Strong quasipositivity of links

Alexander Stoimenow
Dongguk University, WISE campus,

Gyeongju-si, Korea

16th Jun, 2023
K\&SG2023
Department of Mathematical Sciences,
KAIST, Daejeon, Korea

Contents

－strong quasipositivity and related properties
－Bennequin＇s inequality and Bennequin surfaces

- 村杉－Przytycki method and graph index
- 村杉－Przytycki－山田 method for braided surfaces
－strong quasipositivity for classes of links
－Whitehead doubles $(+\alpha)$
－Minimal genus canonical surfaces
－（Weakly）successively almost positive links（joint w／哲．伊藤）

Definition 1 Notation: σ_{i}, for $i=1, \ldots, n-1$, is Artin generator of the braid group B_{n}.
quasipositive link (Rudolph, Boileau-Orevkov): If zero set of a complex polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ intersects the unit sphere

$$
S^{3}=\left\{(u, v) \in \mathbb{C}^{2}:|u|^{2}+|v|^{2}=1\right\}
$$

transversely, the intersection forms a quasipositive link L in S^{3}.
L is closure $\hat{\beta}$ of a braid

$$
\beta=\prod_{k=1}^{l} w_{k} \sigma_{i_{k}} w_{k}^{-1}
$$

which is product of conjugates of σ_{i} (but not their inverses).
strongly quasipositive link: If the words $w_{k} \sigma_{i_{k}} w_{k}^{-1}$ are of the form

$$
\begin{equation*}
\sigma_{i, j}=\sigma_{i}^{-1} \ldots \sigma_{j-2}^{-1} \sigma_{j-1} \sigma_{j-2} \ldots \sigma_{i} \tag{1}
\end{equation*}
$$

for $1 \leq i<j \leq n$, "embedded bands" $\left(\sigma_{i}=\sigma_{i, i+1}\right)$

$$
B_{9} \ni \sigma_{2,7}=\mid
$$

then

$$
\begin{equation*}
\beta=\prod_{k=1}^{l} \sigma_{i_{k}, j_{k}} \tag{2}
\end{equation*}
$$

is a strongly quasipositive braid (word) and a positive band representation of β. It gives a strongly quasipositive surface of $L=\hat{\beta}$.
More generally, a word $\beta=\Pi \sigma_{i_{k}, j_{k}}^{ \pm 1}$ gives a band representation and a braided surface (Rudolph) of $L=\hat{\beta}$.

Minimal genus braided surface is called Bennequin surface (Birman-Menasco).
All link diagrams and links assumed oriented. Crossings in oriented diagrams are called

positive negative smoothed out
$c_{ \pm}(D):=$ number of positive, respectively negative crossings of a diagram D,
$c(D)=c_{+}(D)+c_{-}(D)$ crossing number and
$w(D)=c_{+}(D)-c_{-}(D)$ writhe.
After smoothing all crossings, $s(D):=$ number of Seifert circles.
Crossing number of a knot K :

$$
c(K):=\{c(D): D \text { is a diagram of } K\}
$$

Definition 2 Positive link is a link with a positive diagram $\left(c_{-}(D)=0\right)$.

$$
\{\text { positive }\} \subset\{\text { strongly quasipositive }\} \subset\{\text { quasipositive link }\}
$$

(first inclusion proved by Rudolph, but see below)

Definition 3 (maximal) Thurston-Bennequin number $T B(L)$

$$
T B(L)=\max \{w(D)-s(D): D \text { a diagram of } L\} .
$$

Theorem 4 Bennequin's inequality states that

$$
\begin{equation*}
T B(L) \leq-\chi(L) \tag{4}
\end{equation*}
$$

($\chi=$ Euler char.)
Improvement: the slice Bennequin inequality (Kronheimer-Mrowka, Rudolph, etc.) states that

$$
\begin{equation*}
T B(L) \leq-\chi_{4}(L) \leq-\chi(L) \tag{5}
\end{equation*}
$$

($\chi_{4}=$ smooth 4-ball Euler char.)
τ-invariant (for knots L, Ozsvath-Szabo), "slice-torus" invariants (Livingston);

$$
T B(L) \leq 2 \tau(L)-1 \leq-\chi_{4}(L)
$$

Definition 5 Bennequin defect $\delta(L)=(-\chi(L)-T B(L)) / 2 \quad$ (non-negative integer).

Definition 6 We call L Bennequin-sharp if (4) is equality (i.e., $\delta(L)=0$).
We call L slice-Bennequin-sharp if (5) is equality.

