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1 Introduction

A knot is a piecewise smooth simple closed curve embedded in the three dimen-
sional euclidean space R3. Two knots are equivalent if there is a piecewise smooth
autohomeomorphism of R? mapping one knot onto the other. The equivalence class
of a knot K will be called the knot type of K and denoted by [K]. Two knots are
isotopic if one can be continuously deformed to the other through a 1-parameter
family of knots. If two knots are isotopic then they are equivalent. Conversely, if
two knots are equivalent then they are isotopic up to reflection through a plane.

Given a knot K and a unit vector @ in R®, we define bz(K) as the number of
connected components of the preimage of the set of local maximum values of the
orthogonal projection K — R&. We call by(K) the crookedness of K with respect
to ¥. Figure 1 illustrates an example. The superbridge number and superbridge
index of K are defined by the formulae

s(K) = max by(K) and s[K]= min s(K')= min max bz(K'),
(K) max o (K) (K] K,G[K]( ) hin | max (K')



respectively.

Figure 1: b3(K) =3

2 Superbridge index and other invariants

Braid index

A closed braid is a knot which wraps around an axis in a way that every half plane
bounded by the axis meets the knot in a fixed number of points transversely. By
Alexander, every knot is isotopic to a closed braid [A]. If a closed braid meets
every half plane bounded by its axis in n points, we say that its braid number is
n and it is a closed n-braid. The minimal braid number among all closed braids
isotopic to a knot K, denoted by S(K), is called the braid index of K.

Proposition 2.1 (Kuiper). For every knot K, the following inequality holds.

s[K] <2B(K)

Sketch of Proof. Let 1 be the curve parametrized by t +— (cost,sint,cos®t), t €
[0,27] and let ¥ = v1i4 v2j + vsk be a unit vector. Then bg(n) counts the number

Figure 2: A tube along the curve n : t — (cost,sint,cos?t).



of local maximum points of the function
t > vy cost + v sint + v3 cos? ¢

over the interval [0,27] with the two end points 0 and 27 identified. Therefore
bs(n) < 2. The equality holds if 1/v/2 < |vs| < 1.

Suppose B(K) = n. Then we can find a closed braid which is isotopic to
K inside a thin tubular neighborhood of 1. More precisely, there exist smooth
functions A and p with period 27, satisfying A(¢)? + u(¢)? < 1 such that the curve
K, given by the parametrization

K (t) = ((1 + eX(t)) cosnt, (1 + eX(t)) sin nt, epu(t) + cos? nt),

t € [0, 27], is equivalent to the knot K for each sufficiently small positive number
e. Notice that Kj is an n-fold covering of 7, by identifying the endpoints of [0, 27].
For every unit vector ¢ and for sufficiently small positive €, we have bz(K,) < 2n.
Therefore s[K] < 2n. O

Bridge index

In a diagram of a non-trivial knot, maximal overpasses are called bridges. The
minimal number of bridges among all diagrams of knots isotopic to a given non-
trivial knot K, denoted by b[K], is called the bridge index of K. The bridge index
of a trivial knot is defined to be 1.

Figure 3: A diagram with seven bridges

Kuiper’s superbridge index was inspired by the following alternative definition
of bridge index. The bridge number of a knot K, denoted by b(K), is the minimum
of its crookednesses with respect to all directions, i.e.,

b(K) = min bz(K).
lloll=1
Then the bridge index of K is equal to the minimal bridge number among all knots
equivalent to K, i.e.,

b[K] = min b(K') = min min
K'€[K] K'e[K] ||7]|=1

ba(K").

A knot K is referred to as an n-bridge knot if b[K] = n.



Proposition 2.2 (Kuiper). For every non-trivial knot K the following inequal-
ity holds.
b[K] < s[K]

Sketch of Proof. Kuiper’s proof utilizes Milnor’s total curvature 7 for closed curves.
7(K') measures the mean value of the sum of the number of local maxima and the
number of local minima of the projection K — R for & € S?. Therefore the
inequality 2b(K) < 7(K) < 2s(K) holds. Let ¢ be a unit vector such that
b(K) = by, (K) and, for A > 0, let Ey be the linear transformation of R® scaling
1: X in the direction of ¥. Then

lim (E\(K)) = 2b(K).

