On amphicheiral knots with symmetric union presentations

Toshifumi Tanaka
Gifu University

10:20-11:10, Friday 16 June, 2023
Workshop "Knots and Spatial Graphs 2023" KAIST, Daejeon Korea

Def. A knot is a closed connected oriented 1-

 manifold smoothly embedded in S^{3}.Def. The mirror image of a knot is obtained by reflecting it in a plane in $R^{3} \subset S^{3}$.

Def. Let K_{0} and K_{1} be unoriented knots. Then the connected sum $K_{0} \# K_{1}$ is defined as follows.

K_{0}

K_{1}

K_{0}

Symmetric union

A symmetric union $D \cup D *\left(n_{1}, \cdots, n_{k}\right)\left(\mathbb{Z} \ni n_{i} \neq \infty\right)$ is defined by the following diagram :

$$
\begin{aligned}
& \begin{array}{cc}
1 & \lambda \\
\vdots & \vdots \\
\hdashline & \text { 广 }
\end{array} \\
& n>0 \quad n<0 \\
& \dot{0}=)(\quad \infty=
\end{aligned}
$$

Symmetric union

Tangles

Property

Fact.

(1) $D \cup D^{*}(n)(S$. Kinoshita-H. Terasaka (OMJ 1957))
(2) $D \cup D *\left(n_{1}, \cdots, n_{k}\right)$ (C. Lamm (OJM 2000))

Fact (Lamm).
(1) Every symmetric union is a ribbon knot.
(2) $\Delta\left(D \cup D *\left(n_{1}, \cdots, n_{k}\right)\right)=\Delta\left(D \cup D *\left(n_{1}, \cdots, n_{k}\right)\right)$ if $n_{i} \equiv n_{i}{ }^{\prime}(\bmod 2)$ for all i.
(\triangle : Alexander polynomial.)
(3) $\operatorname{det}\left(D \cup D *\left(n_{1}, \cdots, n_{k}\right)\right)=\operatorname{det}(D)^{2}$.

Ribbon knot

Def. A ribbon knot is a knot that bounds a selfintersecting disk with only ribbon singularities.

Ribbon singularity

Open problem

Problem (Lamm OJM (2000)).

Is every ribbon knot, symmetric union?
(1) Every ribbon knot with crossing number $\leqq 10$ is a symmetric union.
(2) Every 2-bridge ribbon knot is a symmetric union.

Potential counterexample

C. Lamm, The search for nonsymmetric ribbon knots. Exp. Math. 30 (2021), no. 3, 349-363.

Amphicheiral knot

Def. A knot K is negative amphicheiral or simply amphicheiral if K is equivalent to $-K^{*}$, where $-K^{*}$ is the mirror image of K with the reversed orientation.

8_{9}

10_{99}

Amphicheiral knot

Theorem (T, "The Jones polynomial of knots with symmetric union presentations", J. Korean Math. Soc. 52 (2015)).
Let K be a knot with a symmetric union presentation of the Form $D \cup D^{*}(n)$.
Then we have

$$
t^{m} V_{K}(t)+(-1)^{m} V_{K}\left(t^{-1}\right)=\left(t^{m}+(-1)^{m}\right) V_{D}(t) V_{D^{*}}(t) .
$$

In particular, if K is amphicheiral, then

$$
V_{K}(t)=V_{D}(t) V_{D^{*}}(t)
$$

Question

Theorem (F. C. Kose "On amphicheiral symmetric unions"), arXiv:2111.08765).
 Let K be a prime amphicheiral knot. Then K does not admit a symmetric union presentation of the form $D \cup D *(n)$.

- Every 2-bridge ribbon knot is a prime symmetric union.

Question.
What types of symmetric unions appear in the set of amphicheiral 2-bridge knots?

2-bridge knot

Def. We define the 2 -bridge $\operatorname{knot} K\left(a_{1}, \ldots, a_{n}\right)$ via the diagram $C\left(a_{1}, \ldots, a_{n}\right)$ with n twist regions as follows.

2-bridge knot

Def. We define the 2 -bridge $\operatorname{knot} K\left(a_{1}, \ldots, a_{n}\right)$ via the diagram $C\left(a_{1}, \ldots, a_{n}\right)$ with n twist regions as follows.

$$
C(2,4,-2,-2)
$$

A classification of 2-bridge knots

Fact.

(1) Any 2-bridge knot admits the representation $K\left(2 a_{1}, \ldots, 2 a_{2 m}\right)$ which is unique, up to the symmetry

$$
K\left(2 a_{1}, \ldots, 2 a_{2 m}\right)=K\left(-2 a_{2 m}, \ldots,-2 a_{1}\right) .
$$

(2) If $K\left(2 a_{1}, \ldots, 2 a_{2 m}\right)$ is amphicheiral, then we have

$$
a_{i}=a_{2 m-i+1}(i=1,2, \ldots, 2 m) .
$$

- S. Baader, A. Kjuchukova, L. Lewark, F. Misev and A. Ray, Average four-genus of two-bridge knots, to appear in Proc. Amer. Math. Soc., DOI:
https://doi.org/10.1090/proc/14784.
- A. Kawauchi, A survey of knot theory, Translated and revised from the 1990 Japanese original by the author. Birkhauser Verlag, Basel, 1996.

