S_{m}^{N}-crossing change and polynomial invariants of links

Hideo Takioka

Saga University

Knots and Spatial Graphs 2023
KAIST
June 17, 2023

We introduce a local change for links called an S_{m}^{N}-crossing change and show that there exists an infinite family of links with the coefficient polynomials from 0 -th to s-th for any s of the HOMFLYPT and Kauffman polynomials of any link in each case.

L

$L_{1}^{0}(T)$

$L_{m}^{3}(T)$

Background of the S_{m}^{N}-crossing change: We focus on $12 a 1249$.

$\Gamma(12 a 1249 ; x)=1, p_{1}(12 a 1249 ; v)=f_{1}(12 a 1249 ; a)=0, \Gamma^{(2,1)}(12 a 1249 ; x)=1$.
[Reference] Hideo Takioka, Infinitely many knots with the trivial (2,1)-cable Γ-polynomial, J. Knot Theory Ramifications 27 (2018), no. 2, 1850013, 18 pp.
Here, $p_{n}(L ; v) \in \mathbb{Z}\left[v^{ \pm 1}\right], f_{n}(L ; a) \in \mathbb{Z}\left[a^{ \pm 1}\right]$ are the n-th coefficient polynomials ($n \geq 0$) of the HOMFLYPT and Kauffman polynomials, respectively.
In particular, we have $p_{0}\left(L ; a^{-1} \sqrt{-1}\right)=f_{0}(L ; a)$.
Moreover, since it is known that p_{0} is a Laurent polynomial of the variable v^{-2}, we put $v^{-2}=x$ and call it the Γ-polynomial $\Gamma(L ; x) \in \mathbb{Z}\left[x^{ \pm 1}\right]$. Namely, we have

$$
\Gamma\left(L ; v^{-2}\right)=p_{0}(L ; v), \Gamma\left(L ;-a^{2}\right)=f_{0}(L ; a)
$$

Let $I^{(p, q)}$ be the (p, q)-cabling of a knot invariant I for coprime integers $p(>0)$ and q.

$12 a 1249$

We consider a symmetric union of $12 a 1249$.

We generalize the symmetric union and discover a tangle Q.

$$
\begin{gathered}
\Gamma\left(K_{-1,1}^{2} ; x\right)=1, p_{i}\left(K_{-1,1}^{2} ; v\right)=f_{j}\left(K_{-1,1}^{2} ; a\right)=0 \quad(i=1,2,3, j=1,2), \\
\Gamma^{(p, 1)}\left(K_{-1,1}^{2} ; x\right)=1 \quad(p=2,3,4)
\end{gathered}
$$

generalized
symmetric union

$K_{-1,1}^{2}$

We develop the generalized symmetric union.

We see that the coefficient polynomials from 0 -th to s-th for any s are trivial. (We conjecture that cablings of the Γ-polynomial are also trivial.)

We can insert half-twists preserving the trivial coefficient polynomials.

We reach the S_{m}^{N}-crossing change.

We see that there exists an infinite family of links with the coefficient polynomials from 0 -th to s-th for any s of the HOMFLYPT and Kauffman polynomials of any link in each case. (We conjecture that cablings of the Γ-polynomial also coincide.)

$$
L \sim L_{1}^{0}(T)=\{T
$$

Outline

1. HOMFLYPT and Kauffman polynomials
2. Coefficient polynomials of the HOMFLYPT and Kauffman polynomials
3. S_{m}^{N}-crossing change
4. Link $L_{m}^{N}(T)$ and main result
5. Knot $K_{m, \ell}^{N}$
6. HOMFLYPT and Kauffman polynomials

HOMFLYPT polynomial

The HOMFLYPT polynomial $P(L ; v, z) \in \mathbb{Z}\left[v^{ \pm 1}, z^{ \pm 1}\right]$ is an invariant for oriented links, which is computed by the following skein relation.

For the unknot U, we have $P(U ; v, z)=1$.
For a skein triple (L_{+}, L_{-}, L_{0}), the following holds.
Skein relation

$$
v^{-1} P\left(L_{+} ; v, z\right)-v P\left(L_{-} ; v, z\right)=z P\left(L_{0} ; v, z\right)
$$

Here, a skein triple $\left(L_{+}, L_{-}, L_{0}\right)$ is a triple of oriented links L_{+}, L_{-}, L_{0} which are identical except near one point as in the figure below.

Kanenobu knot

$$
P(k(n) ; v, z)=\left(\left(v^{-2}-1+v^{2}\right)-z^{2}\right)^{2} .
$$

[Reference] Taizo Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc. 97 (1986), no. 1, 158-162.

Kauffman polynomial

The Kauffman polynomial $F(L ; a, z) \in \mathbb{Z}\left[a^{ \pm 1}, z^{ \pm 1}\right]$ is an invariant for oriented links, which is defined by $F(L ; a, z)=a^{-w(D)} \Lambda(D ; a, z)$.
Here, $w(D)$ is the writhe of a diagram D of an oriented link L and $\Lambda(D ; a, z) \in \mathbb{Z}\left[a^{ \pm 1}, z^{ \pm 1}\right]$ is a regular isotopy invariant for unoriented link diagrams defined by the following.
For the unknot diagram \bigcirc without crossings, we have $\Lambda(\bigcirc ; a, z)=1$.
For a skein quadruple $\left(D_{+}, D_{-}, D_{0}, D_{\infty}\right)$, the following holds.
Skein relation

$$
\Lambda\left(D_{+} ; a, z\right)+\Lambda\left(D_{-} ; a, z\right)=z\left(\Lambda\left(D_{0} ; a, z\right)+\Lambda\left(D_{\infty} ; a, z\right)\right)
$$

For a Reidemeister move of type I as in the figure below, we have

$$
\Lambda\left(C_{+} ; a, z\right)=a \Lambda\left(C_{0} ; a, z\right), \Lambda\left(C_{-} ; a, z\right)=a^{-1} \Lambda\left(C_{0} ; a, z\right)
$$

D_{+}

D_

Kanenobu's question

In Kirby's list, we have Kanenobu's question.
Are there infinitely many different knots with the same Kauffman polynomial?

As a recent Kanenobu's result, it is shown that there exist infinitely many different knots with the same HOMFLYPT and Q-polynomials.

Here, the Q-polynomial is an invariant for unoriented links, which is obtained from the Kauffman polynomial:

$$
Q(L ; x)=F(L ; 1, x)
$$

2. Coefficient polynomials of the HOMFLYPT and Kauffman polynomials

Coefficient polynomials of the HOMFLYPT polynomial

The HOMFLYPT polynomial of an r-component link L is presented by the following:

$$
P(L ; v, z)=\left(-v^{-1} z\right)^{-r+1} \sum_{n \geq 0} p_{n}(L ; v) z^{2 n}
$$

Here, $p_{n}(L ; v) \in \mathbb{Z}\left[v^{ \pm 1}\right]$ and $p_{0}(L ; v) \neq 0$.
We call $p_{n}(L ; v)$ the n-th coefficient polynomial of the HOMFLYPT polynomial.
Let r, r^{\prime} be the numbers of components of links L, L^{\prime}, respectively.
We see easily that if $r \neq r^{\prime}$ then $P(L ; v, z) \neq P\left(L^{\prime} ; v, z\right)$.
It is shown that there exists an infinite family of links with the coefficient polynomials from 0 -th to s-th for any s of the HOMFLYPT polynomial of any link by Kawauchi and Miyazawa independently.
[References] Akio Kawauchi, Almost identical link imitations and the skein polynomial, Knots 90 (Osaka, 1990), 465-476, de Gruyter, Berlin, 1992.

Yasuyuki Miyazawa, A fake HOMFLY polynomial of a knot, Osaka J. Math. 50 (2013), no. 4, 1073-1096.

Coefficient polynomials of the Kauffman polynomial

The Kauffman polynomial of an r-component link L is presented by the following:

$$
F(L ; a, z)=(a z)^{-r+1} \sum_{n \geq 0} f_{n}(L ; a) z^{n} .
$$

Here, $f_{n}(L ; a) \in \mathbb{Z}\left[a^{ \pm 1}\right]$ and $f_{0}(L ; a) \neq 0$.
We call $f_{n}(L ; a)$ the n-th coefficient polynomial of the Kauffman polynomial.
Let r, r^{\prime} be the numbers of components of links L, L^{\prime}, respectively.
We see easily that if $r \neq r^{\prime}$ then $F(L ; a, z) \neq F\left(L^{\prime} ; a, z\right)$.
In this talk, we show that there exists an infinite family of links with the coefficient polynomials from 0-th to s-th for any s of the HOMFLYPT and Kauffman polynomials of any link in each case by using the S_{m}^{N}-crossing change.