A—00

Taking the infimum over the equivalence class of K, we obtain

inf 7(K') =2blK
L T(K") (K]
which is shown, by Milnor, to be strictly smaller than any 7(K') if K is a non-
trivial knot. Therefore we have

20[K] < 7(K') < 25[K]
whenever s(K') = s[K]. O

Theorem 2.3 (Furstenberg-Li-Schneider). For every knot K, the following
inequality holds.
s[K] <5bK]—3

Proof. Every n-bridge knot can be presented as a 2n-plat diagram of a (2n — 1)-
braid with an extra straight strand. We construct a closed singular (2n — 1)-braid
by deforming this 2n-plat diagram as in Figure 4. This closed singular braid has
superbridge index not bigger than 4n — 2, since we can apply Proposition 2.1 to
closed singular braids. Removing the n — 1 singular points in a way to recover
the given n-bridge knot, we may increase the superbridge number no more than
n— 1. o

Corollary 2.4. Every 2-bridge knot K satisfies the inequality 3 < s[K] < 7.

(T
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Figure 4:



Polygon index

The polygon index of a knot K, denoted by p(K), is the minimal number of straight
edges to form a knot equivalent to K.

Given a polygonal knot K with n straight edges, no interior point of an edge
of K attains a local extremum of the projection K — R unless the whole edge
does. Therefore we have

n > by(K) +b_5(K) = 2by(K).
This proves the following proposition.

Proposition 2.5. For every knot K, the following inequality holds.
25[K] < p(K)

We will use symbols in the knot tables of [BZ, R] where the trefoil knots and the
figure eight knot are denoted by 3; and 44, respectively. Figure 5 shows a hexagonal
trefoil with vertices at (7, -7, —1), (-3, 10, 1), (-10, -3, —1), (10, -3, 1), (3, 10, —1),
(—=7,—7,1) and a heptagonal figure eight knot with vertices at (3,6,4),(3,0,7),
(0,4,15),(6,5,1),(4,0,15),(2,2,0), (4,4, 8), both projected into the zy-plane. There-
fore Proposition 2.2 and Proposition 2.5 imply the following corollary.

Corollary 2.6. s[3;] = s[4;] = 3.

Figure 5: A hexagonal 3; and a septagonal 4;.

Harmonic index

The harmonic index of a knot K, denoted h(K), is the minimum integer N such
that there exist polynomials f(z,y), g(z,y) and h(z,y) whose maximal total degree
is V and the parametrized curve

t — (f(sint,cost), g(sint,cost), h(sint, cost)) (1)

for t € [0, 27] represents the knot type of K.

Proposition 2.7. For any knot K, the following inequality holds.
s[K] < h(K)



Proof. Suppose f(z,y), g(z,y) and h(z,y) are polynomials whose maximal total
degree is d. Then the projection into an axis of the parametrized curve (1) is a
linear combination

a f(sint, cost) + bg(sint, cost) + c h(sint,cost)

with a® + b? + ¢ = 1, hence a polynomial in sin¢ and cost with total degree not
exceeding d. Therefore the projection has at most d local maxima for ¢ € [0, 27]
with the two endpoints 0 and 27 identified. O

3 Torus knots

Given a pair of relatively prime positive integers p and g, let T}, ;, denote the knot
determined by the parametrization

z(t) = (2 — cos gt) cos pt
y(t) = (2 —cosqt)sinpt ,  t€[0,27].
z(t) = sinqt

We call T, , a standard torus knot of type (p,q). A torus knot of type (p,q) is a
knot which is isotopic to T} 4.

Lemma 3.1. Suppose p and q are relatively prime positive integers satisfying 2 <
p <q. Then
p(Tp,q) < 2¢.

