Converses to generalized Conway-Gordon type congruences

NIKKUNI Ryo
Tokyo Woman's Christian University

Knots and Spatial Graphs 2023, KAIST June. 16, 2023

§1. Conway-Gordon type congruences

Spatial graph $=$ The image of a spatial embedding f of a finite graph G into \mathbb{R}^{3}

G

For a (disjoint union of) cycle(s) λ of $G, f(\lambda)$ is called a constituent knot (link) of the spatial graph.
$\operatorname{SE}(G) \stackrel{\text { def. }}{=}\left\{\right.$ embedding $\left.f: G \rightarrow \mathbb{R}^{3}\right\}$
$\Gamma_{k}(G) \stackrel{\text { def. }}{=}\{k$-cycles of $G\}$
$\Gamma_{k, l}(G) \stackrel{\text { def. }}{=}\{$ a disjoint pair of k-cycle and l-cycle of $G\}$

§1. Conway-Gordon type congruences

Spatial graph $=$ The image of a spatial embedding f of a finite graph G into \mathbb{R}^{3}

G

For a (disjoint union of) cycle(s) λ of $G, f(\lambda)$ is called a constituent knot (link) of the spatial graph.
$\operatorname{SE}(G) \stackrel{\text { def. }}{=}\left\{\right.$ embedding $\left.f: G \rightarrow \mathbb{R}^{3}\right\}$
$\Gamma_{k}(G) \stackrel{\text { def. }}{=}\{k$-cycles of $G\}$
$\Gamma_{k, l}(G) \stackrel{\text { def. }}{=}\{$ a disjoint pair of k-cycle and l-cycle of $G\}$
K_{n} : complete graph on n vertices
Theorem 1.1. [Conway-Gordon '83]
$\forall f \in \operatorname{SE}\left(K_{7}\right), \sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma)) \equiv 1(\bmod 2)$.
Here, a_{2} : 2nd coefficient of the Conway polynomial $\nabla(z)$.

$\forall f\left(K_{7}\right) \supset$ nontrivial knot.

Theorem 1.2. [Morishita-Nikkuni '19]
For $n \geq 6, \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma))-(n-5)!\sum_{\gamma \in \Gamma_{5}\left(K_{n}\right)} a_{2}(f(\gamma)) \\
= & \frac{(n-5)!}{2}\left(\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{IK}(f(\lambda))^{2}-\binom{n-1}{5}\right) .
\end{aligned}
$$

Here, Ik: linking number.
$n=6: \sum_{6} a_{2}-\sum_{5} a_{2}=\frac{1}{2} \sum_{3,3} \mathrm{k}^{2}-\frac{1}{2} \Longrightarrow \sum_{3,3} I k \equiv 1(\bmod 2)$
(Conway-Gordon K_{6} theorem)
$n=7: \sum_{7} a_{2}-2 \sum_{5} a_{2}=\sum_{3,3} \mathrm{Ik}^{2}-6 \Longrightarrow \sum_{7} a_{2} \equiv 1(\bmod 2)$
(Conway-Gordon K_{7} theorem, Thm. 1.1)
$n=8: \sum_{8} a_{2}-6 \sum_{5} a_{2}=3 \sum_{3,3} \mathrm{Ik}^{2}-63 \Longrightarrow \sum_{8} a_{2} \equiv 3(\bmod 6)$.

Corollary 1.3. [Morishita-Nikkuni '19]
For $n \geq 7, \forall f \in \operatorname{SE}\left(K_{n}\right)$, we have the following congruence modulo ($n-5$)!:

$$
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma)) \equiv\left\{\begin{array}{lll}
\frac{(n-5)!}{2} & (n \equiv 0,7 & (\bmod 8)) \\
0 & (n \not \equiv 0,7 & (\bmod 8)) .
\end{array}\right.
$$

$n=7: \sum_{7} a_{2} \equiv \frac{(7-5)!}{2}=1(\bmod 2) \quad($ Thm. 1.1)
$n=8: \sum_{8} a_{2} \equiv \frac{(8-5)!}{2}=3(\bmod 6)$ [Foisy '08][Hirano '10]
$n=9: \sum_{9} a_{2} \equiv 0(\bmod 24)$
Question. Are these congruences the best?

For $n \geq 6$, we define:

$$
r_{n}=\left\{\begin{array}{lll}
\frac{(n-5)!}{2} & (n \equiv 0,7 & (\bmod 8)) \\
0 & (n \neq 0,7 & (\bmod 8))
\end{array}\right.
$$

Theorem 1.4. [N] For integers $n \geq 7$ and m,

$$
\begin{gathered}
\exists f \in \operatorname{SE}\left(K_{n}\right) \quad \text { s.t. } \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma))=m \\
\Longleftrightarrow m \equiv r_{n}(\bmod (n-5)!) .
\end{gathered}
$$

The ONLY IF part has already been proven in Cor. 1.3.
Our purpose is to show the IF part (\Longleftarrow), namely the "converses" to Conway-Gordon type congruences.

