One-two-way pass-move for knots and links

Jung Hoon Lee (JBNU) (joint with Hyejung Kim)

June 16, 2023

Knots and Spatial Graphs 2023

Outline

- Pass-move and #-move
- One-two-way pass-move(= 1-2-move)
- Basic properties
- Arf invariant
- A knot K with p(K) = nt(K) = 1
- A link L with p(L) = 1 and nt(L) = 2

• Local move

A local move is a local change of a knot diagram, which either

preserves,

or changes

the knot type.

• Unknotting operation

A local move is said to be an *unknotting operation* if any knot can be changed to an unknot via a finite sequence of the move. • Crossing change

The (classical) crossing change is an unknotting operation.

A #-move is an unknotting operation [Murakami].

• Pass-move

A pass-move is not an unknotting operation.

A knot K is pass-move equivalent to an unknot (a trefoil resp.) if and only if the Arf invariant of K is 0 (1 resp.) [Kauffman].

• One-two-way pass-move

Briefly,

One-two-way pass-move = 1-2-move

It is a hybrid of the pass-move and the #-move.

• Proper link

 K_i : a component of a link L

A link L is a proper link if the linking number $lk(K_i, L - K_i) = 0 \pmod{2}$ for every *i*.

In particular, we regard a knot as a proper link.

Proposition 1. Suppose that L_1 and L_2 are proper links. Then L_1 and L_2 are pass-move equivalent if and only if $Arf(L_1) = Arf(L_2)$.

Theorem 1. Suppose that L_1 and L_2 are proper links. Then L_1 and L_2 are 1-2-move equivalent if and only if $Arf(L_1) = Arf(L_2)$. • p(L) and nt(L)

L: a proper link with Arf invariant 0

pass-move number p(L): the minimal number of pass-moves required for L to be an unknot or an unlink.

1-2-move number nt(L): the minimal number of 1-2-moves required for L to be an unknot or an unlink **Proposition 2.** A pass-move is realized by applying a 1-2-move twice.

Corollary 1. $nt(L) \leq 2p(L)$.

Proposition 3. A 1-2-move is realized by applying a #-move twice.

 \therefore A pass-move is realized by applying a #-move four times.

• Fusion

A *fusion* is a band sum along different components of a link.

Let F be a connected genus-g Seifert surface of an r-component link L.

Let $\mathcal{B} = \{x_i, y_i, z_k | i = 1, ..., g \text{ and } k = 1, ..., r - 1\}$ be a basis of $H_1(F; \mathbb{Z}_2)$ represented by loops in F such that $|x_i \cap y_j| = \delta_{ij}$ (the Kronecker delta) and z_k is a k-th component of L.

• Arf invariant

For a loop l in F, let $q(l) = lk(l^+, l) \pmod{2}$, where l^+ is a loop obtained by slightly pushing l to the positive direction of F.

For the basis \mathcal{B} , let

$$\operatorname{Arf}(F,\mathcal{B}) = \sum_{i=1}^{g} q(x_i)q(y_i) \pmod{2}.$$

This value is called the *Arf invariant* of F with respect to \mathcal{B} .

An Arf invariant depends on the choice of F and \mathcal{B} . But for proper links, it is an invariant of a link.

• Known results

Proposition 4. Suppose that L_1 and L_2 are proper links. Then a split union $L_1 \sqcup L_2$ is also a proper link, and $Arf(L_1 \sqcup L_2) = Arf(L_1) + Arf(L_2) \pmod{2}$.

Proposition 5. Suppose that *L* is a proper link. If *L'* is a link obtained from *L* by a fusion, then *L'* is also a proper link and Arf(L') = Arf(L).

Proposition 1. Suppose that L_1 and L_2 are proper links. Then L_1 and L_2 are pass-move equivalent if and only if $Arf(L_1) = Arf(L_2)$. **Theorem 1.** Suppose that L_1 and L_2 are proper links. Then L_1 and L_2 are 1-2-move equivalent if and only if $Arf(L_1) = Arf(L_2)$.

Proof) \Leftarrow Suppose that $Arf(L_1) = Arf(L_2)$. Then L_1 and L_2 are pass-move equivalent by **Proposition 1**. Then by **Proposition 2**, L_1 and L_2 are 1-2-move equivalent.

 \implies) Suppose that L_1 and L_2 are 1-2-move equivalent.

Let L_0 be an untwisted 2-cable of a Hopf link as in the figure. The link L_0 is a proper link.

Since we can obtain an unlink by banding the two anti-parallel components of L_0 and Arf(an unlink) = 0, Arf(L_0) = 0 by **Proposition 5**. By **Proposition 4**, $L_1 \sqcup L_0$ is a proper link and $Arf(L_1 \sqcup L_0) = Arf(L_1)$.

Performing a fusion operation four times to $L_1 \sqcup L_0$ has the same effect as a 1-2-move on L_1 .

Let L'_1 be a link obtained from L_1 by a single 1-2-move.

Then $\operatorname{Arf}(L'_1) = \operatorname{Arf}(L_1 \sqcup L_0) = \operatorname{Arf}(L_1).$

By applying the above argument finitely many times, we conclude that $Arf(L_1) = Arf(L_2)$.

The knot in (a) is obtained from a disk by banding operations and taking the boundary.

It is isotoped to K = (a left-hand trefoil) # (a right-hand trefoil).

It is well known that p(K) = 1.

$$nt(K) = 1.$$

$$\therefore p(K) = nt(K) = 1.$$

L: an untwisted 2-cable of a Hopf link as in the figure

p(L) = 1.

For L,

$$|k(a,c) = -1$$
, $|k(a,d) = 1$, $|k(b,c) = 1$, $|k(b,d) = -1$,
 $|k(a,b) = |k(c,d) = 0$,

For the unlink, lk(a,c) = lk(a,d) = lk(b,c) = lk(b,d) = lk(a,b) = lk(c,d) = 0. **Claim.** nt(L) = 2.

Sketch of proof) Suppose that $nt(L) \neq 2$.

Since $nt(L) \leq 2p(L) = 2$ by **Corollary 1**, nt(L) = 1.

Consider a diagram D of L such that a single 1-2-move on D yields a diagram D_0 of an unlink.

Since by only a single 1-2-move all linking numbers lk(a,c), lk(a,d), lk(b,c), lk(b,d) change to 0, the four components a, b, c, d should be involved in the four strands of the 1-2-move on D.

By investigating linking numbers, we get a contradiction.

Question.

Is there a knot K such that p(K) = 1 and nt(K) = 2?

Thank you for your attention.