Theorem (T).
Let K be a 2-bridge symmetric union. Then the followings are equivalent.
(1) K is amphicheiral.
(2) K has the symmetric union presentation as follows.

Proposition (T).
Let K be a 2-bridge ribbon knot. Then the followings are equivalent.
(1) K is amphicheiral.
(2) K is equivalent to $K(2 a, 2,2 a, 2 a, 2,2 a)$.

Proof of Proposition (outline)

Fact (C. Lamm, Symmetric union presentations for 2-bridge ribbon knots.)

A 2-bridge ribbon knot K is one of the following three types:
(1) $K(2 a, 2,2 b,-2,-2 a, 2 b)$ with $a, b \neq 0$.
(2) $K(2 a, 2,2 b, 2 a, 2,2 b)$ with $a, b \neq 0$.
(3) $K(a, b, \ldots, w, x, x+2, w, \ldots, b, a)$ with parameters > 0

Remark. Note that the mirror images are contained.

Proof of Proposition (outline)

Suppose that K is amphicheiral.

In the case of (1), we have $K(-2,2,-2,-2,2,-2)$ by using a classification of the 2-bridge knots.

In the case of (2), we have $K(2 a, 2,2 a, 2 a, 2,2 a)$ by using the same method.

In the case of (3), we know that the 2-bridge knot is not amphicheiral by using the Jones polynomial.

Thus, we have $K(2 a, 2,2 a, 2 a, 2,2 a)$ with $a \neq 0$.

Proof of Proposition (outline)

In the case of their mirror images, we have
(1) $K(-2 a,-2,-2 b, 2,2 a,-2 b)$ with $a, b \neq 0$.
(2) $K(-2 a,-2,-2 b,-2 a,-2,-2 b)$ with $a, b \neq 0$.
(3) $K(a, b, \ldots, w, x, x-2, w, \ldots, b, a)$ with parameters <0.
then we also have the following:
$K(-2 a,-2,-2 b, 2,2 a,-2 b)=>K(2,-2,2,2,-2,2)=K(-2,2,-2,-2,2,-2)$
and $K(-2 a,-2,-2 a,-2 a,-2,-2 a)=K(2 a, 2,2 a, 2 a, 2,2 a)$ by the symmetry.

Proof of Proposition (outline)

Conversely, suppose that $K=K(2 a, 2,2 a, 2 a, 2,2 a)$ with $a \neq 0$. Then we know that K is amphicheiral as follows.

Proof of Theorem

Suppose that K is amphicheiral. Then $K=K(2 a, 2,2 a, 2 a, 2,2 a)$ by Proposition. Then we know that K is a symmetric union by using a result of C. Lamm as follows.

Proof of Theorem

Conversely, suppose that K is a symmetric union as follows. Then we know that it is amphicheiral since it is equivalent to $K(2 a, 2,2 a, 2 a, 2$, $2 a$).

Corollary (T).

There exist infinitely many amphicheiral 2-bridge knots such that they have symmetric union presentations with two twist regions. In fact, any amphicheiral 2-bridge symmetric union has such a symmetric union presentation.

3-stranded pretzel knot

Def. We define the pretzel knot $P(p, q, r)$ by the diagram as follows.

Proposition (T).

If $P(p, q, r)$ has a symmetric union presentation, then it is not amphicheiral.
J. Greene and S. Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555-580.

A study for finding symmetric union presentation

- In 2012, Seeliger studied symmetric union presentations for ribbon knots with crossing number up to 11 through 14 and showed that 122 ribbon knots have symmetric union presentations.
- In the list of all 137 prime ribbon knots with crossing number 11 or 12, there are two amphicheiral ribbon knots $12 a 990$ and 12a1225 for which no symmetric union presentations were found.
- We can show that $12 a 990$ and $12 a 1225$ are 3 -bridge knots by Proposition. By a result of Kose, they cannot be $D \cup D^{*}(n)$.

$12 a 990$

$12 a 1225$

Reference

1. C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537-550.
2. T. Tanaka, The Jones polynomial of knots with symmetric union presentations, J. Korean Math. Soc. 52 (2015), no. 2, 389-402.
3. C. Lamm, Symmetric union presentations for 2-bridge ribbon knots, J. Knot Theory Ramifications 30 (2021), no. 12, 11 pp.
4. C. Lamm, The search for non-symmetric ribbon knots, arXiv:1710.06909, 2017.
5. F. C. Kose, On amphicheiral symmetric unions, arXiv:2111.08765, 2021.

Reference

1. C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537-550.
2. T. Tanaka, The Jones polynomial of knots with symmetric union presentations, J. Korean Math. Soc. 52 (2015), no. 2, 389-402.
3. C. Lamm, Symmetric union presentations for 2-bridge ribbon knots, J. Knot Theory Ramifications 30 (2021), no. 12, 11 pp.
4. C. Lamm, The search for non-symmetric ribbon knots, arXiv:1710.06909, 2017.
5. F. C. Kose, On amphicheiral symmetric unions, arXiv:2111.08765, 2021.