Connected sum for the HOMFLYPT polynomial

Let $L \# L^{\prime}$ be a connected sum of links L and L^{\prime}. Then we have

$$
P\left(L \# L^{\prime} ; v, z\right)=P(L ; v, z) P\left(L^{\prime} ; v, z\right) .
$$

Let K be a knot with $p_{0}(K ; v)=1, p_{i}(K ; v)=0(1 \leq i \leq s)$ and $p_{s+1}(K ; v) \neq 0$.
For any link L and the knot K, we have

$$
P(L ; v, z)=\left(-v^{-1} z\right)^{-r+1} \sum_{n \geq 0} p_{n}(L ; v) z^{2 n}, P(K ; v, z)=1+\sum_{i \geq s+1} p_{i}(K ; v) z^{2 i} .
$$

Therefore, we have $P(L \# K ; v, z)=P(L ; v, z) P(K ; v, z)$

$$
=P(L ; v, z)+\left(-v^{-1} z\right)^{-r+1} \sum_{k \geq s+1}\left(\sum_{n+i=k} p_{n}(L ; v) p_{i}(K ; v)\right) z^{2 k} .
$$

Therefore, we have $p_{i}(L \# K ; v)=p_{i}(L ; v)(0 \leq i \leq s)$ and $p_{s+1}(L \# K ; v) \neq p_{s+1}(L ; v)$.

Connected sum for the Kauffman polynomial

Let $L \# L^{\prime}$ be a connected sum of links L and L^{\prime}. Then we have

$$
F\left(L \# L^{\prime} ; a, z\right)=F(L ; a, z) F\left(L^{\prime} ; a, z\right)
$$

Let K be a knot with $f_{0}(K ; a)=1, f_{i}(K ; a)=0(1 \leq i \leq s)$ and $f_{s+1}(K ; a) \neq 0$.
For any link L and the knot K, we have

$$
F(L ; a, z)=(a z)^{-r+1} \sum_{n \geq 0} f_{n}(L ; a) z^{n}, F(K ; a, z)=1+\sum_{i \geq s+1} f_{i}(K ; a) z^{i} .
$$

Therefore, we have $F(L \# K ; a, z)=F(L ; a, z) F(K ; a, z)$

$$
=F(L ; a, z)+(a z)^{-r+1} \sum_{k \geq s+1}\left(\sum_{n+i=k} f_{n}(L ; a) f_{i}(K ; a)\right) z^{k} .
$$

Therefore, we have $f_{i}(L \# K ; a)=f_{i}(L ; a)(0 \leq i \leq s)$ and $f_{s+1}(L \# K ; a) \neq f_{s+1}(L ; a)$.

3. S_{m}^{N}-crossing change

From here, we always consider a link diagram and a tangle diagram.
Therefore, we call them just a link and a tangle for simplicity.

Tangle S_{m}^{N}

Tangles $S_{1}^{0}, S_{-1}^{0}, S_{0}^{0}, S_{\infty}^{0}$

The tangle Q is equivalent to its mirror image.

The tangle S_{1}^{N} is equivalent to S_{1}^{N-1} for $N \geq 1$.

The tangle S_{m}^{N} is prime for $m \neq 1, N \geq 1$.

S_{m}^{N}-crossing change

We define an S_{m}^{N}-crossing change as a local change for links which changes a single crossing S_{1}^{0} to the tangle S_{m}^{N} or vice versa as in the figure below.

$$
\longleftarrow S_{m}^{N} \leftrightarrow
$$

In particular, an S_{-1}^{0}-crossing change is the so-called crossing change.
4. Link $L_{m}^{N}(T)$ and main result

$\operatorname{Link} L_{m}^{N}(T)$

Let L be a link. We can deform the link L into a link with a single crossing and a tangle T denoted by $L_{1}^{0}(T)$ as in the figure below.

The tangle T consists of two arcs and link components.
We consider connection types of the two arcs, which are called Type-0, Type- ∞, Type- X, Type- $(-X)$.

We denote a link obtained by an S_{m}^{N}-crossing change at the single crossing by $L_{m}^{N}(T)$.

$$
L \sim L_{1}^{0}(T)=G T
$$

Example

Cases (I)-(VIII)

We consider all the pairs of the parity of an integer m and the type of a tangle T as in the table below.

In particular, we can check the numbers of components of the links $L_{1}^{0}(T)(\sim L)$, $L_{0}^{0}(T), L_{\infty}^{0}(T), L_{m}^{N}(T)$.

(m, T)	$\# L_{1}^{0}(T)(\sim L)$	$\# L_{0}^{0}(T)$	$\# L_{\infty}^{0}(T)$	$\# L_{m}^{N}(T)$
(I) (odd, 0)	r	r	$r+1$	r
(II) (odd, ∞)	r	$r+1$	r	r
(III) (odd, $X)$	r	$r-1$	$r-1$	r
(IV) (odd, $-X)$	r	$r-1$	$r-1$	r
(V) (even, 0)	r	r	$r+1$	r
(VI) (even, ∞)	r	$r+1$	r	r
(VII) (even, X)	r	$r-1$	$r-1$	r
(VIII) (even, $-X)$	r	$r-1$	$r-1$	r

The HOMFLYPT polynomial of $L_{m}^{N}(T)$

Let $\zeta=z^{4}\left(2+z^{2}\right)^{2}$.
(I, III) $P\left(L_{m}^{N}\right)=P(L)+\left(1-v^{-m+1}\right) \zeta^{N}\left(\frac{z}{v^{-1}-v} P\left(L_{\infty}^{0}\right)-P(L)\right)$.
(II, IV) $\boldsymbol{P}\left(L_{m}^{N}\right)=P(L)+\frac{z}{v^{-1}-v}\left(1-v^{-m+1}\right) \boldsymbol{\zeta}^{N-1}\left(\left(\left(-v^{-3}+v\right) z^{3}+\left(v^{-1}+v\right) z^{5}\right) P(L)+\right.$ $\left.\left(\left(-v^{-2}+1+v^{2}-v^{4}\right) z^{2}+\left(2+2 v^{2}\right) z^{4}\right) P\left(L_{0}^{0}\right)\right)$.
$\mathbf{(V , V I I)} P\left(L_{m}^{N}\right)=P(L)+\boldsymbol{\zeta}^{N-1}\left(P\left(L_{\infty}^{0}\right)-\left(v^{-1}-v\right) z^{-1} P(L)\right)\left(v^{-m}\left(\left(v^{-1}-v^{3}\right) z^{3}+\left(v^{-1}+\right.\right.\right.$ $\left.\left.v) z^{5}\right)+\frac{z}{v^{-1}-v}\left(1-v^{-m}\right)\left(v^{-1}+v\right)^{2} z^{4}\right)$.
[(VI, VIII) $N=1]$
$\boldsymbol{P}\left(\boldsymbol{L}_{m}^{1}\right)=\boldsymbol{P}(\boldsymbol{L})+\left(\left(-v^{-1}+v+v z^{2}\right) v^{-m}-\left(2 z+z^{3}\right) \frac{z}{v^{-1}-v}\left(1-v^{-m}\right)\right)\left(\left(\left(2 v^{-1}-3 v+v^{3}\right) z^{2}+\right.\right.$ $\left.\left.\left(v^{-1}-4 v\right) z^{4}-v z^{6}\right) P(L)+\left(\left(1-2 v^{2}+v^{4}\right) z+\left(1-3 v^{2}\right) z^{3}-v^{2} z^{5}\right) P\left(L_{0}^{0}\right)\right)$.
$[(\mathrm{VI}, \mathrm{VIII}) N \geq 2]$

$$
\begin{aligned}
& P\left(L_{m}^{N}\right)=P(L)+\zeta^{N-2}\left(\left(\left(-v^{-3}+v\right) z^{3}+\left(v^{-1}+v\right) z^{5}\right) P(L)+\left(\left(-v^{-2}+1+v^{2}-v^{4}\right) z^{2}+(2+\right.\right. \\
& \left.\left.\left.2 v^{2}\right) z^{4}\right) P\left(L_{0}^{0}\right)\right)\left(v^{-m}\left(\left(v^{-1}-v^{3}\right) z^{3}+\left(v^{-1}+v\right) z^{5}\right)+\frac{z}{v^{-1}-v}\left(1-v^{-m}\right)\left(v^{-1}+v\right)^{2} z^{4}\right) .
\end{aligned}
$$