Remark. Theorem 1.4 is also true for $n=6$.
(i.e. \forall integer can be realized by $\sum_{6} a_{2}$.)

§2. Outline of the proof of Theorem 1.4.

Lemma 2.1. For $n \geq 4, \forall f \in \operatorname{SE}\left(K_{n}\right), \exists g \in \operatorname{SE}\left(K_{n}\right)$,

$$
\text { s.t. } \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma))-\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(g(\gamma))= \pm(n-4)!\text {. }
$$

(1)

(2)

- A 'band sum' of Borromean rings (1) (resp. (2)) causes a_{2} to increase (resp. decrease) by exactly one. [Okada '90]
- $\exists(n-4)$! Hamiltonian cycles of K_{n} containing a fixed path of length 3.

A spatial embedding f_{r} of G is rectilinear (or linear) $\stackrel{\text { def. }}{\Leftrightarrow} \forall$ edge e of $G, f_{r}(e)$ is a straight line segment in \mathbb{R}^{3}
$\operatorname{RSE}(G) \stackrel{\text { def. }}{=}\{$ rectilinear spatial embeddings of $G\}$
Example. Standard rectilinear embedding $h \in \operatorname{RSE}\left(K_{n}\right)$:

Take n vertices on the curve $\left(t, t^{2}, t^{3}\right)$ and connect every pair of distinct vertices by a straight line segment.

We define:

$$
c_{n} \stackrel{\text { def. }}{=} \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(h(\gamma)) \stackrel{\left[\mathrm{M}-\mathrm{N}^{\prime} 19\right]}{=} \frac{(n-5)!}{2}\left(\binom{n}{6}-\binom{n-1}{5}\right) .
$$

Remark. $c_{n} \equiv r_{n}(\bmod (n-5)!)$.
Then we have:

$$
\begin{aligned}
& \left\{(n-5)!q+r_{n} \mid q \in \mathbb{Z}\right\} \\
= & \left\{(n-5)!q^{\prime}+c_{n} \mid q^{\prime} \in \mathbb{Z}\right\} \\
= & \left\{(n-5)!\left((n-4) q^{\prime \prime}+s\right)+c_{n} \mid q^{\prime \prime} \in \mathbb{Z}, s=0,1, \ldots, n-5\right\} \\
= & \left\{(n-4)!q^{\prime \prime}+(n-5)!s+c_{n} \mid q^{\prime \prime} \in \mathbb{Z}, s=0,1, \ldots, n-5\right\} .
\end{aligned}
$$

Claim. $\forall s=0,1, \ldots, n-5, \exists g_{s} \in \operatorname{SE}\left(K_{n}\right)$
st.

$$
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(g_{s}(\gamma)\right)-c_{n} \equiv(n-5)!s
$$

$$
(\bmod (n-4)!)
$$

$$
\begin{aligned}
& \text { Consider } f_{k, l}^{(s)} \in \operatorname{SE}\left(K_{n}\right) \\
& (s, k, l \geq 0, k+l \leq n-4)
\end{aligned}
$$

obtained from h by twisting red edges $2 s$ times

Note. This twist is done close enough to the vertices $n-k$ and $n-(k+1)$, and this twisted part has no under crossings with any other edge.

Consider $f_{k, l}^{(s)} \in \operatorname{SE}\left(K_{n}\right)$ ($s, k, l \geq 0, k+l \leq n-4$): obtained from h by twisting red edges $2 s$ times

Note. This twist is done close enough to the vertices $n-k$ and $n-(k+1)$, and this twisted part has no under crossings with any other edge.

Lemma 2.2.

$$
\begin{aligned}
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2} & \left(f_{k, l}^{(s)}(\gamma)\right)-c_{n} \\
& =(n-4)!\sigma(k, l ; s)+(n-5)!\tau(k, l ; s)
\end{aligned}
$$

where $\sigma(k, l ; s)=s(s(k+l+1)-k)$,

$$
\begin{aligned}
\tau(k, l ; s) & =s\left((1-s)\left(k^{2}+k l+l^{2}\right)\right. \\
& \left.+s\binom{k}{2}+s\binom{n-(k+l+4)}{2}+(s-2)\binom{l}{2}\right) .
\end{aligned}
$$