Proof. Let « satisfy np/q < a < min{m,27p/q} and let A = (1,0,-1), B =
(cosa, sina, 1) and C' = (cos B, —sin 3, 1) where § = 2mp/q— . Then the segments
AB and AC lie on the circular hyperboloids 2 + y? — 2?sin®(a/2) = cos*(a/2)
and 22 4+ y?> — 2%sin?(B/2) = cos?(6/2), respectively. Let T denote the linear

Figure 6: A polygonal torus knot of type (3,4)



transformation of R® given by a rotation in 27p/q about the z-axis. Then

g—1
| T(4aBU AC)

i=0

is a polygonal knot with 2¢ edges, which is isotopic to 7}, ,. See Figure 6 for
a polygonal torus knot of type (3,4) constructed as described above, with a =
33x/40. O

Theorem 3.2 (Kuiper). Suppose p and q are relatively prime positive integers
satisfying 2 < p < q. Then

8[Tp,q] = min{2p, q}

Sketch of Proof. By Proposition 2.1, we have s[T} 4]
By Proposition 2.5 and Lemma 3.1, we have s[T}, 4]
min{2p, ¢}.

To show s[Tp,] > min{2p,q}, Kuiper examined a triangulation of the pair

(T, A) where T is a torus embedded isotopically to a standard torus and A an
annulus whose core is a torus knot of type (p,q). See [Kui] for detail. O

< 2p, since B(Tpq) = p-
< g. Therefore s[T,,] <

)

By Proposition 2.5, Lemma 3.1 and Theorem 3.2, we have the following theo-
rem.

Theorem 3.3. For each pair of relatively prime integers p and q satisfying 2 <
p < q < 2p, we have

p(Tp7q) = 2q.

4 Deformations not increasing superbridges

In this section we introduce two moves on knots, one local and the other global,
which do not increase the superbridge numbers. Although they are crucial tools
to prove major results such as Lemma 5.1, Theorem 6.3 and Theorem 6.4, it may
not be clear where they are used in the proofs because we only sketch the proofs
here. Readers with deep interests may find the details in [JJ1, J2].

Local straightening

Lemma 4.1. Given a knot K, let K be a knot obtained by replacing a subarc
of K with a straight line segment joining the end points of the subarc. Then
s(K) > s(K). The equality holds if s(K) = s[K] and if K is isotopic to K.

-

Proof. Given a unit vector ¥, let g: (—1,2) — R& be a parametrization of the
orthogonal projection of an open neighborhood of the subarc into R/, where the



subarc corresponds to the closed interval [0,1]. Then the projection of a neighbor-
hood of the straight line segment in K can be parametrized by

o (X —=1)g(0) +tg(1) ifte[0,1]
9(t) = {g(t) ifte(~1,0]U[L,2).

Since g has no more local maxima than g, we have by(K) > by(K) for any o.
Therefore s(K) > s(K). If s(K) = s[K] and if K is isotopic to K, then we have

S(K) > s(K) > s|K] = s[K] = s(K),

This completes the proof. O

Linear transformations

Proposition 4.2. Given a knot K and a nonsingular linear transformation ¢ of
R3, we have s(¢(K)) = s(K). In particular, if a knot K and a unit vector ¥ satisfy
by(K) = s(K) = s[K], then bys (d(K)) = s(¢(K)) = s[K].

Proposition 4.2 is an easy consequence of Lemma 4.3 below. For a unit vector
# and a non-singular linear transformation ¢: R® — R*, let #* denote the unit
vector contained in the one-dimensional subspace (¢(7+))* satisfying ¢(7)-7% > 0.

Lemma 4.3. Given a unit vector ¢ € R? and a nonsingular linear transformation
¢ of R, the equality

holds for any knot K.

