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Chapter II Section 2 Schemes

2.1. Let A be a ring, let X = Spec(A), let f ∈ A and let D(f) ⊂ X be the open
complement of V ((f)). Show that the locally ringed space (D(f),OX |D(f)) is
isomorphic to Spec(Af ).

Proof. From a basic commutative algebra, we know that prime ideals in AS , for a multi-
plicative set S of A, correspond to prime ideals of A which do not intersect S. In particular,
Af = AS for S = {1, f, f2, · · · , } so that prime ideals of Af correspond to prime ideals of
A not containing f . This shows that the underlying topological spaces are homeomorphic.
For the morphism of structure sheaves, Prop. 2.2 -(b) gives the answer. This proves the
assertion. �

2.2. Let (X,OX) be a scheme, and let U ⊂ X be any open subset. Show that
(U,OX |U ) is a scheme. We call this the induced scheme structure on the open set
U , and we refer to (U,OX |U ) as an open subscheme of X.

Proof. By the remark on p. 71 above the Prop. 2.2., affine subschemes of X form a basis
for the topology of X. Thus, for any open U ⊂ X there is an affine open subscheme Y ⊂ U ,
thus, by definition, (U,OX |U ) is a scheme. �

2.3. Reduced Schemes. A scheme (X,OX) is reduced if for every open set U ⊂ X,
the ring OX(U) has no nilpotent elements.

(a) Show that (X,OX) is reduced if and only if for every P ∈ X, the local ring
OX,P has no nilpotent elements.

Proof. (⇒) Assume not, i.e. there is P ∈ X and 0 6= f ∈ OX,P such that fm = 0
for some m ∈ N. Then there is an open set V 3 P and g ∈ OX(V ) which represents
f . But, then gm = 0 which is a contradiction.

(⇐) Assume that for some open V ⊂ X, there is nonzero g ∈ OX(V ) such that
gm = 0. Then, there is P ∈ V for which the image f ∈ OX,P of g is nonzero and
fm = 0, which is a contradiction. �

(b) Let (X,OX) be a scheme. Let (OX)red be the sheaf associated to the
presheaf U 7→ OX(U)red, where for any ring A, we denote by Ared the
quotient of A by its ideal of nilpotent elements. Show that (X, (OX)red)
is a scheme. We call it the reduced scheme associated to X, and denote it
by Xred. How that there is a morphism of schemes Xred → X, which is a
homeomorphism on the underlying topological spaces.

Claim. (X, (OX)red) is a scheme.

Proof. For any affine schemes V ⊂ U ⊂ X, (OX |U )red(V ) = (OX)red|U (V ), so, the
rest is obvious. �

Claim. There is a morphism of schemes Xred → X which is a homeomorphism on
the underlying spaces.

Proof. Just define f : Xred → X to be the identity map on the underlying spaces.
We define f ] : OX → f∗(OX)red to be

f ](U) : OX(U) → OX(U)/nilrad(OX(U))

for any open subset U ⊂ X. �
1
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(c) Let f : X → Y be a morphism of schemes, and assume that X is reduced.
Show that there is a unique morphism g : X → Yred such that f is obtained
by composing g with the natural map Yred → Y .

Proof. Define g : X → Yred as follows. As a map on underlying spaces, g = f .
As a morphism of sheaves, g] : (OY )red → g∗OX = g∗(OX)red is defined from
f ] : OY → f∗OX by taking g] = (f ])red. This is possible because a nilpotent is sent
to a nilpotent so that a nilradical is sent to a nilradical. �

2.4. Let A be a ring and let (X,OX) be a scheme. Given a morphism f : X →
Spec(A), we have an associated map on sheaves f ] : OSpec(A) → f∗OX . Taking
global sections we obtaion a homomorphism A → Γ(X,OX). Thus there is a
natural map

α : HomSch(X, Spec(A)) → HomRings(A,Γ(X,OX)).

Show that α is bijective (cf. (I, 3.5) for an analogous statement about varieties).

Proof. Let φ : A → Γ(X,OX) be a ring homomorphism. We want to construct a natural
morphism of schemes which corresponds to φ.

