Translation lengths of right-angled Artin groups on extension graphs

Sang-Jin Lee

Konkuk University, Seoul, Korea

Joint with Eon-Kyung Lee (Sejong University)

Knots and Spatial Graphs KAIST, June 17, 2023

590

(Definition) Suppose a group G acts on a metric space (X, d) isometrically. For $g \in G$, the asymptotic translation length of g is

$$\tau(g) = \lim_{n \to \infty} \frac{d(x, g^n x)}{n},$$

1/17

where $x \in X$. The element g is called loxodromic if $\tau(g) > 0$.

(Remark)

$$\tau(g)$$
 is independent of choice of $x \in X$;
 $\tau(g^n) = n \tau(g)$ for $n \ge 1$;
 $\tau(g^h) = \tau(g)$ for $h \in G$, where $g^h = h^{-1}gh$.

Length spectrum

(Definition) Length spectrum of G is

$$\operatorname{Spec}(G) = \{\tau(g) \mid g \in G\}.$$

Gromov (1987), Delzant (1996) If G is a hyperbolic group, $\operatorname{Spec}(G) \subset \frac{1}{m}\mathbb{Z}$ for some $m \ge 1$. (Translation lengths are rational with uniformly bounded denominators.)

Bowditch (2008) If G = Mod(S) for a hyperbolic surface S and X = C(S), the curve graph of S, then $Spec(G) \subset \frac{1}{m}\mathbb{Z}$ for some $m \ge 1$.

Conner (1997)

There exists a finitely presented group G whose action on its Cayley graph has an irrational length element, i.e. $Spec(G) \not\subset \mathbb{Q}$.

Minimal asymptotic translation length

(Definition) Minimal asymptotic translation length of G is

```
\mathsf{MinTL}(G) = \inf\{\mathsf{Spec}(G) \setminus \{0\}\}.
```

Gadre and Tsi (2011) $\operatorname{MinTL}(\operatorname{Mod}(S_g)) \asymp \frac{1}{g^2}$.

Kin and Shin (2019) MinTL(B_n) $\asymp \frac{1}{n^2}$.

Baik and Shin (2020) $\operatorname{MinTL}(PB_n) \asymp \frac{1}{n}$.

 S_g denote a orientable surface of genus g. Mod (S_g) acts on the curve graph $C(S_g)$. B_n and PB_n act on the curve graph $C(D_n)$ of n-punctured disk D_n . We are interested in the asymptotic translation lengths when

$$G$$
 = the right-Angled Artin group $A(\Gamma)$,

X = the extension graph Γ^e ,

where Γ is a finite simple graph.

Right-angled Artin group

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite simplicial graph. The right-angled Artin group $A(\Gamma)$ is

$$A(\Gamma) = \langle v \in V(\Gamma) : [v_i, v_j] = 1 \text{ for each } \{v_i, v_j\} \in E(\Gamma) \rangle.$$

(Here, [a, b] denotes the commutator $a^{-1}b^{-1}ab$.)

<□> < 部> < 注> < 注> < 注</p> > 3 (0)

Extension graph Γ^e

The extension graph $\Gamma^e = (V(\Gamma^e), E(\Gamma^e))$ is the graph such that $V(\Gamma^e) = \{v^g : v \in V(\Gamma), g \in A(\Gamma)\} \subset A(\Gamma),$ $E(\Gamma^e) = \{\{v_1^{g_1}, v_2^{g_2}\} : [v_1^{g_1}, v_2^{g_2}] = 1 \text{ in } A(\Gamma)\}.$

Here, v^{g} denotes the conjugate $g^{-1}vg$. $V(\Gamma^{e})$ is the set of all elements of $A(\Gamma)$ that are conjugate to a vertex, and two vertices $v_{1}^{g_{1}}$ and $v_{2}^{g_{2}}$ are adjacent in Γ^{e} if and only if they commute when considered as elements of $A(\Gamma)$.

- Γ^e is usually infinite and locally infinite.
- (Kim-Koberda) Γ^e is a quasi-tree, hence δ -hyperbolic.
- $A(\Gamma)$ acts on Γ^e from right by conjugation.

