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(a). Here, we assume that there exists at least one lefting g : A → B′. We prove all the
required propositions.

Claim. I has a natural structure of B-module.

Let b ∈ B, x ∈ I. Let b′ ∈ B′ be a lifting of b under the given surjection p : B′ → B.
Define b ·x = b′x ∈ I. If b′′ ∈ B′ is another lifting of b, then p(b′′−b′) = 0 implies b′′−b′ ∈ I.
Hence, b′′x− b′x = (b′′ − b′)x ∈ I2 = 0, i.e. b · x is well defined. It proves the claim.

Since we have a k-algebra homomorphism f : A → B and g : A → B′ is a lifting, in fact,
b · x = g(b)x by above claim for any lifting g.

If g′ : A → B′ is another such lifting, then obviously the image of θ = g − g′ lies in I.

Claim. θ : A → I is a k-derivation.

Obviously, it is additive because g, g′ are. For a ∈ k, since g(1) = g′(1), θ(a) = g(a) −
g′(a) = ag(1)− ag′(1) = 0. We now need to prove that for a, b ∈ A, θ(ab) = aθ(b) + bθ(a),
i.e.

g(ab)− g′(ab) = a(g(b)− g′(b)) + b(g(a)− g′(a)).
Recall how the action of A was defined on I. Hence,

RHS = g(a)(g(b)− g′(b)) + g′(b)(g(a)− g′(a)) = g(ab)− g(a)g′(b) + g′(b)g(a)− g′(ab)

= g(ab)− g′(ab) = LHS

so that θ is a k-derivation, i.e. θ ∈ Derk(A, I) = HomA(ΩA/k, I). It proves the claim.

Now, conversely, let θ ∈ HomA(ΩA/k, I) = Derk(A, I).

Claim. g′ := g + θ is another lifting of f .

Since θ is additive, so is g′. Now,

g′(ab) = g(ab) + θ(ab) = g(ab) + aθ(b) + bθ(a)

= g(a)g(b) + g(a)θ(b) + g(b)θ(a) + θ(a)θ(b)
= (g(a) + θ(a))(g(b) + θ(b)) = g′(a)g′(b)

so that g′ is multiplicative.
If a ∈ k, then θ is a k-derivation so that θ(a) = 0. Hence g′(a) = g(a) = ag(1) = a. Hence

g′ is a k-algebra homomorphism. Now, (p◦g′)(a) = p(g(a)+θ(a)) = p◦g(a)+p(θ(a)) = f(a)
because θ(a) ∈ I and p(I) = 0. Hence g′ is another lifting of f .

(b). For each i, choose bi ∈ B′ such that p(bi) = f(x̄i). Define h : P = k[x1, · · · , xn] → B′ be
the k-algebra homomorphism determined by h(xi) := bi. Obviously, the diagram commutes
by construction.

Let q : P → A be the given surjection. If j ∈ J , then since q(j) = 0, we have f(q(j)) =
p(h(j)) = 0 i.e. h(j) ∈ I. Hence we have h|J : J → I. But I2 = 0 implies that we have a
k-homomorphism h̄ : J/J2 → I.

Claim. This map is even A-linear.

First, we note that J/J2 has a canonical A-action. Let a ∈ A, [j] ∈ J/J2. Choose any
lifting a′ ∈ P of a and define a · [j] = [a′j]. If we have another lifting a′′ of a, then a′′−a′ ∈ J
so that (a′′ − a′)j ∈ J2, i.e. [a′j] = [a′′j] so, this action is well-defined.

In part (a), we noted that the action of A on I is well-defined. To show that h̄ : J/J2 → I
is A-equivariant, it is enough to show that the action of A is preserved. This is easy: Let
a ∈ A and choose a lifting a′ ∈ P . Then by the commutativity of the diagram, h(a′) is a
lifting of f(a) so that for [j] ∈ J/J2,

h̄(a · [j]) = h̄([a′j]) = h(a′j) = h(a′)h(j) = a · h(j) = a · j̄([j]).