Proof. At each local maximum point P of the projection K — R#, there is an
open disk dp perpendicular to @ and tangent to K at P. Then ¢(dp) is tangent to
#(K) at ¢(P) and is perpendicular to #®. By the definition of ¥, ¢(P) is a local
maximum point of the projection ¢(K) — R#¥® and hence bz(K) < bys(o(K)).
Since (7%)?”" = #(¢7'?) = §, we also get

bv(K) = b(a¢)¢>—1 (er(d’(K))) > bm (¢(K))

This proves the lemma. O

5 3-superbridge knots

By Theorem 3.2, we know that the torus knot of type (p, pr 4+ 1) has superbridge
index 2p, for p > 2 and r > 2. Therefore, for any even number n > 4, there are
infinitely many n-superbridge knots. On the other hand, it is not known if there
exist any odd number n > 4 such that there are infinitely many n-superbridge
knots. We do know that there are finitely many 3-superbridge knots [JJ1, JJ2].



K | b[K] | s[K] | p(K) || K | b[K] | s[K] | p(K) || K | b[K] | s[K] | p(K)
31 2 3 6 815 3 4-6 9-12 922 3 4-7 9-14
44 2 3 7 816 3 4 9 993 2 4-7 9-14
51 2 4 8 817 3 4 9 924 3 4-6 9-12
5o 2 3-4 8 818 3 4 89 995 3 4-7 9-15
61 2 3-4 8 819 3 4 8 926 2 4-6 9-12
62 2 3-4 8 820 3 4 8 927 2 4-6 9-12
63 2 3-4 8 821 3 4 9 928 3 4-6 9-12
71 2 4 9 9 2 4 9-13 929 3 4-7 9-15
T2 2 3-4 9 92 2 4-7 9-14 930 3 4-6 9-13
73 2 3-4 9 93 2 4-6 9-12 931 2 4-6 9-13
T4 2 3-4 9 94 2 4-7 9-14 932 3 4-6 9-12
75 2 4 9 95 2 4-6 9-13 933 3 4-6 9-12
e 2 4 9 96 2 4-6 9-13 934 3 4-6 9-12
77 2 4 9 97 2 4-6 9-12 935 3 4-6 9-13
81 2 4-5 9-10 9s 2 4-6 9-13 936 3 4-7 9-14
82 2 4-5 9-11 99 2 4-6 9-13 937 3 4-7 9-14
83 2 4-6 9-12 910 2 4-6 9-13 938 3 4-7 9-15
84 2 3-5 9-10 911 2 4-6 9-13 939 3 4-6 9-13
85 3 4-6 9-12 912 2 4-6 9-12 940 3 4 9

86 2 4-6 9-12 913 2 4-6 9-13 941 3 4 9

87 2 3-6 9-12 914 2 4-7 9-14 940 3 4 9

8s 2 4-5 9-11 915 2 4-5 9-11 943 3 4-5 9-10
89 2 3-6 9-12 916 3 4-7 9-14 944 3 4-5 9-10
810 3 4-6 9-12 917 2 4-7 9-14 945 3 4-5 9-10
811 2 4-5 9-10 918 2 4-6 9-13 946 3 4 9

812 2 4-6 9-12 919 2 4-6 9-13 947 3 4-6 9-12
813 2 4-5 9-11 990 2 4-6 9-13 948 3 4-6 9-12
814 2 4-5 9-11 921 2 4-7 9-14 949 3 4-5 9-11

Table 1: Prime knots up to 9 crossings

Lemma 5.1. Every 3-superbridge knot is a 2-bridge knot with at most nine cross-
mngs.

Sketch of Proof. Let K be a knot satisfying s(K) = s[K| = 3. By Proposition 2.2,
we know that K is a 2-bridge knot. To show that K has a projection which has
no more than nine crossings, we need to consider its quadrisecant.