Conjecture 7 Bennequin-sharp \Longleftrightarrow strongly quasipositive

Bennequin's inequality \Rightarrow strongly quasipositive surface is minimal genus

Question 8 （Baker－茂手木）If L is strongly quasipositive，then is every minimal genus surface of L strongly quasipositive？

Remark 9 obviously true for fibered L（or more generally if unique minimal genus surface）

Definition $10 b(L)$ braid index：

$$
b(L)=\min \left\{n: \exists \beta \in B_{n}, L=\hat{\beta}\right\} .
$$

Question 11 （Rudolph）If L is strongly quasipositive，does L have a strongly quasi－ positive surface on minimal $(=b(L))$ strands／strings？

Remark 12 For Bennequin surfaces，proved by Bennequin（－Birman－Menasco）if $b(L)=3$ ，but false for $b(L)=4$（平澤－S．）

Answer to Conjecture 7 and Question 11 is affirmative for prime knots up to 16 crossings（see Computations 36 and 37）．

Example $1313_{6169} \rightarrow 1_{46970}$ ．The number of strings on which a strongly quasipos－ itive surface can be realized，can go down under positive Hopf plumbing（even for fiber surfaces）．

Question 14 Does every alternating link have a minimal string Bennequin surface？
Generalization of Question 11：
Conjecture 15 （伊藤－川室）Every link L has a Bennequin surface on（at most）b（L）＋ $\delta(L)$ strands．
used（in conjunction with 山田－Vogel）to estimate braid index（from above）．
Definition $16 \Gamma(D)$ Seifert graph of D：a vertex for every Seifert circle of D，and an edge for every crossing connecting two（distinct）Seifert circles．（Edge is labeled \pm by sign of crossing．）
$\Gamma(D)$ is always bipartite and planar，but not mandatorily simple．
Say two parallel edges in $\Gamma(D)$ come from Seifert equivalent crossings in D ．
Cycles C in $\Gamma(D)$ have even length，and pair of parallel edges form $|C|=2$ ．
Definition 17 （using Traczyk＇s cycle condition）：Edge set E in $\Gamma(D)$ is independent iffor each cycle C of $\Gamma(D)$ of length $2 n$ ，we have $|E \cap C|<n$ ．

Definition 18

$$
\begin{aligned}
\operatorname{ind}(D) & =\text { maximal size of independent set } \\
\operatorname{ind}_{\mp}(D) & =\text { maximal size of independent set of negative/positive edges }
\end{aligned}
$$

Theorem 19 （＂村杉－Przytycki＂，Traczyk，S．，．．．）

$$
b(L) \leq s(D)-\operatorname{ind}(D)
$$

Conjecture 20 （村杉－Przytycki）If D is an alternating diagram，then $b(L)=s(D)-$ ind (D) ．

Example 21 "Rational (2-bridge) links L ", (tested; S.) links with $b(L) \leq 4$, pure or parallel alternating-pretzel links L, knots L with $\chi(L) \geq-7$, knots L with at most 18 crossings, ...

For Montesinos links

$$
\begin{equation*}
M\left(e ; p_{1 / q_{1}}, \ldots, p_{n} / q_{n}\right) \tag{6}
\end{equation*}
$$

$\left(\left|p_{i}\right|<q_{i},\left(\left|p_{i}\right|, q_{i}\right)=1\right.$, etc.) orientation issues near the integer part become essential:

Definition 22 If all $\left|p_{i}\right|=1$, the Montesinos link is a pretzel link. A pretzel link is alternating-pretzel if $e \geq 0, p_{i} / q_{i}>0$, and we say a pretzel link is pure if $e=0$ and $\left|q_{i}\right|>1$.

Remark 23 There are alternating (and non-pure) pretzel links which are not alterna-ting-pretzel links.

Theorem 24 (S.) If E is an independent set of $\Gamma(D)$ of a diagram D of L of e_{+} positive and e_{-}negative edges, then the canonical surface of D is a braided surface on $s(D)-|E|$ strings with $c_{+}(D)-e_{+}$positive bands and $c_{-}(D)-e_{-}$negative bands.
(Proof is constructive.)
For Bennequin surfaces, we are in particular interested when

Definition 25 If $\chi(D)=\chi(L)$ ，then D is minimal genus diagram（e．g．，alternating， positive，homogeneous，．．．）．If L has minimal genus diagram D ，call L canonically minimal．

Corollary 26 If conjecture 20 is true，then every alternating link has a minimal string Bennequin surface（Question 14）．

In particular true for special cases（listed in example 21；2－bridge independently by平澤）。

Without Conjecture 20，can address Conjecture 15 （伊藤－川室）for further alternating links，for example：

Proposition 27 Conjecture 15 holds for alternating knots K with $\tau(K) \leq 1$（among others achiral，slice knots，knots of unknotting number one，etc．），and with $\tau(K)=2$ when $c(K)$ is odd．

Definition 28 Call D pseudo－positive if its negative crossings are independent $\left(c_{-}(D)=\operatorname{ind}_{-}(D)\right)$ ．Pseudo－positive link $=$ link with pseudo－positive diagram．

Corollary 29 If D is a pseudo-positive diagram of L, then L is strongly quasipositive (on $s(D)-c_{-}(D)$ strings).