Notice that for any affine open U ⊂ X, we have A
φ→ Γ(X,OX)

ρU
X→ Γ(U,OX) from which

we can obtain φ∗U = Spec(ρU
X ◦ φ) : U ' Spec(Γ(U,OX)) → Spec(A). The question is

whether they glue together nicely so that we can we can actually obtain a map from X to
Spec(A). But, this is easy: for two affine open sets U and V and any affine open subset
W ⊂ U ∩ V , the restiction maps ρ are transitive so that

ρW
X = ρW

U ◦ ρU
X = ρW

V ◦ ρW
X

and Spec is contravariant functorial so that the morphism of schemes

φ∗U |W = Spec(ρU
X ◦ φ) ◦ Spec(ρW

U ) = Spec(ρW
U ◦ ρU

X ◦ φ) = Spec(ρW
X ◦ φ) = φ∗W

and by symmetry, φ∗V |W = φ∗W . Thus, by collecting {φ∗U}U⊂X , we have φ∗ : X → Spec(A).
That these two procedures are inverse to each other is obvious. �

2.5. Describe Spec(Z), and show that it is a final object for the category of
schemes, i.e., each scheme X admits a unique morphism to Spec(Z).

Proof. Spec(Z) = {(0)} ∪ {(p)|p:prime number} with (0), not closed and (p) are closed
points. This is a dimension 1 scheme. On the other hand, take A = Z in Ex. 2.4. Then,
HomRings(Z,Γ(X,OX)) has only one element, namely, the ring homomorphism sending 1
to 1. This corresponds to a unique morphism of schemes X → Spec(Z), thus, it is a final
object for the category of schemes. �

2.6. Describe the spectrum of the zero ring, and show that it is an initial object
for the category of schemes. (According to our conventions, all ring homo-
morphisms must take 1 to 1. Since 0 = 1 in the zero ring, we see that each
ring R admits a unique homomorphism to the zero ring, but that there is no
homomorphism from the zero ring to R unless 0 = 1 in R.)

Proof. For A = 0, Spec(A) = φ. On the other hand, for any scheme X, any ring homo-
morphism Γ(X,OX) → 0 is 0. Hence, by Ex. 2.4, there is a unique morphism of schemes
Spec(0) → X, namely, the inclusion of empty set to X. Hence, Spec(0) is an initial object
in the category of schemes. �
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2.7. Let X be a scheme. For any x ∈ X, let Ox be the local ring at x, and mx its
maximal ideal. We define the residue field of x on X to be the field k(x) = Ox/mx.
Now let K be any field. Show that to give a morphism of Spec(K) to X is
equivalent to give a point x ∈ X and an inclusion map k(x) → K.

Proof. (⇒) Let (η, η]) : Spec(K) → X be a morphism of schemes. As a map on topological
spaces, since Spec(K) consists of a single point {∗}, there is a unique point x ∈ X with
x := η(∗).

Now, from η], we obtain a local homomorphism η]
∗ : OX,x → OSpec(K),∗ = K, thus, the

map of their residue fields

η]
∗ : k(x) =

OX,x

mX,x
→

OSpec(K),∗

mSpec(K),∗
=
K

0
= K.

This is injective because k(x) is a field.
(⇐) Conversely, suppose that x ∈ X and an embedding k(x) ↪→ K are given. We have the
obvious map on topological spaces η : Spec(K) → X defined to be ∗ 7→ x, thus, we need to
construct η] : OX → η∗OSpec(K). But, this is easy:

If x ∈ U ⊂ X, then, η](U) : OX(U) →
(
η∗OSpec(K)

)
(U) = K is defined to be the

composition of maps

OX(U) → OX,x → OX,x/mX,x = k(x) ↪→ K.

If x 6∈ U ⊂ X, we let η](U) = 0, where the target is the zero ring.
Thus, we constructed the desired morphism of schemes (η, η]) : Spec(K) → X. This

finishes the proof. �

2.8. Let X be a scheme. For any point x ∈ X, we define the Zariski tangent space
Tx to X at x to be the dual of the k(x)-vector space mx/m

2
x. Now assume that X

is a scheme over a field k, and let k[ε]/ε2 be the ring of dual numbers over k. Show
that to give a k-morphism of Spec

(
k[ε]/ε2

)
to X is equivalent to giving a point

x ∈ X, rational over k (i.e., such that k(x) = k), and an element of Tx.