A quadrisecant of a knot is a straight line meeting the knot exactly in four
points. Figure 7 shows a figure eight knot having the z-axis as one of its quadri-
secant. By [P, MM], every non-trivial knot has a quadrisecant [Kup, Theorem 1].
Let @ be a quadrisecant of K. We may assume that the projection 7(K) of K into
Q"+, a plane perpendicular to @, has a quadruple point and finitely many trans-
verse double points as the only singular points. Inside a tubular neighborhood
of ), K can be isotoped to have only transverse double points near the quadru-
ple point 7(Q). There are eighteen different crossing patterns possible as shown
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z(t) =(2t — 1)(4t — 1)(10t — 1)(25¢ — 16) (25t — 21)(50t — 9) X
42224361, 2701080
1146679 = 1146679
y(t) = — 70(2t — 1)°(4t — 1)(10t — 1)(25¢t — 21)* x

1667040, 104544
i | oA
2(t) =(20t — 3)(25t — 9)(25t — 16)(25¢ — 23)(1233t° — 5985t" + 11394¢°
2145804 712368
166595 832975

(386t° — 708t° — 201¢* + 945¢> — 383t% — )

(229t° — 776t° 4 806" — 197> — 56¢> —

—10375¢° + 4167¢* — 243> — 179¢% —

)

for 0 <t<1.
Figure 7: A figure eight knot having the z-axis as a quadrisecant
in Figure 8.

The assumption s(K) = 3 forces that no line in Q@+ can cross 7(K) more than
six times. This ensures that 7(K) has to be as shown in Figure 9, with the boxes
containing braids with two strings and at most three crossings. Every combination
of one of the projection and a crossing pattern, which has more than nine crossings,
can be deformed easily to a non-alternating diagram having no more than ten

crossings. Since 2-bridge knots are alternating, the minimal crossing number of
such combination is not bigger than nine. See [JJ1] for detail. (|

W& O D
OHIOB OO
DXDRVB DX

Figure 8: Crossing patterns near the quadrisecant
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Figure 9: Two possible projections

In the article [JJ2], the author and Jeon examined in detail, all possible dia-
grams obtained by combining the projections of Figure 9 and crossing patterns of
Figure 8, and concluded that

Theorem 5.2 (Jeon-Jin). All 8-superbridge knots are among the twelve knots:

317 417 527 617 627 637 727 737 747 847 877 89-

6 Composite knots

Two knots K and L can be added in the following manner. By an isotopy, we may
place K and L so that there is a plane P such that KNP =LNP=KNL=v
is a simple arc. Then (K U L) \int~ is a knot called a connected sum of K and L,
denoted Kf§L. Depending on the types of two knots and the way they are matched
over a common arc, up to two distinct knot types of connected sums are possible.

Theorem 6.1 (Schubert). Every connected sum Ki£K> of two knots Ky and
K satisfies the equality

bIK1£K>)] = B[] + b[Ka] — 1.

Corollary 6.2. If Ky and K are non-trivial knots, any connected sum KK,
satisfies the inequality
S[KlﬁKQ] Z 4.

Theorem 6.3. Every connected sum Ki§Ks of two knots K1 and K» satisfies the
inequality

s[K1$K>] < max{28(K1) + B(Kz2), B(K1) +28(K2)} — 1.
Sketch of Proof. Let n1 and 12 be the trivial knots parametrized by

1 . 3 1 . 3
t — (cost,sint, 3 cos? t) and t— (—5 + 3 cos’ t, —sint, 3 + cost)

11



Figure 10: n; Uns

respectively, for ¢ € [0,27]. They meet at (—1,0, %) This is a point contributing 1
to each of the numbers s(n,) = bx(m) = 28(m) = 2, b(m) = b_i(m) = B(m) = 1,
s(n2) = bi(n2) = 26(n3) = 2 and b(12) = b_x(n2) = B(n2) = 1. For sufficiently
small distinct positive numbers, € and §, we consider the subarc 7; 9 of 7;, restricted
over the interval [r — ¢, m + 4], for i = 1,2. Let ¢, and £5 be the segments joining
m(m —€) to na(m — €) and (7 + J) to na(w + ), respectively. Then the knot
obtained from r; U, by replacing the part nt° UnS® with £,U¢s can be considered
as a connected sum 71f12. In this process, we were able to eliminated the local
maximum point (—1,0, %) of n, since it is also a local minimum point of 7 in the
direction of k. A similar statement is true in the direction of i. Therefore we have

s(mine2) = bi(minz) = bk(m) + bi(n2) — 1 =28(m) + B(n2) — 1
= bi(minz) = bi(m) + bi(n2) — 1= B(m) +268(n2) — 1.