Main result: Coefficient polynomials of the HOMFLYPT

 polynomial of $L_{m}^{N}(T)$Let L be a link. Let N be a positive integer. There exists an infinite family of links $\left\{L_{m}^{N}(T)\right\}_{m \in \mathbb{Z}}$ such that $p_{i}\left(L_{m}^{N}(T) ; v\right)=p_{i}(L ; v)$ for $0 \leq i \leq s$,
where $s=\left\{\begin{array}{ll}(\mathrm{I}) & 2 N-1, \\ (\mathrm{II}) & 2 N-2, \\ (\mathrm{III}) & 2 N-1, \\ (\mathrm{IV}) & 2 N-1, \\ (\mathrm{~V}) & 2 N-2, \\ (\mathrm{VI}) & 2 N-3(N \neq 1), \\ (\mathrm{VII}) & 2 N-2, \\ (\mathrm{VIII}) & 2 N-2 .\end{array} \quad\right.$ In particular, $L_{1}^{N}(T)$ is equivalent to L.
Moreover, we have $p_{s+1}\left(L_{m}^{N}(T) ; v\right) \neq p_{s+1}\left(L_{m^{\prime}}^{N}(T) ; v\right)$ for $m \neq m^{\prime}$ except in the following case.
A link $L_{1}^{0}(T)$ with a tangle T of Type- 0 satisfies

$$
p_{0}\left(L_{1}^{0}(T) ; v\right)=p_{0}\left(L_{-1}^{0}(T) ; v\right) \cdots(*)
$$

Remark

We consider a link $L_{1}^{0}(T)$ with a tangle T of Type-0 which satisfies

$$
P\left(L_{1}^{0}(T) ; v, z\right)=P\left(L_{-1}^{0}(T) ; v, z\right) \cdot \cdots(* *)
$$

Then, we see that the link $L_{1}^{0}(T)$ satisfies the condition $(*)$ and we have $P\left(L_{m}^{N}(T) ; v, z\right)=P(L ; v, z)$ for any $m \in \mathbb{Z}$ and $N \in \mathbb{Z}_{>0}$.
A link $L_{1}^{0}(T)$ with a nugatory crossing and a tangle T of Type- 0 as in the figure below satisfies the condition $(* *)$. However, in this case, we see that the link $L_{m}^{N}(T)$ is equivalent to the link L.
Question: Is there a link $L_{1}^{0}(T)$ with a non-nugatory crossing and a tangle T of Type-0 which satisfies the condition ($* *$)?
(We can find such a link $L_{1}^{0}(T)$ for the condition (*) easily.)

$L_{1}^{0}(T)$

$L_{-1}^{0}(T)$

$L_{0}^{0}(T)$

$L_{\infty}^{0}(T)$

The Kauffman polynomial of $L_{m}^{N}(T)$

We calculate the Kauffman polynomial of the link $L_{m}^{N}(T)$ by using the Λ-polynomial.
We denote $L_{m}^{N}(T)$ by L_{m}^{N} for simplicity.
$F\left(L_{m}^{N}\right)=a^{-w\left(L_{m}^{N}\right)} \Lambda\left(L_{m}^{N}\right)$.
By Proposition 2.2 [Kanenobu 1989],
$\Lambda\left(L_{m}^{N}\right)=\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1} \Lambda\left(L_{0}^{N}\right)+\tau_{m} \Lambda\left(L_{\infty}^{N}\right)$,
Here, $\sigma_{m} \in \mathbb{Z}[z], \sigma_{0}=0, \sigma_{1}=1, \sigma_{m-1}+\sigma_{m+1}=z \sigma_{m}$,
$\tau_{m} \in \mathbb{Z}\left[a^{ \pm 1}, z\right], \tau_{0}=\tau_{1}=0, \tau_{m-1}+\tau_{m+1}=z \tau_{m}+a^{-m} z$.
[Reference] Taizo Kanenobu, Examples on polynomial invariants of knots and links.
II, Osaka J. Math. 26 (1989), no. 3, 465-482.

The Λ-polynomial of $L_{m}^{N}(T)$

$$
\begin{aligned}
& \Lambda\left(\boldsymbol{L}_{0}^{N}\right) \\
& =\Lambda\left(L_{1}^{N-1}\right)\left(1+\left(-3 a^{-2}-6-3 a^{2}\right) z^{2}+\left(a^{-3}-2 a^{-1}-a+2 a^{3}\right) z^{3}+\left(a^{-4}+10 a^{-2}+16+10 a^{2}\right) z^{4}+\left(a^{-3}+10 a^{-1}+\right.\right. \\
& \left.\left.7 a-3 a^{3}\right) z^{5}+\left(-a^{-4}-8 a^{-2}-13-11 a^{2}\right) z^{6}+\left(-2 a^{-3}-12 a^{-1}-11 a+a^{3}\right) z^{7}+\left(-1+3 a^{2}\right) z^{8}+\left(2 a^{-1}+3 a\right) z^{9}+z^{10}\right) \\
& +\Lambda\left(L_{0}^{N-1}\right)\left(\left(a^{-4}+3 a^{-2}+3+a^{2}\right) z+\left(-a^{-5}+2 a^{-1}-a^{3}\right) z^{2}+\left(-5 a^{-4}-11 a^{-2}-12-6 a^{2}\right) z^{3}+\left(a^{-5}-\right.\right. \\
& \left.4 a^{-3}-9 a^{-1}-4 a+2 a^{3}\right) z^{4}+\left(4 a^{-4}+9 a^{-2}+12+8 a^{2}\right) z^{5}+\left(5 a^{-3}+12 a^{-1}+8 a-a^{3}\right) z^{6}+\left(a^{-2}-3 a^{2}\right) z^{7}+ \\
& \left.\left(-2 a^{-1}-3 a\right) z^{8}-z^{9}\right) \\
& +\boldsymbol{\Lambda (L _ { \infty } ^ { N - 1 }) ((- a ^ { - 3 } - 2 a ^ { - 1 } - a) z ^ { 2 } + (a ^ { - 4 } + a ^ { - 2 } + 1 + a ^ { 2 }) z ^ { 3 } + (5 a ^ { - 3 } + 9 a ^ { - 1 } + 5 a) z ^ { 4 } + (- 2 a ^ { - 4 } + a ^ { - 2 } + 1 -} \\
& \left.\left.2 a^{2}\right) z^{5}+\left(-7 a^{-3}-11 a^{-1}-7 a\right) z^{6}+\left(a^{-4}-5 a^{-2}-5+a^{2}\right) z^{7}+\left(3 a^{-3}+3 a^{-1}+3 a\right) z^{8}+\left(3 a^{-2}+3\right) z^{9}+a^{-1} z^{10}\right) \\
& \Lambda\left(L_{\infty}^{N}\right) \\
& =\Lambda\left(L_{1}^{N-1}\right)\left(\left(a^{-1}+a\right) z^{-1}-1+\left(-a^{-3}-12 a^{-1}-9 a+2 a^{3}\right) z^{3}+\left(-4+6 a^{2}-2 a^{4}\right) z^{4}+\left(2 a^{-3}+23 a^{-1}+20 a-\right.\right. \\
& \left.\left.8 a^{3}\right) z^{5}+\left(3 a^{-2}+13-13 a^{2}+a^{4}\right) z^{6}+\left(-a^{-3}-12 a^{-1}-18 a+3 a^{3}\right) z^{7}+\left(-2 a^{-2}-11+4 a^{2}\right) z^{8}+\left(a^{-1}+4 a\right) z^{9}+2 z^{10}\right) \\
& +\boldsymbol{\Lambda (L _ { 0 } ^ { N - 1 }) ((3 a ^ { - 3 } + 5 a ^ { - 1 } + a - a ^ { 3 }) z ^ { 2 } + (- 2 a ^ { - 4 } + 3 a ^ { - 2 } + 1 - 3 a ^ { 2 } + a ^ { 4 }) z ^ { 3 } + (- 9 a ^ { - 3 } - 1 4 a ^ { - 1 } - 8 a +} \\
& \left.\left.5 a^{3}\right) z^{4}+\left(a^{-4}-10 a^{-2}-7+9 a^{2}-a^{4}\right) z^{5}+\left(4 a^{-3}+8 a^{-1}+13 a-3 a^{3}\right) z^{6}+\left(5 a^{-2}+9-4 a^{2}\right) z^{7}-4 a z^{8}-2 z^{9}\right) \\
& +\boldsymbol{\Lambda (L _ { \infty } ^ { N - 1 }) ((- 3 a ^ { - 2 } - 2 + a ^ { 2 }) z ^ { 3 } + (3 a ^ { - 3 } + 3 a ^ { - 1 } + 3 a - a ^ { 3 }) z ^ { 4 } + (1 2 a ^ { - 2 } + 9 - 4 a ^ { 2 }) z ^ { 5 } + (- 3 a ^ { - 3 } + 2 a ^ { - 1 } -} \\
& \left.\left.6 a+a^{3}\right) z^{6}+\left(-10 a^{-2}-9+3 a^{2}\right) z^{7}+\left(a^{-3}-4 a^{-1}+4 a\right) z^{8}+\left(3 a^{-2}+4\right) z^{9}+2 a^{-1} z^{10}\right)
\end{aligned}
$$