Extension graph Γ^e

Let $\overline{\Gamma}$ denote the complement graph of Γ , i.e. $V(\overline{\Gamma}) = V(\Gamma)$ and $\{v_1, v_2\} \in E(\overline{\Gamma})$ if and only if $\{v_1, v_2\} \notin E(\Gamma)$ for $v_1 \neq v_2$.

 $\Gamma = v_1 \bullet v_2 \qquad \Gamma = \begin{array}{c} v_1 \bullet v_3 \\ v_2 \bullet v_4 \end{array}$ $\overline{\Gamma} = v_1 \bullet \bullet v_2 \qquad \overline{\Gamma} = \begin{array}{c} v_1 \bullet v_3 \\ v_2 \bullet v_4 \end{array}$

If Γ is disconnected, then Γ^e is also disconnected.

 $\begin{array}{l} (\text{If } \Gamma = \Gamma_1 \sqcup \Gamma_2, \text{ then } \Gamma^e \text{ is a countable union of copies of } \Gamma_1^e \text{ and } \Gamma_2^e.) \\ \text{If } \overline{\Gamma} \text{ is disconnected, then diameter}(\Gamma^e) \leqslant 2. \\ (\text{If } \Gamma = \Gamma_1 * \Gamma_2, \text{ then } \Gamma^e = \Gamma_1^e * \Gamma_2^e, \text{ hence diameter}(\Gamma^e) \leqslant 2.) \end{array}$

Theorem (Kim-Koberda, 2013)

 Γ^e is connected and has infinite diameter if and only if $|V(\Gamma)| \ge 2$ and both Γ and $\overline{\Gamma}$ are connected.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From now on, we assume that (i) both Γ and $\overline{\Gamma}$ are connected, (ii) $|V(\Gamma)| \ge 2$, hence $|V(\Gamma)| \ge 4$. Let C_n denote the cycle with *n* vertices. Let girth(Γ) denote the length of a shortest cycle contained in Γ .

Theorem (Baik-Seo-Shin (2022))

For any Γ , Spec $(A(\Gamma)) \subset \mathbb{Q}$. If girth $(\Gamma) \ge 6$, then Spec $(G) \subset \frac{1}{m}\mathbb{Z}$ for some $m \ge 1$.

Theorem (Baik-Seo-Shin (2022))

If Γ is a tree, then $\operatorname{Spec}(A(\Gamma)) \subset 2\mathbb{Z}$. If $\Gamma = C_{2m}$ with $m \ge 3$, then $\operatorname{Spec}(A(\Gamma)) \subset \mathbb{Z}$. If $\Gamma = C_{2m+1}$ with $m \ge 3$, $\operatorname{Spec}(A(\Gamma)) \subset \frac{1}{2}\mathbb{Z}$ and $\operatorname{Spec}(A(\Gamma)) \not\subset \mathbb{Z}$. Theorem (Baik-Seo-Shin (2022))

If diameter(Γ) \geq 3, then MinTL($A(\Gamma)$) \leq 2.

Theorem (Lee-L (2023))

For any Γ , MinTL($A(\Gamma)$) ≤ 2 .

Theorem (Lee-L (2023))

If diameter($\overline{\Gamma}$) = $d \ge 3$, MinTL($A(\Gamma)$) $\le \frac{2}{d-2}$.

Theorem (Lee-L (2022))

For any Γ , MinTL($A(\Gamma)$) $\geq \frac{1}{|V(\Gamma)|-2}$.

From now on, we will explain the idea of the proof of

$\mathsf{MinTL}(A(\Gamma)) \leqslant 2,$

i.e. there exists an element $g \in A(\Gamma)$ such that

 $0 < \tau(g) \leq 2.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - つへぐ

Idea Proof of "MinTL($A(\Gamma)$) ≤ 2 "

Lemma

Suppose that $e = \{v_1, v_2\} \in E(\Gamma)$, $g_1 \in Z(v_1)$ and $g_2 \in Z(v_2)$. Let $g = g_1g_2$. Then $\tau(g) \leq 2$.