Converse is also true for minimal genus diagram (but Bennequin-sharp is enough):

Proposition $30 D$ is minimal genus diagram of Bennequin-sharp link $L \Rightarrow D$ is pseudo-positive.

Thus can decide from minimal genus diagram if a link is strongly quasipositive.

Corollary 31 L is pseudo-positive \Longleftrightarrow Lis canonically minimal and strongly quasipositive

Conjecture 7 holds for canonically minimal L.

Corollary 32 L is canonically minimal \Rightarrow (Bennequin-sharp \Longleftrightarrow strongly quasipositive)

Question 8 （Baker－茂手木）is answered positively for canonical surfaces：
Corollary 33 If a link L is strongly quasipositive，then every minimal genus canoni－ cal surface of L is strongly quasipositive．

Remark 34 Feller－Lewark－Lobb knew corollaries 31， 32 and 33 for knots，but τ－ invariant technology is not needed here．

Strong quasipositivity of some families of lunks

Many knots can be proved strongly quasipositive，by exhibiting a pseudo－positive diagram．

Example 35 （FLL；using a check of mine）All strongly quasipositive prime knots up to 13 crossings are pseudo－positive．

For alternating diagrams，situation is simple： strongly quasipositive \Longleftrightarrow positive alternating（村杉＇s special alternating）．

Computation 36 There are 22,009 prime non-alternating knots up to 16 crossings which are strongly quasipositive.
(Previously determined up to 12 ; for 13 crossings partial outline in example 35 .) Data on my website http://www.stoimenov.net/stoimeno/homepage/ptab/index.html.

For special alternating diagrams listed in example 21, Rudolph's question 11 is affirmed. Includes alternating knots up to 18 crossings.

Computation 37 Rudolph's question 11 is affirmed for all prime non-alternating ≤ 16 crossing knots.

Hardest example, 161057125:

Major computational project: ruled out $b=5$ for this knot; a parallelized upgrade of the (m-truncated) HOMFLY polynomial calculation on a 4-cable.

Claim 38 • Can classify strongly quasipositive pretzel knots (I need τ here!; we allow $e \neq 0$ or $q_{i}= \pm 1$ in (6), non-pure pretzels), and

- have simple (2-page) decision algorithm for (strong quasipositivity of) parallel Montesinos links.
（slightly different method）
Definition 39 Whitehead double $W_{ \pm}(K, p)$ of a knot K with framing p and posi－ tive／negative clasp．

Question 40 When is $W_{ \pm}(K, p)$ strongly quasipositive？
Theorem $41 W_{-}(K, p)$ is never strongly quasipositive． $W_{+}(K, p)$ is strongly quasipositive $\Longleftrightarrow p \geq-T B(K)$ ．
$p \mapsto \tau\left(W_{+}(K, p)\right) \in\{0,1\}$ is almost constant with one jump $j(K)=j_{\tau}(K)$ （studied by 金世久，etc．）

Livingston－Naik do this for＂slice torus＂invariants v ．
Corollary 42 （Livingston－Naik）$j_{v}(K) \leq-T B(K)$ ．
For the＂real＂τ ，we have $j_{\tau}(K)=1-2 \tau(K)$（Hedden）．
Corollary 43 If $-T B(K)=1-2 \tau(K)$（incl．if K slice－Bennequin－sharp，in particu－ lar quasipositive），then conjecture 7 true for the Whitehead doubles of K ．

This is also related to arc index $a(L)$（gives very simple proof that $a(L) \geq 2 b(L)$ ， etc．）；work project with 秦教澤 and 李和靜。

General satellites
Definition $44 P \subset$ solid torus pattern．Type (a, g) algebraic／geometric \cap \＃（need $|a| \leq g$ and $g-a$ even；for simplicity assume $g>1$ ，no connected sums）． Say P is cable type if $|a|=g$ ．This includes a braid pattern $P=\beta \in B_{n}$（up to conju－ gacy），where $a=g=n$ ．

Claim 45 For every knot K and non-cable type (a, g), there is a pattern P_{K} of type (a, g) with $K * P_{K}$ strongly quasipositive.

Can also construct many strongly quasipositive cable type satellites:

Proposition 46 If K is strongly quasipositive, and $P=\beta$ is strongly quasipositive braid (2), then $K * \beta$ is strongly quasipositive.
(Works for quasipositive also.) But:

Example 47 No (ordinary!, i.e., $P=\beta \in B_{2}$) 2-cable of figure-8-knot is strongly quasipositive.

Conjecture 48 If P is cable type and $K * P$ is strongly quasipositive, then K is strongly quasipositive.