2×2 matrix $M_{\Lambda\left(L_{m}^{N}(T)\right)}$

$$
\Lambda\left(L_{0}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)
$$

$$
=\left(\Lambda\left(L_{0}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)\right)\left(\left(a^{-4}+3 a^{-2}+3+a^{2}\right) z+\left(-a^{-5}+2 a^{-1}-a^{3}\right) z^{2}+\left(-5 a^{-4}-11 a^{-2}-12-\right.\right.
$$

$$
\left.6 a^{2}\right) z^{3}+\left(a^{-5}-4 a^{-3}-9 a^{-1}-4 a+2 a^{3}\right) z^{4}+\left(4 a^{-4}+9 a^{-2}+12+8 a^{2}\right) z^{5}+\left(5 a^{-3}+12 a^{-1}+8 a-a^{3}\right) z^{6}+
$$

$$
\left.\left(a^{-2}-3 a^{2}\right) z^{7}+\left(-2 a^{-1}-3 a\right) z^{8}-z^{9}\right)
$$

$$
+\left(\Lambda\left(L_{\infty}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right)\left(\left(-a^{-3}-2 a^{-1}-a\right) z^{2}+\left(a^{-4}+a^{-2}+1+a^{2}\right) z^{3}+\right.
$$

$$
\left(5 a^{-3}+9 a^{-1}+5 a\right) z^{4}+\left(-2 a^{-4}+a^{-2}+1-2 a^{2}\right) z^{5}+\left(-7 a^{-3}-11 a^{-1}-7 a\right) z^{6}+\left(a^{-4}-5 a^{-2}-5+\right.
$$

$$
\left.\left.a^{2}\right) z^{7}+\left(3 a^{-3}+3 a^{-1}+3 a\right) z^{8}+\left(3 a^{-2}+3\right) z^{9}+a^{-1} z^{10}\right)
$$

$$
\Lambda\left(L_{\infty}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)
$$

$$
=\left(\Lambda\left(L_{0}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)\right)\left(\left(3 a^{-3}+5 a^{-1}+a-a^{3}\right) z^{2}+\left(-2 a^{-4}+3 a^{-2}+1-3 a^{2}+a^{4}\right) z^{3}+\left(-9 a^{-3}-14 a^{-1}-\right.\right.
$$

$$
\left.\left.8 a+5 a^{3}\right) z^{4}+\left(a^{-4}-10 a^{-2}-7+9 a^{2}-a^{4}\right) z^{5}+\left(4 a^{-3}+8 a^{-1}+13 a-3 a^{3}\right) z^{6}+\left(5 a^{-2}+9-4 a^{2}\right) z^{7}-4 a z^{8}-2 z^{9}\right)
$$

$$
\begin{aligned}
& +\left(\Lambda\left(L_{\infty}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right)\left(\left(-3 a^{-2}-2+a^{2}\right) z^{3}+\left(3 a^{-3}+3 a^{-1}+3 a-a^{3}\right) z^{4}+\right. \\
& \left(12 a^{-2}+9-4 a^{2}\right) z^{5}+\left(-3 a^{-3}+2 a^{-1}-6 a+a^{3}\right) z^{6}+\left(-10 a^{-2}-9+3 a^{2}\right) z^{7}+\left(a^{-3}-4 a^{-1}+4 a\right) z^{8}+ \\
& \left.\left(3 a^{-2}+4\right) z^{9}+2 a^{-1} z^{10}\right)
\end{aligned}
$$

$$
\binom{\Lambda\left(L_{0}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)}{\Lambda\left(L_{\infty}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)}=M_{\Lambda\left(L_{m}^{N}(T)\right)}\binom{\Lambda\left(L_{0}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)}{\Lambda\left(L_{\infty}^{N-1}\right)-a \Lambda\left(L_{1}^{N-1}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)}
$$

The 1st and 2nd minimum terms on z of $\left(M_{\Lambda\left(L_{m}^{N}(T)\right)}\right)^{N}$

$$
\begin{aligned}
& \text { (1, 1)-entry: }\left[\left(1+a^{2}\right)^{3 N} a^{-4 N} z^{N}+A_{N} z^{N+1}, *\right] \\
& \text { (1, 2)-entry: }\left[-\left(1+a^{2}\right)^{3 N-1} a^{-4 N+1} z^{N+1}+B_{N} z^{N+2}, *\right] \\
& \text { (2, 1)-entry: }\left[\left(3-a^{2}\right)\left(1+a^{2}\right)^{3 N-1} a^{-4 N+1} z^{N+1}+C_{N} z^{N+2}, *\right] \\
& (2,2) \text {-entry: }\left[-\left(3-a^{2}\right)\left(1+a^{2}\right)^{3 N-2} a^{-4 N+2} z^{N+2}+D_{N} z^{N+3}, *\right] \\
& A_{1}=-a^{-5}+2 a^{-1}-a^{3}, B_{1}=a^{-4}+a^{-2}+1+a^{2}, C_{1}=-2 a^{-4}+3 a^{-2}+1-3 a^{2}+a^{4}, \\
& D_{1}=3 a^{-3}+3 a^{-1}+3 a-a^{3} . \\
& N \geq 2
\end{aligned}
$$

$$
\begin{aligned}
A_{N}= & \left(-a^{-5}+2 a^{-1}-a^{3}\right)\left(a^{-4}\left(1+a^{2}\right)^{3}\right)^{N-1} \\
& +\frac{1-\left(a^{-4}\left(1+a^{2}\right)^{3}\right)^{N-1}}{1-a^{-4}\left(1+a^{2}\right)^{3}}\left(-a^{-4 N-1}\left(1-a^{4}\right)^{2}\left(1+a^{2}\right)^{3 N-3}\right)
\end{aligned}
$$

$$
\begin{aligned}
B_{N}= & \left(a^{-4}+a^{-2}+1+a^{2}\right)\left(a^{-4}\left(1+a^{2}\right)^{3}\right)^{N-1} \\
& +\frac{1-\left(a^{-4}\left(1+a^{2}\right)^{3}\right)^{N-1}}{1-a^{-4}\left(1+a^{2}\right)^{3}}\left(a^{-4 N}\left(1-a^{4}\right)^{2}\left(1+a^{2}\right)^{3 N-4}\right), \\
C_{N}= & \left(3 a^{-3}+5 a^{-1}+a-a^{3}\right) A_{N-1}+\left(-2 a^{-4}+3 a^{-2}+1-3 a^{2}+a^{4}\right)\left(a^{-4 N+4}\left(1+a^{2}\right)^{3 N-3}\right), \\
D_{N}= & \left(3 a^{-3}+5 a^{-1}+a-a^{3}\right) B_{N-1}+\left(-2 a^{-4}+3 a^{-2}+1-3 a^{2}+a^{4}\right)\left(-a^{-4 N+5}\left(1+a^{2}\right)^{3 N-4}\right) .
\end{aligned}
$$