(Proof) Since $v_1^g = (v_1^{g_1})^{g_2} = v_1^{g_2}$ and $v_2 = v_2^{g_2}$,

$$\{v_1^g, v_2\} = \{v_1^{g_2}, v_2^{g_2}\} = e^{g_2} \in E(\Gamma^e).$$

Therefore, $d(v_1, v_1^{g^n}) \leq 2n$ and $\tau(g) = \lim_{n \to \infty} \frac{d(v_1, v_1^{g^n})}{2n} \leq 2.$

For $g \in A(\Gamma)$, let $\operatorname{supp}(g)$ denote the set of generators that appear in a shortest word representing g. For example, $\operatorname{supp}(v_1^{-1}v_2^3v_3^{-2}) = \{v_1, v_2, v_3\}$.

(Kim-Koberda)

The following are equivalent for cyclically reduced $g \in A(\Gamma)$.

- **1** g is loxodromic, i.e. $\tau(g) > 0$;
- **2** supp(g) is not contained in a subjoin of Γ ;
- **(3)** $\overline{\Gamma}[\operatorname{supp}(g)]$ is connected and $\operatorname{supp}(g)$ dominates $\overline{\Gamma}$.

Here, $\overline{\Gamma}[\operatorname{supp}(g)]$ denotes the subgraph of $\overline{\Gamma}$ induced by $\operatorname{supp}(g)$. We say that " $\operatorname{supp}(g)$ dominates $\overline{\Gamma}$ " if every vertex v is either contained in $\operatorname{supp}(g)$ or adjacent in $\overline{\Gamma}$ to a vertex of $\operatorname{supp}(g)$. For $v \in V(\Gamma)$ and $e = \{v_1, v_2\} \in E(\Gamma)$, define their stars as follows.

$$\begin{aligned} \mathsf{St}(v) &= \{ u \in V(\Gamma) : d(u, v) \leqslant 1 \}, \\ \mathsf{St}(e) &= \mathsf{St}(v_1) \cup \mathsf{St}(v_2). \end{aligned}$$

By definition, St(v) and St(e) dominate $\overline{\Gamma}$.

Idea Proof of "MinTL($A(\Gamma)$) ≤ 2 "

Theorem

Suppose that $|V(\Gamma)| \ge 4$ and both Γ and $\overline{\Gamma}$ are connected. Then, there exists an edge e such that $\overline{\Gamma}[St(e)]$ is connected.

(example) Let
$$\Gamma = \underbrace{e_1}_{V_1} \underbrace{e_2}_{V_2} \underbrace{e_3}_{V_3} \underbrace{e_4}_{V_4} \underbrace{e_5}_{V_5}$$
.
Then $\overline{\Gamma}[St(e_i)]$ is connected if and only if $i \in \{2,3\}$.

$$\Gamma[\operatorname{St}_{\Gamma}(e_1)] = \underbrace{\bullet}_{V_1} \underbrace{\bullet}_{V_2} \underbrace{\bullet}_{V_3} \qquad \Gamma[\operatorname{St}_{\Gamma}(e_2)] = \underbrace{\bullet}_{V_1} \underbrace{\bullet}_{V_2} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_1} \underbrace{\bullet}_{V_2} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_1} \underbrace{\bullet}_{V_2} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_1} \underbrace{\bullet}_{V_2} \underbrace{\bullet}_{V_3} \underbrace{\bullet}_{V_3}$$

<ロ > < 部 > < 言 > < 言 > 言 の < や 15/17 (Proof of "MinTL($A(\Gamma)$) ≤ 2 ") By previous theorem, there exists an edge $e = \{v_1, v_2\}$ such that $\overline{\Gamma}[St(e)]$ is connected. Let

Define $g_1 = v_1 x_1 \cdots x_n$, $g_2 = v_2 y_1 \cdots y_m$ and $g = g_1 g_2$. Then $g_1 \in Z(v_1)$, $g_2 \in Z(v_2)$ and supp(g) = St(e). Since $g_1 \in Z(v_1)$ and $g_2 \in Z(v_2)$, $\tau(g) \leq 2$.

Since St(e) dominates $\overline{\Gamma}$ and since $\overline{\Gamma}[St(e)]$ is connected, g is loxodromic, i.e. $\tau(g) > 0$, hence we are done. Thank You.

<ロ > < 部 > < 言 > く 言 > こ う < や 17/17