\mathbb{M} minonall genus canomicall surfeces

Question 49 When does Seifert＇s algorithm give a minimal genus surface？

Definition 50 Say L is canonically minimal if has a minimal genus canonical sur－ face．

Example 51 alternating（村杉－Gabai），alternative（Kauffman），positive（村杉－
＂Bennequin－山田－Vogel＂），homogeneous（Cromwell）

Theorem 52 （FLL for knots，S．）If D is a diagram of a strongly quasipositive link， then D is pseudo－positive if and only if D is minimal genus．

This＋Gabai gives a generalization of homogeneous diagrams．（But Alexander poly－ nomial does not always work！）

Definition 53 A diagram D is pseudo-homogeneous, if all blocks are pseudo-positive or -negative.
D is weakly pseudo-homogeneous, if parallel edges in $\Gamma(D)$ have same sign, and when replacing them by a single edge the diagram gets pseudo-homogeneous.

As usual, X link $=$ link with X diagram $(\mathrm{X}=\ldots)$.

Example 54 The 5-crossing fig-8-knot diagram is weakly pseudo-homogeneous but not pseudo-homogeneous.

Theorem 55

Remark 56 All inclusions of links except the red one are known to be proper. (The red one is tricky := not very important but very difficult.)

A (likely) more important top. version:

Question 57 1. Is one minimal genus surface of every link (for $\chi<0$) 村杉 sum of strongly quasipositive and strongly quasinegative surfaces?
2. Every minimal surface when χ is small? (I know is not when $\chi \geq-1$.)

3．Stable 村杉 sum？
Example $5810_{145} \# 3_{1}$ ：pseudo－homogeneous（in fact，－positive）diagrams are not visually prime（but homogeneous may still be：Menasco－小澤＋）．
(WeakJy) successively almost positive lionks (joint w/ 誓。伊滕)

Problem 59 Can one pose a natural condition on（arbitrary many）negative crossings in a diagram，so that positivity properties can be generalized？

One answer（above）：pseudo－positive．
I discuss here another answer（joint w／哲．伊藤）．
Definition 60 （＂伊藤－茂手木－寺垣内＂）A diagram is successively almost positive （s．a．p．）if all negative crossings appear consecutively with their overpass along a single overarc．

Definition 61 (伊藤-S.; "Cromwell") A diagram is weakly successively almost positive (w.s.a.p.) if all negative crossings appear with their overpass along a single overarc.

This extends my old definition:

Definition 62 (S.) A diagram D is almost positive if $c_{-}(D)=1$.

Obviously:

$$
\begin{equation*}
\{\text { w.s.a.p. }\} \supset\{\text { s.a.p. }\} \supset\{\text { almost positive }\} \supset\{\text { positive link }\} \tag{7}
\end{equation*}
$$

(Here I do not exclude positive links from almost positive ones.)

Question 63 \{w.s.a.p. link $\} \supsetneq\{$ s.a.p. link $\}$?

We know other inclusions in（7）are proper．
Many properties（like of link polynomials）of positive links extendable to w．s．a．p． links，for example：

Theorem 64 The Alexander polynomial detects genus and fibering of a w．s．a．p．link．
Remark 65 Does not work for pseudo－positive：$(-3,5,5),(-3,5,7)$－pretzel knots．
Question 66 （伊藤－S．）Are all（w．）s．a．p．links strongly quasipositive？
Proposition 67 （伊藤－S．）s．a．p．\Rightarrow Bennequin sharp
Theorem 68 （Feller－Lewark－Lobb＇s answer to old question of mine） link L is almost positive \Rightarrow strongly quasipositive．

Definition 69 （FLL，＂S．＂）An almost positive diagram D is

type 1	$\Longleftrightarrow \quad$$D$ is minimal genus $(\Longleftrightarrow$ negative crossing has no Seifert equivalent positive crossing $)$
type $2 \Longleftrightarrow$D not minimal genus $(\Longleftrightarrow$ negative crossing has Seifert equivalent positive crossing $)$	

Theorem $24 \Rightarrow$ type 1 is strongly quasipositive on $s(D)-1$ strings

Theorem 70 (伊藤-S.) L has s.a.p. diagram "with full marking" $\Rightarrow L$ is strongly quasipositive.
\Rightarrow type 2 is strongly quasipositive on $s(D)$ strings.
In combination, we have a refinement of Theorem 68:

Theorem 71 Let a link L have an almost positive diagram D. Then L has a positive band representation on (at most)

$$
\left\{\begin{array}{cl}
s(D)-1 & \text { if } D \text { is of type } 1 \\
s(D) & \text { if } D \text { is of type } 2
\end{array}\right\}
$$

strands.

Thank you!

Alexander Stoimenow
Dongguk University, WISE campus, Gyeongju-si, Korea

16th Jun, 2023

KAIST, Daejeon, Korea
Department of Mathematical Sciences