This implies that the following inequality holds for any unit vector 4.

b(miinz) < max{28(n1) + B(n2), B(m) +28(n2)} — 1
Given two non-trivial knots K7 and K, we may assume that K; is contained

in a tubular neighborhood of n;, as a closed B(K;)-braid, for i = 1,2, and that in

€

a neighborhood of (—1,0, %), their union is identical with n?é U nz’é. Applying the
same process, we obtain

bg(KlﬁKg) S maX{QB(Kl) + B(KQ),B(Kl) + 2B(K2)} — 1.

A rigorous argument can be found in [J2]. O

Theorem 6.4. For any torus knots Ky, and K, the inequality holds.

S[KlﬁKz] S max{s[Kl] + b[KQ], b[Kl] + S[KQ]} -1

12



K s[K] | lower bound | upper bound
31831 4 b[K] =3 Corollary 6.5
31 ﬁ41 4 b[K]=3 p(K):Q
31 85: 5 s[b1] =4 Theorem 6.4
31T 5x s[71] =4 Theorem 6.4
31875 5% s[7s] =4 p(K) <11
318 7s 5% s[7s] = 4 p(K) <11
31 ﬁ 7 H5x 8[77] =4 p(K) <11
31 1 816 5 bK]=4 p(K) <11
31 4 817 5 bK]=4 p(K) <11
31 ﬁ 818 5 b[K] =4 p(K) <11
31 8 810 5 bK]=4 Corollary 6.5
31ﬁ820 5 b[K]=4 pK)SlO
31 4 8: 5 bK]=4 p(K) <11
3189 5 s[9:] =4 Theorem 6.4
31 ﬁ 940 5 b[K] =4 p(K) <11
31 8 9a1 5 bK]=4 p(K) <11
31 8 944 5 bK]=4 p(K) <11
31 ﬁ 946 5 b[K] =4 p(K) S 11
4, ﬁ 51 H5x 8[51] =4 p(K) <11
41 £ 819 5 b[K] =4 p(K) <11
41 820 5 bK]=4 p(K) <11
51 § 51 5x s[b1] =4 Theorem 6.4
51 471 5 s[71] =4 Theorem 6.4
T 8T 5x s[71] =4 Theorem 6.4
819 ﬁ 819 6 b[K] =5 Corollary 6.5
31831831 5 bK]=4 p(K) <10
3183184 5 bK]=4 p(K) <11

* : valid if Conjecture 6 holds.

Table 2: Some composites knots and their superbridge index

Sketch of Proof. Let K; be a torus knot of type (p;,q;) with 2 < p; < ¢; and
ged(pi,qi) = 1, for i = 1,2, If ¢; > 2p;, then s[K;] = 2p; = 28(K;) and b[K;] =
pi = B(K;), for each i. Therefore, if ¢; > 2p;, for i = 1,2, the inequality of this
theorem is a special case of Theorem 6.3.

If ¢; < 2p;, we use the 2¢;-edged polygonal torus knot constructed in the
proof of Lemma 3.1 instead of the one embedded in 7;, and obtain s[K;] = 2¢;
and b(K;) = p;- A construction for the connected sum K;#K> similar to that of
Theorem 6.3 leads us to derive the inequality. O

Corollary 6.5. For any torus knots K1 and Ko, the inequality holds.
S[KlﬂKQ] S S[Kl] + S[KQ] -2

The next corollary shows that the equalities in Theorem 6.4 and Corollary 6.5
hold in infinitely many cases.

13



Corollary 6.6. Let p; > 2 and let K; be the torus knot of type (pi,pi + 1), for
1 =1,2. Then
s[K13K2] = p1 + pa.

Proof. By Theorem 3.2, s[K;] = p; + 1. Since b[K;] = p;, Theorem 6.1, Proposi-
tion 2.2 and Theorem 6.4, imply p1 + p2 — 1 < s[K1§K>5] < p1 + p». O

The inequality in Theorem 6.4 is equivalent to
S[Kl] + S[Kz] — S[KlﬁKz] Z mm{s[Kl] — b[Kl], S[KQ] — b[Kz]} + 1.