The 1 st and 2 nd maximum terms on z of $\left(M_{\Lambda\left(L_{m}^{N}(T)\right)}\right)^{N}$

(1,1)-entry: $\left[*, A_{N} z^{10 N-2}-2^{N-1} a^{-N+1} z^{10 N-1}\right]$
(1,2)-entry: $\left[*, B_{N} z^{10 N-1}+2^{N-1} a^{-N} z^{10 N}\right]$
(2,1)-entry: $\left[*, C_{N} z^{10 N-2}-2^{N} a^{-N+1} z^{10 N-1}\right]$
(2,2)-entry: $\left[*, D_{N} z^{10 N-1}+2^{N} a^{-N} z^{10 N}\right]$
$A_{1}=-2 a^{-1}-3 a, B_{1}=3 a^{-2}+3, C_{1}=-4 a, D_{1}=3 a^{-2}+4$.
$N \geq 2$.

$$
\begin{aligned}
& A_{N}=a^{-1} C_{N-1}+\left(6 a^{-2}+5\right)\left(-2^{N-2} a^{-N+2}\right), \\
& B_{N}=a^{-1} D_{N-1}+\left(6 a^{-2}+5\right)\left(2^{N-2} a^{-N+1}\right), \\
& C_{N}=-4 a\left(2 a^{-1}\right)^{N-1}+\frac{1-\left(2 a^{-1}\right)^{N-1}}{1-2 a^{-1}}\left(6 a^{-2}+6\right)\left(-2^{N-2} a^{-N+2}\right), \\
& D_{N}=\left(3 a^{-2}+4\right)\left(2 a^{-1}\right)^{N-1}+\frac{1-\left(2 a^{-1}\right)^{N-1}}{1-2 a^{-1}}\left(6 a^{-2}+6\right)\left(2^{N-2} a^{-N+1}\right) .
\end{aligned}
$$

The 1st and 2 nd minimum terms on a of $\left(M_{\Lambda\left(L_{m}^{N}(T)\right)}\right)^{N}$

$$
\begin{aligned}
& (1,1) \text {-entry: }\left[(-1)^{N}\left(1-z^{2}\right)^{N} z^{2 N} a^{-5 N}+(-1)^{N+1}\left(N-4 N z^{2}\right)\left(1-z^{2}\right)^{N} z^{2 N-1} a^{-5 N+1}, *\right] \\
& (1,2) \text {-entry: } \\
& {\left[(-1)^{N+1}\left(1-z^{2}\right)^{N+1} z^{2 N+1} a^{-5 N+1}+(-1)^{N}\left(N-(4 N-1) z^{2}\right)\left(1-z^{2}\right)^{N+1} z^{2 N} a^{-5 N+2}, *\right]}
\end{aligned}
$$

(2, 1)-entry:
$\left[(-1)^{N}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+1} a^{-5 N+1}+(-1)^{N+1}\left(2 N+1-9 N z^{2}+4 N z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N} a^{-5 N+2}, *\right]$
(2, 2)-entry:

$$
\begin{cases}{\left[\left(3 z^{4}-3 z^{6}+z^{8}\right) a^{-3}+\left(-3 z^{3}+12 z^{5}-10 z^{7}+3 z^{9}\right) a^{-2}, *\right]} & (N=1) \\ {\left[(-1)^{N+1}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N} z^{N+2} a^{-5 N+2}\right.} & \\ \left.+(-1)^{N}\left(2 N+1-(9 N-2) z^{2}+(4 N-1) z^{4}\right)\left(1-z^{2}\right)^{N} z^{2 N+1} a^{-5 N+3}, *\right] & (N \geq 2)\end{cases}
$$

The 1st and 2nd maximum terms on a of $\left(M_{\Lambda\left(L_{m}^{N}(T)\right)}\right)^{N}$

$(1,1)$-entry:
$\left[*,(-1)^{N+1}\left(N-5 N z^{2}+(4 N-1) z^{4}\right)\left(1-z^{2}\right)^{N} z^{2 N-1} a^{3 N-1}+(-1)^{N}\left(1-z^{2}\right)^{N+1} z^{2 N} a^{3 N}\right]$
(1, 2)-entry: $\left[*,(-1)^{N}\left(N-(4 N-1) z^{2}\right)\left(1-z^{2}\right)^{N+1} z^{2 N} a^{3 N-2}+(-1)^{N+1}\left(1-z^{2}\right)^{N+1} z^{2 N+1} a^{3 N-1}\right]$
(2,1)-entry:
$\left[*,(-1)^{N}\left(N-5 N z^{2}+(4 N-1) z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N} a^{3 N}+(-1)^{N+1}\left(1-z^{2}\right)^{N} z^{2 N+1} a^{3 N+1}\right]$
(2, 2)-entry: $\left[*,(-1)^{N+1}\left(N-(4 N-1) z^{2}\right)\left(1-z^{2}\right)^{N} z^{2 N+1} a^{3 N-1}+(-1)^{N}\left(1-z^{2}\right)^{N} z^{2 N+2} a^{3 N}\right]$

By the 1st and 2 nd minimum terms on z of $\left(M_{\Lambda\left(L_{m}^{N}(T)\right)}\right)^{N}$, we have
$\Lambda\left(L_{0}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)= \begin{cases}{\left[\gamma(a) z^{N-r+1}, *\right]} & (\mathrm{I}, \mathrm{V}), \\ {\left[\gamma(a) z^{N-r}, *\right]} & (\gamma(a) \neq 0) \\ {\left[\gamma(a) z^{N-r+2}, *\right]} & (\mathrm{II}, \mathrm{VI}),\end{cases}$
$\Lambda\left(L_{\infty}^{N}\right)-a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)= \begin{cases}{\left[\delta(a) z^{N-r+2}, *\right]} & (\mathrm{II}, \mathrm{VII}, \mathrm{VIII}),\end{cases}$
$\left[\delta(a) z^{N-r+1}, *\right](\delta(a) \neq 0)$
$\left[\delta(a) z^{N-r+3}, *\right](\delta(a) \neq 0)$
$\left[\begin{array}{ll}(\mathrm{III}, \mathrm{VI}),\end{array}\right.$
$[\mathrm{IV}, \mathrm{VII}, \mathrm{VIII})$.
Here, $\gamma(a)$ and $\delta(a)$ are defined by the following:
$\gamma(a)= \begin{cases}a^{-4 N-r+1}\left(1+a^{2}\right)^{3 N-1}\left(\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right)-a^{w\left(L_{\infty}^{0}\right)} f_{0}\left(L_{\infty}^{0}\right)\right) & \text { (I, V), } \\ a^{-4 N-r}\left(1+a^{2}\right)^{3 N} a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right) & \text { (II, VI), } \\ a^{-4 N-r+2}\left(1+a^{2}\right)^{3 N-1}\left(\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right)-3 a^{w\left(L_{1}^{0}\right)+1} f_{0}\left(L_{1}^{0}\right)\right) & \text { (III, IV, VII, VIII), }\end{cases}$
$\delta(a)=$
$\left\{\begin{array}{l}a^{-4 N-r+2}\left(3-a^{2}\right)\left(1+a^{2}\right)^{3 N-2}\left(\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right)-a^{w\left(L_{\infty}^{0}\right)} f_{0}\left(L_{\infty}^{0}\right)\right) \\ a^{-4 N-r+1}\left(3-a^{2}\right)\left(1+a^{2}\right)^{3 N-1} a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right) \\ a^{-r-2}\left(1+a^{2}\right)\left(\left(3-a^{2}\right)\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)+1} f_{0}\left(L_{0}^{0}\right)-\left(1+11 a^{2}-2 a^{4}\right) a^{w\left(L_{1}^{0}\right)} f_{0}\left(L_{1}^{0}\right)\right) \\ a^{-4 N-r+3}\left(3-a^{2}\right)\left(1+a^{2}\right)^{3 N-2}\left(\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0}\right)-3 a^{w\left(L_{1}^{0}\right)+1} f_{0}\left(L_{1}^{0}\right)\right)\end{array}\right.$
(I, V),
(II, VI),
(III, IV, VII, VIII) $N=1$,
(III, IV, VII, VIII) $N \geq 2$.
In the cases (I, V),
$\gamma(a)=0 \Longleftrightarrow \delta(a)=0 \Longleftrightarrow\left(1+a^{2}\right) a^{w\left(L_{0}^{0}\right)} f_{0}\left(L_{0}^{0} ; a\right)=a^{w\left(L_{\infty}^{0}\right)} f_{0}\left(L_{\infty}^{0} ; a\right)$.