Remark. By Thm. 1.2, we have

$$
\begin{aligned}
& \sum_{n} a_{2}=(n-5)!\sum_{5} a_{2}+\frac{(n-5)!}{2}\left(\sum_{3,3} \mathrm{Ik}^{2}-\binom{n-1}{5}\right), \\
& \text { where } \sum_{3,3} \mathrm{Ik}^{2}=\sum_{K_{n} \supset K_{6}} \sum_{3,3} \mathrm{Ik}^{2}, \quad \sum_{5} a_{2}=\sum_{K_{n} \supset K_{5}} \sum_{5} a_{2} .
\end{aligned}
$$

Lemma 2.3. (1) If $n \equiv 1(\bmod 2)$, then

$$
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{1,0}^{(s)}(\gamma)\right)-c_{n} \equiv(n-5)!s \quad(\bmod (n-4)!) .
$$

(2) If $n \equiv 0(\bmod 2)$, then
$\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{\frac{n-6}{2}, \frac{n-6}{2}}^{(s)}(\gamma)\right)-c_{n} \equiv(n-5)!s \quad(\bmod (n-4)!)$.
(1) $\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{1,0}^{(s)}(\gamma)\right)-c_{n}$

$$
\begin{aligned}
& \equiv(n-5)!\tau(1,0 ; s) \\
& =(n-5)!s\left(-(s-1)+s\binom{n-5}{2}\right) \\
& =(n-5)!s\left(\frac{(n-4)(n-7) s}{2}+1\right) \\
& \equiv(n-5)!s \quad(\bmod (n-4)!) .
\end{aligned}
$$

(2) $\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{\frac{n-6}{2}, \frac{n-6}{2}}^{(s)}(\gamma)\right)-c_{n}$
$\equiv(n-5)!\tau\left(\frac{n-6}{2}, \frac{n-6}{2} ; s\right)$
$=(n-5)!s\left(-(s-1) \cdot \frac{3(n-6)^{2}}{4}+(2 s-2)\binom{\frac{n-6}{2}}{2}+s\right)$
$=(n-5)!s\left(-(s-1) \cdot \frac{(n-4)(n-7)}{2}+1\right)$
$\equiv(n-5)!s \quad(\bmod (n-4)!)$.
Lemma 2.1 + Lemma 2.3 implies Theorem 1.4.

$$
\begin{aligned}
& n=6: \sum_{6} a_{2}\left(f_{0,0}^{(s)}(\gamma)\right) \equiv s(\bmod 2)(s=0,1) \\
& n=7: \sum_{7} a_{2}\left(f_{1,0}^{(s)}(\gamma)\right) \equiv 2 s+1(\bmod 6)(s=0,1,2) \\
& n=8: \sum_{8} a_{2}\left(f_{1,1}^{(s)}(\gamma)\right) \equiv 6 s+21(\bmod 24)(s=0,1,2,3)
\end{aligned}
$$

§3. Related problem

Theorem 3.1. [$\mathrm{M}-\mathrm{N}$ '19] For $n \geq 6, \forall f_{r} \in \operatorname{RSE}\left(K_{n}\right)$,

$$
\frac{(n-5)(n-6)(n-1)!}{2 \cdot 6!} \leq \sum_{n} a_{2} \leq \frac{3(n-2)(n-5)(n-1)!}{2 \cdot 6!} .
$$

$n=6: \quad 0 \leq \sum_{6} a_{2} \leq 1 .(\Longrightarrow \exists$ at most one trefoil knot)
$n=7: \quad 1 \leq \sum_{7} a_{2} \leq 15, \quad \sum_{7} a_{2} \equiv 1(\bmod 2) .(\Longrightarrow \exists$ trefoil $)$
$n=8: \quad 21 \leq \sum_{8} a_{2} \leq 189, \sum_{8} a_{2} \equiv 3(\bmod 6)$.
Remark. The lower bound in Thm. 3.1 is sharp, but the upper bound is not expected to be sharp if $n \geq 7$.

Problem. Determine the integers realized by $\Sigma_{n} a_{2}$ for some $f_{r} \in \operatorname{RSE}\left(K_{n}\right)(n \geq 7)$.

Example. [Jeon et al. IWSG2010] According to a computer search with the help of oriented matroid theory, it has been announced the following (unpublished):

The number of knots and links in rectilinear K_{7}						
6-trefoil	7-trefoil	4_{1}	$(3,3)$-Hopf	$(3,4)$-Hopf	4_{1}^{2}	$\sum_{7} a_{2}$
0	1	0	7	14	0	1
1	3	0	9	18	0	3
2	5	0	11	22	0	5
3	7	0	13	22	1	7
3	7	0	13	26	0	7
3	8	1	13	26	0	7
4	9	0	15	26	1	9
4	11	2	15	30	0	9
4	12	3	15	30	0	9
5	11	0	17	30	1	11