If K; is a torus knot of type (p;,¢;) with 2 < p; < ¢;, the right hand side of the
above inequality is equal to min{p;, p2, g1 —p1, @2 —p=}+1, which can be arbitrarily
large. Therefore we have

Corollary 6.7. The difference s|[K;] + s[K2] — s[K14K5] can be arbitrarily large.

7 Conjectures

As we have discussed at the beginning of Section 5, there are infinitely many n-
superbridge knots for any even number n > 4. We expect the same is true for all
odd number n > 5.

Conjecture 1. There are infinitely many n-superbridge knots for any positive
integer n > 4.

Theorem 6.4 implies that a connected sum of any torus knot K with a trefoil
knot T satisfies the inequality s[K#7T] < s[K]+ 1. As it is generally expected that
the superbridge index of a composite knot would be bigger than that of any of the
factor knots, which is true for bridge index, we conjecture that the equality holds
for any non-trivial knot K. By Corollary 6.6, this conjecture holds for torus knots
of type (p,p—l— 1), such as 31, 819, etc. It also holds for 41, 816, 817, 813, 820, 821,
940, 941, 946: 31ﬁ31 and 31ﬁ41.

Conjecture 2. Every non-trivial knot K satisfies
s[KtT) = s[K] + 1
where T is a trefoil knot.

By Theorem 3.2, we know that the torus knot of type (n,2n —1) is a (2n —1)-
superbridge knot. This knot is the closure of the n-braid (o109 - - - Un,l)znfl. On
the other hand, the torus knot of type (2, 2k —1) is the closure of the 2-braid o2~
and has superbridge index 4 if k > 3. As the insertion of a power of the full twist
o? to these closed 2-braids does not change the superbridge index, we expect the
same with the above closed (2n — 1)-braids.

14



Conjecture 3. Forn > 3 and k > 0, the closure of the n-braid
ok (oroy -0 1) (2)
is a (2n — 1)-superbridge knot.

A theorem of Stallings [St] implies that the closure of the braid in (2) for
k > 0 is a fibred knot with the fibre surface obtained by Seifert’s algorithm on
the closed braid diagram. This surface is the one with minimal genus, which is
(n — 1)2 + k. Therefore for each n, such knots are all distinct. Notice that the
braid (2) is positive and the diagram of its closure is visually prime. According
to Cromwell [Cr], they are all prime knots. Both Conjecture 2 and Conjecture 3
imply Conjecture 1 but Conjecture 3 is more interesting because of the primeness
of these knots.

We expect that Theorem 6.4 and Corollary 6.5 hold for any knots.
Conjecture 4. Any connected sum of two knots K1 and K- satisfies the inequality
S[KlﬁKQ] S max{s[Kl] + b[KQ],b[Kl] + S[KQ]} - 1.

Conjecture 5. If Ky and Ky are non-trivial knots, any connected sum Ki{K>
satisfies the inequality

By Proposition 2.2, the bridge index is a strict lower bound for superbridge
index. No other lower bound is known. For any composite knot, we expect its
superbridge index is larger that that of its factor knots.

Conjecture 6. If Ky and Ky are non-trivial knots, any connected sum KK,
satisfies the inequality

S[KlﬂKQ] > max{s[Kl], S[KQ]}

We have a list of implications among the above conjectures.

Conjecture 2 = Conjecture 1.

Conjecture 3 = Conjecture 1.

Conjecture 4 = Conjecture 5.
e Conjecture 5 and Conjecture 6 = Conjecture 2.
e Conjecture 6 for torus knots = Conjecture 2.

The trefoil knots and the figure eight knot are the only known 3-superbridge
knots. Because 3-superbridged embedding of a knot must have an extremely simple
geometric shape, we expect these are the only 3-superbridge knots.

Conjecture 7. If s[K]| = 3 then K is either a trefoil knot or the figure eight knot.
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