One-two-way pass-move for knots and links

Jung Hoon Lee (JBNU)
(joint with Hyejung Kim)

June 16, 2023
Knots and Spatial Graphs 2023

Outline

- Pass-move and \#-move
- One-two-way pass-move(= 1-2-move)
- Basic properties
- Arf invariant
- A knot K with $p(K)=n t(K)=1$
- A link L with $p(L)=1$ and $n t(L)=2$

- Local move

A local move is a local change of a knot diagram, which either preserves, or changes
the knot type.

- Unknotting operation

A local move is said to be an unknotting operation if any knot can be changed to an unknot via a finite sequence of the move.

- Crossing change

The (classical) crossing change is an unknotting operation.

- \#-move

A \#-move is an unknotting operation [Murakami].

- Pass-move

A pass-move is not an unknotting operation.

A knot K is pass-move equivalent to an unknot (a trefoil resp.) if and only if the Arf invariant of K is 0 (1 resp.) [Kauffman].

- One-two-way pass-move

Briefly,
One-two-way pass-move $=1-2-$ move

It is a hybrid of the pass-move and the \#-move.

- Proper link
K_{i} : a component of a link L

A link L is a proper link if
the linking number $\operatorname{lk}\left(K_{i}, L-K_{i}\right)=0(\bmod 2)$ for every i.
In particular, we regard a knot as a proper link.

Proposition 1. Suppose that L_{1} and L_{2} are proper links. Then L_{1} and L_{2} are pass-move equivalent if and only if $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.

Theorem 1. Suppose that L_{1} and L_{2} are proper links. Then L_{1} and L_{2} are 1-2-move equivalent if and only if $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.

- $p(L)$ and $n t(L)$

L: a proper link with Arf invariant 0
pass-move number $p(L)$: the minimal number of pass-moves required for L to be an unknot or an unlink.

1-2-move number $n t(L)$: the minimal number of 1-2-moves required for L to be an unknot or an unlink

Proposition 2. A pass-move is realized by applying a 1-2-move twice.

\downarrow

Corollary 1. $n t(L) \leq 2 p(L)$.

Proposition 3. A 1-2-move is realized by applying a \#-move twice.

\leftarrow

\therefore A pass-move is realized by applying a \#-move four times.

- Fusion

A fusion is a band sum along different components of a link.

Let F be a connected genus- g Seifert surface of an r-component link L.

Let $\mathcal{B}=\left\{x_{i}, y_{i}, z_{k} \mid i=1, \ldots, g\right.$ and $\left.k=1, \ldots, r-1\right\}$ be a basis of $H_{1}\left(F ; \mathbb{Z}_{2}\right)$ represented by loops in F such that $\left|x_{i} \cap y_{j}\right|=\delta_{i j}$ (the Kronecker delta) and z_{k} is a k-th component of L.

- Arf invariant

For a loop l in F, let $q(l)=\operatorname{lk}\left(l^{+}, l\right)(\bmod 2)$, where l^{+}is a loop obtained by slightly pushing l to the positive direction of F.

For the basis \mathcal{B}, let

$$
\operatorname{Arf}(F, \mathcal{B})=\sum_{i=1}^{g} q\left(x_{i}\right) q\left(y_{i}\right) \quad(\bmod 2)
$$

This value is called the Arf invariant of F with respect to \mathcal{B}.

An Arf invariant depends on the choice of F and \mathcal{B}. But for proper links, it is an invariant of a link.

- Known results

Proposition 4. Suppose that L_{1} and L_{2} are proper links.
Then a split union $L_{1} \sqcup L_{2}$ is also a proper link, and $\operatorname{Arf}\left(L_{1} \sqcup L_{2}\right)=\operatorname{Arf}\left(L_{1}\right)+\operatorname{Arf}\left(L_{2}\right)(\bmod 2)$.

Proposition 5. Suppose that L is a proper link.
If L^{\prime} is a link obtained from L by a fusion, then
L^{\prime} is also a proper link and $\operatorname{Arf}\left(L^{\prime}\right)=\operatorname{Arf}(L)$.

Proposition 1. Suppose that L_{1} and L_{2} are proper links. Then L_{1} and L_{2} are pass-move equivalent if and only if $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.

Theorem 1. Suppose that L_{1} and L_{2} are proper links. Then L_{1} and L_{2} are 1-2-move equivalent if and only if $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.

Proof $) \Longleftarrow$) Suppose that $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.
Then L_{1} and L_{2} are pass-move equivalent by Proposition 1.
Then by Proposition 2, L_{1} and L_{2} are 1-2-move equivalent.
$\Longrightarrow)$ Suppose that L_{1} and L_{2} are 1-2-move equivalent.

Let L_{0} be an untwisted 2-cable of a Hopf link as in the figure. The link L_{0} is a proper link.

Since we can obtain an unlink by banding the two anti-parallel components of L_{0} and $\operatorname{Arf}($ an unlink) $=0$, $\operatorname{Arf}\left(L_{0}\right)=0$ by Proposition 5.

By Proposition 4, $L_{1} \sqcup L_{0}$ is a proper link and $\operatorname{Arf}\left(L_{1} \sqcup L_{0}\right)=\operatorname{Arf}\left(L_{1}\right)$.

Performing a fusion operation four times to $L_{1} \sqcup L_{0}$ has the same effect as a 1-2-move on L_{1}.
Let L_{1}^{\prime} be a link obtained from L_{1} by a single 1-2-move.
Then $\operatorname{Arf}\left(L_{1}^{\prime}\right)=\operatorname{Arf}\left(L_{1} \sqcup L_{0}\right)=\operatorname{Arf}\left(L_{1}\right)$.

By applying the above argument finitely many times, we conclude that $\operatorname{Arf}\left(L_{1}\right)=\operatorname{Arf}\left(L_{2}\right)$.

The knot in (a) is obtained from a disk by banding operations and taking the boundary.

It is isotoped to $K=$ (a left-hand trefoil) \# (a right-hand trefoil).

It is well known that $p(K)=1$.

$$
\begin{aligned}
n t(K) & =1 \\
\therefore p(K) & =n t(K)=1
\end{aligned}
$$

L: an untwisted 2-cable of a Hopf link as in the figure

$$
p(L)=1
$$

For L,

$$
\begin{aligned}
& \operatorname{Ik}(a, c)=-1, \operatorname{Ik}(a, d)=1, \operatorname{Ik}(b, c)=1, \operatorname{Ik}(b, d)=-1 \\
& \operatorname{Ik}(a, b)=\operatorname{Ik}(c, d)=0
\end{aligned}
$$

For the unlink,

$$
\operatorname{lk}(a, c)=\operatorname{lk}(a, d)=\operatorname{lk}(b, c)=\operatorname{lk}(b, d)=\operatorname{lk}(a, b)=\operatorname{lk}(c, d)=0
$$

Claim. $n t(L)=2$.
Sketch of proof) Suppose that $n t(L) \neq 2$.

Since $n t(L) \leq 2 p(L)=2$ by Corollary 1, $n t(L)=1$.

Consider a diagram D of L such that a single 1-2-move on D yields a diagram D_{0} of an unlink.

Since by only a single 1-2-move all linking numbers $\operatorname{lk}(a, c), \operatorname{lk}(a, d), \operatorname{lk}(b, c), \operatorname{lk}(b, d)$ change to 0 , the four components a, b, c, d should be involved in the four strands of the 1-2-move on D.

By investigating linking numbers, we get a contradiction.

Question.

Is there a knot K such that $p(K)=1$ and $n t(K)=2$?

Thank you for your attention.