Proof. Notice first that as a topological space, Spec
(
k[ε]/ε2

)
is a single point {∗} with

residue field k(∗) = k.
(⇒) Let (η, η]) ∈ Mork−sch

(
Spec

(
k[ε]/ε2

)
, X

)
be given. Let x = η(∗). Since η is a k-

morphism, and k(∗) = k, we must have k(x) = k and x is a rational point.
On the other hand, we have a k-algebra local homomorphism η]

∗ : OX,x → OSpec(k[ε]/ε2),∗ =
k[ε]/ε2 =: k[ε], thus, η]

∗(mX,x) ⊂ (ε). But, since (ε2) = 0, we have η]
∗(m2

X,x) ⊂ (ε2) = 0, thus
we get a k-vector space homomorphism

η]
∗ : mX,x/m

2
X,x → (ε) ' k,

where the last map is an isomorphism of k-vector spaces.
Thus, we obtained a k-rational point x ∈ X and η]

∗ ∈ Homk

(
mx/m

2
x, k

)
= Tx as desired.

(⇐) Conversely, suppose that we have a k-rational point x ∈ X and a k-linear map ξ ∈
Homk

(
mx/m

2
x, k

)
. Out of this data, we will define an element (η, η]) ∈ Mork−sch

(
Spec

(
k[ε]/ε2

)
, X

)
.

First, as a map of topological spaces, just define η(∗) = x. Let’s define η].
If x 6∈ U ⊂ X, define η](U) : OX(U) →

(
η∗OSpec(k[ε]/ε2)

)
(U) = 0 to be 0.

If x ∈ U ⊂ X, notice that since x is a k-rational point, we first have a decomposition
OX,x = k ⊕mX,x. Then, using this, define η](U) as the composition of maps

OX(U) → OX,x = k ⊕mX,x
α→ k[ε]/ε2 =

(
η∗OSpec(k[ε]/ε2)

)
(U)
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where the second map α sends (a, b) 7→ a + ξ(b)ε, where b denotes its image in
mx/m

2
x. This proves the assertion.

�

2.9. If X is a topological space, and Z an irreducible closed subset of X, a generic
point for Z is a point ζ such that Z = {ζ}−. If X is a scheme, show that every
(nonempty) irreducible closed subset has a unique generic point.

Proof. Choose an affine open subset V ⊂ X, V ' Spec(A), with V ∩ Z 6= φ.

Claim (1). Z = V ∩ Z where the closure is taken in X.

Set theoretically, Z = V ∩ Z∪ (Z∩ (X−V )). But, since Z is irreducible and Z∩ (X−V )
is a proper subset of Z, this claim is true.

Claim (2). V ∩ Z is irreducible.

If not, there are two proper closed subsets F1, F2 of Z such that V ∩Z = (V ∩F1)∪(V ∩F2)
so that Z = (Z ∩ F1) ∪ (Z ∩ F2) ∪ (Z ∩ (X − V )) which contradicts the irreducibility of Z.

Thus, V ∩ Z is an irreducible closed subset of an affine variety V , i.e. there is a point
x corresponding to a prime ideal of A such that V ∩ Z = {x}−, where the closure here is
taken in V . Hence, by extending the closure in X, by Claim (1), Z = V ∩ Z = {x}−, which
shows the existence of a generic point.

If there are two generic points x1, x2, then, x1 ∈ {x2}−. Thus, if we choose an affine
open subset V containing x2, x1 must lie in V as well, and for two prime ideals p1, p2

corresponding to x1, x2, p1 ⊃ p2. But, by interchanging the roles of x1 and x2, we also have
p1 ⊂ p2, which means, x1 = x2. Hence there is a unique generic point. �

2.10. Describe Spec(R[x]). How does its topological space compare to the set R?
to C?

Proof. See my solutions for Atiyah-MacDonald’s Introduction to commutative algebra Chap-
ter 1. �

2.11. Let k = Fp be the finite field with p elements. Describe k[x]. What are the
residue fields of its points? How many points are there with a given residue
field?

Proof. First of all, what are Spec(k[x])? (0) is the generic point and (f) are closed points,
when f are nonzero irreducible polynomials. It is in general not very easy to enumerate all
irreducible polynomials. But, we can count the number of them, which will be done in the
sequel.

When ξ = (0), k[x]ξ = k(x) and mξ = 0, thus, the residue field is same as the fraction
field so that k(ξ) = k(x). When ξ = (f), where f is an irreducible polynomial of degree
n ≥ 1, then, k[x]ξ =

{
h
g |f 6 |g

}
, mξ =

{
h
g |f 6 |g, f |h

}
so that

k[x]ξ/mξ ' (k[x]/(f))ξ ' k[x]/(f) ' Fpn .

So, Fp[x] and Fpn , n ≥ 1 are all possible residue fields. Obviously only the generic point
can have k[x] as the residue field.

To compute the number of points which have a specific Fpn as its residue field is equivalent
to count the number of monic irreducible polynomials of degree n over Fp. To do so, we
will use the collection of all maps from Spec (Fn := Fpn) to Spec(k[x]).

