a) = g(a) = ag(1) = a. Hence g' is a k-algebra homomorphism. Now, $(p \circ g')(a) = p(g(a) + \theta(a)) = p \circ g(a) + p(\theta(a)) = f(a)$ because $\theta(a) \in I$ and p(I) = 0. Hence g' is another lifting of f.

(b). For each *i*, choose $b_i \in B'$ such that $p(b_i) = f(\bar{x}_i)$. Define $h : P = k[x_1, \dots, x_n] \to B'$ be the *k*-algebra homomorphism determined by $h(x_i) := b_i$. Obviously, the diagram commutes by construction.

Let $q: P \to A$ be the given surjection. If $j \in J$, then since q(j) = 0, we have f(q(j)) = p(h(j)) = 0 i.e. $h(j) \in I$. Hence we have $h|_J: J \to I$. But $I^2 = 0$ implies that we have a k-homomorphism $\bar{h}: J/J^2 \to I$.

Claim. This map is even A-linear.

First, we note that J/J^2 has a canonical A-action. Let $a \in A$, $[j] \in J/J^2$. Choose any lifting $a' \in P$ of a and define $a \cdot [j] = [a'j]$. If we have another lifting a'' of a, then $a'' - a' \in J$ so that $(a'' - a')j \in J^2$, i.e. [a'j] = [a''j] so, this action is well-defined.

In part (a), we noted that the action of A on I is well-defined. To show that $\overline{h}: J/J^2 \to I$ is A-equivariant, it is enough to show that the action of A is preserved. This is easy: Let $a \in A$ and choose a lifting $a' \in P$. Then by the commutativity of the diagram, h(a') is a lifting of f(a) so that for $[j] \in J/J^2$,

$$\bar{h}(a \cdot [j]) = \bar{h}([a'j]) = h(a'j) = h(a')h(j) = a \cdot h(j) = a \cdot \bar{j}([j]).$$

It proves the required A-linearity.

(c). By the hypothesis, $\operatorname{Spec} A \hookrightarrow \mathbb{A}_k^n$ is a nonsingular subvariety. Hence by (8.17), we have an exact sequence

$$0 \to J/J^2 \to \Omega_{P/k} \otimes A \to \Omega_{A/k} \to 0.$$

A being nonsingular, $\Omega_{A/k}$ is projective (because the sheaf $\Omega_{\text{Spec}A/k}$ is locally free). Hence, above sequence splits and so by applying $\text{Hom}_A(-I)$, we obtain

$$0 \longrightarrow \operatorname{Hom}_{A}(\Omega_{A/k}, I) \longrightarrow \operatorname{Hom}_{A}(\Omega_{P/k} \otimes A, I) \longrightarrow \operatorname{Hom}_{A}(J/J^{2}, I) \longrightarrow 0$$
$$\simeq \downarrow$$
$$\operatorname{Hom}_{P}(\Omega_{P/k}, I) \xrightarrow{=} Der_{k}(P, I)$$

Let $\theta \in \operatorname{Hom}_P(\Omega_{P/k}, I)$ be an element mapped to $\overline{h} \in \operatorname{Hom}_A(J/J^2, I)$ defined in part (b). Regard θ as a k-derivation of P to $B' \supset I$. Let $h' = h - \theta$.

Claim. $h': P \to B'$ is a k-homomorphism such that h'(J) = 0.

Obviously, θ being a k-derivation, h'(a) = a for $a \in k$ and h' is additive. If $a, b \in P$, then

$$h'(ab) = h(ab) - \theta(ab) = h(ab) - b\theta(a) - a\theta(b) + \theta(a)\theta(b)$$

$$= (h(a) - \theta(a))(h(b) - \theta(b)) = h'(a)h'(b).$$

If $j \in J$, $\theta(j) = \overline{h}(j) = h(j)$ so that $h(j) = h(j) - \theta(j) = 0$. Hence h' gives a rise to a k-homomorphism $g: A \to B'$. Since h was a lifting of f from P to B', obviously, g is indeed a required lifting.

8.7. As an application of the infinitesimal lifting property, we consider the following general problem. Let X be a scheme of finite type over k, and let \mathcal{F} be a coherent sheaf on X. We seek to classify schemes X' over k, which have a sheaf of ideals \mathcal{I} such that $\mathcal{I}^2 = 0$ and $(X', \mathcal{O}_{X'}/\mathcal{I}) \simeq (X, \mathcal{O}_X)$, and such that \mathcal{I} with its resulting structure of \mathcal{O}_X -module is isomorphic to the given sheaf \mathcal{F} . Such a pair X', \mathcal{F} we call an *infinitesimal extension* of the scheme X by the sheaf \mathcal{F} . One such extension, the *trivial* one, is obtained as follows. Take $\mathcal{O}_{X'} = \mathcal{O}_X \oplus \mathcal{F}$ as sheaves of abelian groups, and define multiplication by $(a \oplus f) \cdot (a' \oplus f') = aa' \oplus (af' + a'f)$. Then the topological space X with the sheaf of rings $\mathcal{O}_{X'}$ is an infinitesimal extension of X by \mathcal{F} .

The general problem of classifying extensions of X by \mathcal{F} can be quite complicated. So for now, just prove the following special case: if X is affine and nonsingular, then any extension of X by a coherent sheaf \mathcal{F} is isomorphic to the trivial one. See (III, Ex. 4.10) for another case.

Proof. Suppose that we have an infinitesimal extension

$$0 \to I \to A' \xrightarrow{\alpha} A \to 0$$

and it gives a splitting of $A' \simeq A \oplus I$ as k-modules. We show that it is in fact an isomorphism of k-algebras, where $A \oplus I$ is seen as given the structure of the trivial extension as in the statement of the problem.

For each
$$x, y \in A'$$
, we have $x - f(\alpha(x)), y - f(\alpha(y)) \in I$. Since $I^2 = 0$ we have
 $(x - f(\alpha(x)))(y - f(\alpha(y))) = 0$
that gives $xy = -f(\alpha(x))f(\alpha(y)) + xf(\alpha(y)) + f(\alpha(x))y$. Thus,
 $xy - f(\alpha(xy)) = xy - f(\alpha(x))f(\alpha(y)) = -2f(\alpha(x))f(\alpha(y)) + xf(\alpha(y)) + f(\alpha(x))y$

$$= (x - f(\alpha(x)))f(\alpha(y)) + f(\alpha(x))(x - f(\alpha(y))).$$

This immediately implies that, when we identify $x \in A'$ with the pair $(f(\alpha(x)), x - f(\alpha(x)))$ of $A \oplus I$, the product structure of A' is identical to that of $A \oplus I$, as desired. Thus there is only one extension up to isomorphism.

8.8.