By $w\left(L_{m}^{N}(T)\right)=\left\{\begin{array}{ll}-m-N+w(T) & (\mathrm{I}, \mathrm{III}, \mathrm{V}, \mathrm{VII}), \\ -m-N+2+w(T) & (\mathrm{II}, \mathrm{IV}, \mathrm{VI}, \mathrm{VIII})\end{array}\right.$, we have

$$
F\left(L_{m}^{N}\right)=a^{-w\left(L_{m}^{N}\right)} \Lambda\left(L_{m}^{N}\right)
$$

$$
= \begin{cases}a^{m+N-w(T)}\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1} \Lambda\left(L_{0}^{N}\right)+\tau_{m} \Lambda\left(L_{\infty}^{N}\right)\right) & (\mathrm{I}, \mathrm{III}, \mathrm{~V}, \mathrm{VII}) \\ a^{m+N-2-w(T)}\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1} \Lambda\left(L_{0}^{N}\right)+\tau_{m} \Lambda\left(L_{\infty}^{N}\right)\right) & (\mathrm{II}, \mathrm{IV}, \mathrm{VI}, \mathrm{VIII})\end{cases}
$$

$$
= \begin{cases}a^{m+N-w(T)}\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1}\left(a \Lambda\left(L_{1}^{N}\right)+\left[\gamma(a) z^{N-r+1}, *\right]\right)\right. \\ \left.+\tau_{m}\left(a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+2}, *\right]\right)\right) & (\mathrm{I}, \mathrm{~V}) \\ a^{m+N-w(T)}\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1}\left(a \Lambda\left(L_{1}^{N}\right)+\left[\gamma(a) z^{N-r+2}, *\right]\right)\right. & \\ \left.+\tau_{m}\left(a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+3}, *\right]\right)\right) & \text { (III, VII), } \\ a^{m+N-2-w(T)\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1}\left(a \Lambda\left(L_{1}^{N}\right)+\left[\gamma(a) z^{N-r}, *\right]\right)\right.} \\ \left.+\tau_{m}\left(a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+1}, *\right]\right)\right) & \\ a^{m+N-2-w(T)\left(\sigma_{m} \Lambda\left(L_{1}^{N}\right)-\sigma_{m-1}\left(a \Lambda\left(L_{1}^{N}\right)+\left[\gamma(a) z^{N-r+2}, *\right]\right)\right.} \\ \left.+\tau_{m}\left(a \Lambda\left(L_{1}^{N}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+3}, *\right]\right)\right) & \text { (IV, VII), }\end{cases}
$$

By $\Lambda\left(L_{1}^{N}\right)=a^{-N} \Lambda\left(L_{1}^{0}\right)$,

$$
= \begin{cases}a^{m+N-w(T)}\left(\sigma_{m} a^{-N} \Lambda\left(L_{1}^{0}\right)-\sigma_{m-1}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)+\left[\gamma(a) z^{N-r+1}, *\right]\right)\right. \\ \left.+\tau_{m}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+2}, *\right]\right)\right) & (\mathrm{I}, \mathrm{~V}), \\ a^{m+N-w(T)}\left(\sigma_{m} a^{-N} \Lambda\left(L_{1}^{0}\right)-\sigma_{m-1}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)+\left[\gamma(a) z^{N-r+2}, *\right]\right)\right. \\ \left.+\tau_{m}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+3}, *\right]\right)\right) & \text { (III, VII), } \\ a^{m+N-2-w(T)}\left(\sigma_{m} a^{-N} \Lambda\left(L_{1}^{0}\right)-\sigma_{m-1}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)+\left[\gamma(a) z^{N-r}, *\right]\right)\right. \\ \left.+\tau_{m}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+1}, *\right]\right)\right) \\ a^{m+N-2-w(T)}\left(\sigma_{m} a^{-N} \Lambda\left(L_{1}^{0}\right)-\sigma_{m-1}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)+\left[\gamma(a) z^{N-r+2}, *\right]\right)\right. \\ \left.+\tau_{m}\left(a^{-N+1} \Lambda\left(L_{1}^{0}\right)\left(\left(a^{-1}+a\right) z^{-1}-1\right)+\left[\delta(a) z^{N-r+3}, *\right]\right)\right)\end{cases}
$$

$$
\begin{aligned}
& \text { By } F(L)=\left\{\begin{array}{ll}
a^{1-w(T)} \Lambda\left(L_{1}^{0}\right) & (\mathrm{I}, \mathrm{III}, \mathrm{~V}, \mathrm{VII}), \\
a^{-1-w(T)} \Lambda\left(L_{1}^{0}\right) & (\mathrm{II}, \mathrm{IV}, \mathrm{VI}, \mathrm{VIII})
\end{array},\right. \\
& \left\{\begin{array}{l}
F(L)\left(\sigma_{m} a^{m-1}-\sigma_{m-1} a^{m}+\tau_{m} a^{m}\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right) \\
-\sigma_{m-1} a^{m+N-w(T)}\left[\gamma(a) z^{N-r+1}, *\right]+\tau_{m} a^{m+N-w(T)}\left[\delta(a) z^{N-r+2}, *\right] \quad \text { (I, V), }
\end{array}\right. \\
& F(L)\left(\sigma_{m} a^{m-1}-\sigma_{m-1} a^{m}+\tau_{m} a^{m}\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right) \\
& = \begin{cases}-\sigma_{m-1} a^{m+N-w(T)}\left[\gamma(a) z^{N-r+2}, *\right]+\tau_{m} a^{m+N-w(T)}\left[\delta(a) z^{N-r+3}, *\right] & \text { (III, VII), }\end{cases} \\
& F(L)\left(\sigma_{m} a^{m-1}-\sigma_{m-1} a^{m}+\tau_{m} a^{m}\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right) \\
& -\sigma_{m-1} a^{m+N-2-w(T)}\left[\gamma(a) z^{N-r}, *\right]+\tau_{m} a^{m+N-2-w(T)}\left[\delta(a) z^{N-r+1}, *\right] \quad \text { (II, VI), } \\
& F(L)\left(\sigma_{m} a^{m-1}-\sigma_{m-1} a^{m}+\tau_{m} a^{m}\left(\left(a^{-1}+a\right) z^{-1}-1\right)\right) \\
& -\sigma_{m-1} a^{m+N-2-w(T)}\left[\gamma(a) z^{N-r+2}, *\right]+\tau_{m} a^{m+N-2-w(T)}\left[\delta(a) z^{N-r+3}, *\right] \quad \text { (IV, VIII) } \\
& \sigma_{m} a^{m-1}-\sigma_{m-1} a^{m}+\tau_{m} a^{m}\left(\left(a^{-1}+a\right) z^{-1}-1\right)=1 \text { より, } \\
& = \begin{cases}F(L)-\sigma_{m-1} a^{m+N-w(T)}\left[\gamma(a) z^{N-r+1}, *\right]+\tau_{m} a^{m+N-w(T)}\left[\delta(a) z^{N-r+2}, *\right] & \text { (I, V), } \\
F(L)-\sigma_{m-1} a^{m+N-w(T)}\left[\gamma(a) z^{N-r+2}, *\right]+\tau_{m} a^{m+N-w(T)}\left[\delta(a) z^{N-r+3}, *\right] & \text { (III, VII), } \\
F(L)-\sigma_{m-1} a^{m+N-2-w(T)}\left[\gamma(a) z^{N-r}, *\right]+\tau_{m} a^{m+N-2-w(T)}\left[\delta(a) z^{N-r+1}, *\right] & \text { (II, VI), } \\
F(L)-\sigma_{m-1} a^{m+N-2-w(T)}\left[\gamma(a) z^{N-r+2}, *\right]+\tau_{m} a^{m+N-2-w(T)}\left[\delta(a) z^{N-r+3}, *\right] & \text { (IV, VIII) }\end{cases}
\end{aligned}
$$