3

It proves the required A-linearity.

(c). By the hypothesis, SpecA ↪→ An
k is a nonsingular subvariety. Hence by (8.17), we have

an exact sequence

0 → J/J2 → ΩP/k ⊗A → ΩA/k → 0.

A being nonsingular, ΩA/k is projective (because the sheaf ΩSpecA/k is locally free). Hence,
above sequence splits and so by applying HomA(−I), we obtain

0 // HomA(ΩA/k, I) // HomA(ΩP/k ⊗A, I)

'
��

// HomA(J/J2, I) // 0

HomP (ΩP/k, I) = // Derk(P, I)

.

Let θ ∈ HomP (ΩP/k, I) be an element mapped to h̄ ∈ HomA(J/J2, I) defined in part (b).
Regard θ as a k-derivation of P to B′ ⊃ I. Let h′ = h− θ.

Claim. h′ : P → B′ is a k-homomorphism such that h′(J) = 0.

Obviously, θ being a k-derivation, h′(a) = a for a ∈ k and h′ is additive. If a, b ∈ P , then

h′(ab) = h(ab)− θ(ab) = h(ab)− bθ(a)− aθ(b) + θ(a)θ(b)

= (h(a)− θ(a))(h(b)− θ(b)) = h′(a)h′(b).

If j ∈ J , θ(j) = h̄(j) = h(j) so that h(j) = h(j) − θ(j) = 0. Hence h′ gives a rise to a
k-homomorphism g : A → B′. Since h was a lifting of f from P to B′, obviously, g is indeed
a required lifting.

8.7. As an application of the infinitesimal lifting property, we consider the fol-
lowing general problem. Let X be a scheme of finite type over k, and let
F be a coherent sheaf on X. We seek to classify schemes X ′ over k, which
have a sheaf of ideals I such that I2 = 0 and (X ′,OX′/I) ' (X,OX), and such
that I with its resulting structure of OX-module is isomorphic to the given
sheaf F . Such a pair X ′,F we call an infinitesimal extension of the scheme X
bye the sheaf F . One such extension, the trivial one, is obtained as follows.
Take OX′ = OX ⊕ F as sheaves of abelian groups, and define multiplication by
(a⊕ f) · (a′ ⊕ f ′) = aa′ ⊕ (af ′ + a′f). Then the topological space X with the sheaf
of rings OX′ is an infinitesimal extension of X by F .

The general problem of classifying extensions of X by F can be quite com-
plicated. So for now, just prove the following special case: if X is affine and
nonsingular, then any extension of X by a coherent sheaf F is isomorphic to the
trivial one. See (III, Ex. 4.10) for another case.

Proof. Suppose that we have an infinitesimal extension

0 → I → A′ α→ A → 0
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defined by a ring A′ and its square-zero ideal I with I2 = 0. By the infinitesimal lifting
property we have a lifting f , that is a k-algebra homomorphism, of the identity map of A:

0

��
I

��
A′

α

��
A

f
>>~~~~~~~ id // A

��
0

and it gives a splitting of A′ ' A⊕I as k-modules. We show that it is in fact an isomorphism
of k-algebras, where A ⊕ I is seen as given the structure of the trivial extension as in the
statement of the problem.

For each x, y ∈ A′, we have x− f(α(x)), y − f(α(y)) ∈ I. Since I2 = 0 we have

(x− f(α(x)))(y − f(α(y))) = 0

that gives xy = −f(α(x))f(α(y)) + xf(α(y)) + f(α(x))y. Thus,

xy − f(α(xy)) = xy − f(α(x))f(α(y)) = −2f(α(x))f(α(y)) + xf(α(y)) + f(α(x))y
= (x− f(α(x)))f(α(y)) + f(α(x))(x− f(α(y))).

This immediately implies that, when we identify x ∈ A′ with the pair (f(α(x)), x− f(α(x)))
of A⊕ I, the product structure of A′ is identical to that of A⊕ I, as desired. Thus there is
only one extension up to isomorphism. �

8.8.