If ξ = (f) 6= 0 with deg f = m is a Fn-rational point, then it means, the image of
f ∈ k(ξ) = k[x]/(f) ↪→ Fn is an element of Fn. In particular, m|n and there are m distinct
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embeddings coming from various conjugates. Conversely, each nonzero element of Fn is a
root of a unique monic irreducible polynomial of degreem dividing n. Hence each irreducible
monic polynomial of degree m, m|n determines m elements of Fn and each element of Fn

is also determined by an irreducible monic polynomial.
So, let Sn be the number of monic irreducible polynomials. Let Tn = nSn. Then,∑

m|n

Tm = pn.

To solve this equation, we use the Möbius inversion formulae: if g(n) =
∑

d|n f(d), then,
f(n) =

∑
d|n µ(d)g

(
n
d

)
where

µ(n) =


1 n = 1
0 n is not square free.
(−1)k n = p1 · · · pk: distinct primes

.

(See any reasonable number theory book.)
Hence,

Sn =
1
n

∑
d|n

µ(d)
(
p

n
d

)
is the number of monic irreducible polynomials of degree n over Fp, which is equal to the
number of points of Spec(k[x]) whose residue field is exactly Fpn . �

2.12. Glueing Lemma. Generalize the glueing procedure described in the text
(2.3.5) as follows. Let {Xi} be a family of schemes (possibly infinite). For
each i 6= j, suppose given an open subset Uij ⊂ Xi, and let it have the induced
scheme structure (Ex. 2.2). Suppose also given for each i 6= j an isomorphism
of schemes φij : Uij → Uji such that (1) for each i, j, φji = φ−1

ij , and (2) for each
i, j, k, φij(Uij ∩Uik) = Uji∩Ujk, and φik = φjk ◦φij on Uij ∩Uik. Then show that there
is a scheme X, together with morphisms ψi : Xi → X for each i, such that (1)
ψi is an isomorphism of Xi onto an open subscheme of X, (2) the ψi(Xi) cover
X, (3) ψi(Uij) = ψi(Xi) ∩ ψj(Xj) and (4) ψi = ψj ◦ φij on Uij. We say that X is
obtained by glueing the schemes Xi along the isomorphisms φij. An interesting
special case is when the family Xi is arbitrary, but the Uij and φij are all empty.
Then the scheme X is called the disjoint union of the Xi, and is denoted

∐
Xi.

Proof. Obvious. �

2.13. A topological space is quasi-compact if every open cover has a finite sub-
cover.

(a) Show that a topological space is noetherian (I, §1) if and only if every
open subset is quasi-compact.

Proof. (⇒) By Ex. I-1.7-(c), any open subset is noetherian, hence, by Ex. I-1.7-(b),
it is quasi-compact.

(⇐) let U1 ⊂ U2 · · · be an ascending chain of open subsets of X. Let U =
⋃

i Ui.
By assumption, U is quasi-compact so that U =

⋃r
i=1 Ui for some r. Then, Ur =

Ur+1 = · · · so that X is noetherian. �

(b) If X is an affine scheme, show that sp(X) is quasi-compact, but not in
general noetherian. We say that X is quasi-compact is sp(X) is.
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Proof. Let X = Spec(A). We know that for g ∈ A, D(g) ' Spec(Ag) form a basis

for X. Hence, Spec(A) =
⋃

g∈AD(g) which means V (1) = V
(∑

g∈A(g)
)
, which

means 1 ∈
∑

g∈A(g), thus, 1 =
∑r

i=1 cigi for some ci ∈ A and gi ∈ A. But, then it
means Spec(A) =

⋃r
i=1D(gi). Hence Spec(A) is quasi-compact.

For A = k[x1, x2, · · · ], Spec(A) is not noetherian. �

(c) If A is a noetherian ring, show that sp(Spec(A)) is a noetherian topological
space.

Proof. Let V (a1) ⊃ V (a2) ⊃ · · · be a descending chain of closed subsets of Spec(A).
Then,

√
a1 ⊂

√
a2 ⊂ · · · . Since A is noetherian, for all sufficiently large N ,

√
aN =√

aN+1 = · · · . Hence, by applying V ( ) again and noting that V (ai) = V (
√
ai),

V (aN ) = V (aN+1) = · · · . Hence Spec(A) is noetherian. �

(d) Give an example to show that sp(Spec(A)) can be noetherian even when
A is not.

Proof. ? �

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.