$$
\text { By } \sigma_{m-1}=\left\{\begin{array}{ll}
{\left[(-1)^{\left.\frac{m+1}{2} \frac{m-1}{2} z, *\right]}\right.} & m: \text { odd }(\neq 1), \\
{\left[(-1)^{\frac{m+2}{2}}, *\right]} & m: \text { even }
\end{array} \text { and } \tau_{m}=[\varepsilon(a) z, *](\varepsilon(a) \neq 0)(m \neq 0,1)\right. \text {, }
$$

$$
= \begin{cases}F(L)-(-1)^{\frac{m+1}{2}} \frac{m-1}{2} a^{m+N-w(T)} z^{-r+1}\left[\gamma(a) z^{N+1}, *\right] & (\mathrm{I}), \\ F(L)-(-1)^{\frac{m+1}{2}} \frac{m-1}{2} a^{m+N-2-w(T)} z^{-r+1}\left[\gamma(a) z^{N}, *\right] & (\mathrm{II}), \\ F(L)-(-1)^{\frac{m+1}{2} \frac{m-1}{2}} a^{m+N-w(T)} z^{-r+1}\left[\gamma(a) z^{N+2}, *\right] & (\mathrm{III}), \\ F(L)-(-1)^{\frac{m+1}{2} \frac{m-1}{2}} a^{m+N-2-w(T)} z^{-r+1}\left[\gamma(a) z^{N+2}, *\right] & (\mathrm{IV}), \\ F(L)-(-1)^{\frac{m+2}{2}} a^{m+N-w(T)} z^{-r+1}\left[\gamma(a) z^{N}, *\right] & (\mathrm{V}), \\ F(L)-(-1)^{\frac{m+2}{2}} a^{m+N-2-w(T)} z^{-r+1}\left[\gamma(a) z^{N-1}, *\right] & (\mathrm{VI}), \\ F(L)-(-1)^{\frac{m+2}{2}} a^{m+N-w(T)} z^{-r+1}\left[\gamma(a) z^{N+1}, *\right] & (\mathrm{VII}), \\ F(L)-(-1)^{\frac{m+2}{2}} a^{m+N-2-w(T)} z^{-r+1}\left[\gamma(a) z^{N+1}, *\right] & (\mathrm{VIII}) .\end{cases}
$$

Main result: Coefficient polynomials of the Kauffman polynomial

of $L_{m}^{N}(T)$
Let L be a link. Let N be a positive integer. There exists an infinite family of links $\left\{L_{m}^{N}(T)\right\}_{m \in \mathbb{Z}}$ such that $f_{i}\left(L_{m}^{N}(T) ; a\right)=f_{i}(L ; a)$ for $0 \leq i \leq s$,
where $s=\left\{\begin{array}{ll}(\mathrm{I}) & N, \\ (\mathrm{II}) & N-1, \\ (\mathrm{III}) & N+1, \\ (\mathrm{IV}) & N+1, \\ (\mathrm{~V}) & N-1, \\ (\mathrm{VI}) & N-2(N \neq 1), \\ (\mathrm{VII}) & N, \\ (\mathrm{VIII}) & N .\end{array} \quad\right.$ In particular, $L_{1}^{N}(T)$ is equivalent to L.
Moreover, we have $f_{s+1}\left(L_{m}^{N}(T) ; a\right) \neq f_{s+1}\left(L_{m^{\prime}}^{N}(T) ; a\right)$ for $m \neq m^{\prime}$ except in the following case.
A link $L_{1}^{0}(T)$ with a tangle T of Type- 0 satisfies

$$
f_{0}\left(L_{\infty}^{0}(T) ; a\right)=\left(1+a^{2}\right) a^{-2 \nu} f_{0}\left(L_{0}^{0}(T) ; a\right)
$$

Remark

We consider a link $L_{1}^{0}(T)$ with a tangle T of Type- 0 which satisfies

$$
\left\{\begin{array}{l}
F\left(L_{0}^{0}(T) ; a, z\right)=a^{2 \nu} F\left(L_{1}^{0}(T) ; a, z\right) \\
F\left(L_{\infty}^{0}(T) ; a, z\right)=\left(\left(a^{-1}+a\right) z^{-1}-1\right) F\left(L_{1}^{0}(T) ; a, z\right)
\end{array}\right.
$$

Then, we see that the link $L_{1}^{0}(T)$ satisfies (\dagger) and we have $F\left(L_{1}^{0}(T) ; a, z\right)=F\left(L_{-1}^{0}(T) ; a, z\right)$ and $F\left(L_{m}^{N}(T) ; a, z\right)=F(L ; a, z)$ for any $m \in \mathbb{Z}$ and $N \in \mathbb{Z}_{>0}$.
A link $L_{1}^{0}(T)$ with a nugatory crossing and a tangle T of Type- 0 as in the figure below satisfies the condition ($\dagger \dagger$). In this case, we see that the link $L_{m}^{N}(T)$ is equivalent to the link L.
Question: Is there a link $L_{1}^{0}(T)$ with a non-nugatory crossing and a tangle T of Type-0 which satisfies the condition ($\dagger \dagger$)?
(We can find such a link $L_{1}^{0}(T)$ for the condition (\dagger) easily.)

5. Knot $K_{m, \ell}^{N}$

Tangle T_{ℓ}

We consider a tangle T_{ℓ} with ℓ half twists for $\ell \in \mathbb{Z}$ as in the figure below.
We see that a knot $L_{1}^{0}\left(T_{\ell}\right)$ is the unknot.

$$
\begin{aligned}
& \exists T_{\ell}=\frac{\square \square}{\square} L_{1}^{0}\left(T_{\ell}\right)=\boxed{\square} \sim
\end{aligned}
$$

$$
\begin{aligned}
& \text { 水 }-T_{\ell}=\square
\end{aligned}
$$

Knot $K_{m, \ell}^{N}$

We obtain a knot $K_{m, \ell}^{N}$ as in the figure below, which is equivalent to a $\operatorname{knot} L_{m}^{N}\left(T_{\ell}\right)$. By a property of the tangle S_{m}^{N}, we see that $K_{1, \ell}^{N}$ and $K_{m,-1}^{N}$ are the unknot.
By a property of the tangle Q, we see that $\left(K_{m, \ell}^{N}\right)^{*}$ is equivalent to $-K_{-\ell,-m}^{N}$.
Therefore, $K_{m,-m}^{N}$ is a negative amphicheiral knot for any $m \in \mathbb{Z}$.

$K_{m, \ell}^{1}$

$K_{m, \ell}^{2}$

$K_{m, \ell}^{3}$

The HOMFLYPT polynomial of $K_{m, \ell}^{N}$

$$
\begin{aligned}
& P\left(K_{m, \ell}^{N} ; v, z\right)= \\
& \begin{cases}1-\zeta^{N}\left(1-v^{-m+1}\right)\left(1-v^{-\ell-1}\right)\left(1-\left(\frac{z}{v^{-1}-v}\right)^{2}\right) & (m, \ell)=(\text { odd, odd }), \\
1-z^{2} \zeta^{N-1}\left(v^{-2}+1\right)\left(1-v^{-m+1}\right)\left(v^{-\ell}\left(v^{-1}-v\right)^{2}\right. & \\
\left.+\left(1+v^{2}-2 v^{-\ell}\right) z^{2}\right)\left(1-\left(\frac{z}{v^{-1}-v}\right)^{2}\right) & (m, \ell)=(\text { odd, even }), \\
1-z^{2} \zeta^{N-1}\left(1+v^{2}\right)\left(1-v^{-\ell-1}\right)\left(v^{-m}\left(v^{-1}-v\right)^{2}\right. & \\
\left.+\left(v^{-2}+1-2 v^{-m}\right) z^{2}\right)\left(1-\left(\frac{z}{v^{-1}-v}\right)^{2}\right) & (m, \ell)=(\text { even, odd }), \\
1-\left(2 z^{2}+z^{4}+v^{-m}\left(\left(v^{-1}-v\right)^{2}-\left(3-v^{2}\right) z^{2}-z^{4}\right)\right) & \\
\left(2 z^{2}+z^{4}+v^{-\ell}\left(\left(v^{-1}-v\right)^{2}+\left(v^{-2}-3\right) z^{2}-z^{4}\right)\right)\left(1-\left(\frac{z}{v^{-1}-v}\right)^{2}\right) & (m, \ell)=[(\text { even, even }) N=1], \\
1-z^{4} \zeta^{N-2}\left(v^{-1}+v\right)^{2}\left(v^{-m}\left(v^{-1}-v\right)^{2}+\left(v^{-2}+1-2 v^{-m}\right) z^{2}\right) \\
\left(v^{-\ell}\left(v^{-1}-v\right)^{2}+\left(1+v^{2}-2 v^{-\ell}\right) z^{2}\right)\left(1-\left(\frac{z}{v^{-1}-v}\right)^{2}\right) & ((\text { even, even }) N \geq 2] .\end{cases}
\end{aligned}
$$

The Kauffman polynomial of $K_{m, \ell}^{N}$

$$
\begin{aligned}
& F\left(K_{m, \ell}^{N} ; a, z\right)= \\
& \begin{cases}1-(-1)^{\frac{m+\ell-2}{2} \frac{m-1}{2} \frac{\ell+1}{2}\left[\left(1+a^{2}\right)^{3 N+1} a^{-3 N+m+\ell-1} z^{N+1}, *\right]} & (m, \ell)=(\text { odd }, \text { odd }) \\
1-(-1)^{\frac{m+\ell-1}{2} \frac{m-1}{2}}\left[\left(1+a^{2}\right)^{3 N+1} a^{-3 N+m+\ell-1} z^{N}, *\right] & (m, \ell)=\text { (odd, even) } \\
1-(-1)^{\frac{m+\ell-1}{2}} \frac{\ell+1}{2}\left[\left(1+a^{2}\right)^{3 N+1} a^{-3 N+m+\ell-1} z^{N}, *\right] & (m, \ell)=\text { (even, odd), } \\
1-(-1)^{\frac{m+\ell}{2}}\left[\left(1+a^{2}\right)^{3 N+1} a^{-3 N+m+\ell-1} z^{N-1}, *\right] & (m, \ell)=\text { (even, even). }\end{cases}
\end{aligned}
$$

The maximum term on z of $F\left(K_{m, \ell}^{N} ; a, z\right)$

	$m \geq 2$	$m=1$
$\ell \geq 1(N=1)$	$\left[*, 3\left(1+a^{2}\right) a^{m+\ell-2} z^{m+\ell+8}\right]$	1
$\ell \geq 1(N \geq 2)$	$\left[*, 3 \times 2^{N-1}\left(1+a^{2}\right) a^{m+\ell-2} z^{10 N+m+\ell-2}\right]$	1
$\ell=0(N=1)$	$\left[*,\left(1+a^{2}\right) a^{m-2} z^{m+8}\right]$	1
$\ell=0(N \geq 2)$	$\left[*, 2^{N-1}\left(1+a^{2}\right) a^{m-2} z^{10 N+m-2}\right]$	1
$\ell=-1$	1	1
$\ell \leq-2$	$\left[*, 2^{N}\left(1+a^{2}\right) a^{m+\ell-1} z^{10 N+m-\ell-3}\right]$	1

	$m=0$	$m \leq-1$
$\ell \geq 1(N=1)$	$\left[*,\left(1+a^{2}\right) a^{\ell-1} z^{\ell+9}\right]$	$\left[*, 4\left(1+a^{2}\right) a^{m+\ell-1} z^{-m+\ell+9}\right]$
$\ell \geq 1(N \geq 2)$	$\left[*, 3 \times 2^{N-2}\left(1+a^{2}\right) a^{\ell-1} z^{10 N+\ell-1}\right]$	$\left[*, 9 \times 2^{N-2}\left(1+a^{2}\right) a^{m+\ell-1} z^{10 N-m+\ell-1}\right]$
$\ell=0(N=1)$	$\left[*,\left(a^{-1}+a\right)^{2} z^{8}\right]$	$\left[*,\left(1+a^{2}\right) a^{m-1} z^{-m+9}\right]$
$\ell=0(N \geq 2)$	$\left[*, 2^{N-2}\left(a^{-1}+a\right) z^{10 N-1}\right]$	$\left[*, 3 \times 2^{N-2}\left(1+a^{2}\right) a^{m-1} z^{10 N-m-1}\right]$
$\ell=-1$	1	1
$\ell \leq-2$	$\left[*, 2^{N-1}\left(1+a^{2}\right) a^{\ell} z^{10 N-\ell-2}\right]$	$\left[*, 3 \times 2^{N-1}\left(1+a^{2}\right) a^{m+\ell} z^{10 N-m-\ell-2}\right]$

The minimum and maximum terms on a of $F\left(K_{m, \ell}^{N} ; a, z\right)$

	$m \geq 3$	
$\geq \geq 1$	$\left[(-1)^{N}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+3} a-4 N+1, *\right]$	$\left[(-1)^{N+1}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+1} a-4 N+1, *\right]$
$\ell=0$	$\left[(-1)^{N+1}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N} z^{2 N+1} a-4 N+1, *\right]$	$\left[(-1)^{N}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N} z^{2 N-1} a a^{-4 N+1}, *\right]$
$\ell=-1$	1	1
$\ell \leq-2$	$\left[(-1)^{N+1} \sigma_{\ell+1}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+1} a-4 N+\ell+1, *\right]$	$\left[(-1)^{N} \sigma_{\ell+1}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N-1} a-4 N+\ell+1, *\right]$

	$m=1$	$m \leq 0$
$\quad \ell \geq 1$	1	$\left[(-1)^{N+1} \sigma_{m-1}\left(1-z^{2}\right)^{N} z^{2 N+1} a^{-4 N+m-1}, *\right]$
$\ell=0$	1	$\left[(-1)^{N} \sigma_{m-1}\left(1-z^{2}\right)^{N+1} z^{2 N-1} a^{-4 N+m-1}, *\right]$
$\ell=-1$	1	1
$\ell \leq-2$	1	$\left[(-1)^{N} \sigma_{m-1} \sigma_{\ell+1}\left(1-z^{2}\right)^{N} z^{2 N-1} a^{-4 N+m+\ell-1}, *\right]$

	$m \geq 2$	$m=1$
$\ell \geq 0$	$\left[*,(-1)^{N} \sigma_{m-1} \sigma_{\ell+1}\left(1-z^{2}\right)^{N} z^{2 N-1} a^{4 N+m+\ell+1}\right]$	1
$\ell=-1$	1	1
$\ell=-2$	$\left[*,(-1)^{N+1} \sigma_{m-1}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N-1} a^{4 N+m-1}\right]$	1
$\ell \leq-3$	$\left[*,(-1)^{N} \sigma_{m-1}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+1} a^{4 N+m-1}\right]$	1

	$m=0$	$m \leq-1$
$\ell \geq 0$	$\left[*,(-1)^{N+1} \sigma_{\ell+1}\left(1-z^{2}\right)^{N+1} z^{2 N-1} a^{4 N+\ell+1}\right]$	$\left[*,(-1)^{N} \sigma_{\ell+1}\left(1-z^{2}\right)^{N} z^{2 N+1} a^{4 N+\ell+1}\right]$
$\ell=-1$	1	1
$\ell=-2$	$\left[*,(-1)^{N}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N} z^{2 N-1} a^{4 N-1}\right]$	$\left[*,(-1)^{N+1}\left(1-3 z^{2}+z^{4}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+1} a^{4 N-1}\right]$
$\ell \leq-3$	$\left[*,(-1)^{N+1}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N} z^{2 N+1} a^{4 N-1}\right]$	$\left[*,(-1)^{N}\left(2-z^{2}\right)\left(1-z^{2}\right)^{N-1} z^{2 N+3} a^{4 N-1}\right]$

Remark

Let $(m, \ell) \neq\left(m^{\prime}, \ell^{\prime}\right), m, m^{\prime} \neq 1, \ell, \ell^{\prime} \neq-1$.
$P\left(K_{m, \ell}^{N} ; v, z\right)=P\left(K_{m^{\prime}, \ell^{\prime}}^{N^{\prime}} ; v, z\right) \Longleftrightarrow$
$\left(N^{\prime}, m^{\prime}, \ell^{\prime}\right)=(N, \ell+2, m-2),(m, \ell)=($ odd, odd $),($ odd, even $),[($ even, even $) N \geq 2]$.

By the above information of $F\left(K_{m, \ell}^{N} ; a, z\right)$ and the 2 nd minimum and maximum terms on a, we see that all the knots $K_{m, \ell}^{N}(m \neq 1, \ell \neq-1)$ are mutually inequivalent.

Thank you for your attention.

