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Petal projection and petal number
A petal projection of a knot K is a projection of K with a single
multicrossing such that there are no nesting loops.

A petal projection with an n-multicrossing is called an n-petal.
The petal number, p(K ), is the minimum number of loops among
all petal projections of K , or equivalently, the minimum number of
strands passing through the single multicrossing.
Suppose we have a petal projection with n loops. We label the
strands passing through the n-multicrossing with 1, 2, . . . , n from
top to bottom. From one end of the top strand we read the labels
clockwise half way around the multicrossing. This sequence of
labels is called the petal permutation of the petal projection.
The figure on the right shows a 5-petal of the left-handed trefoil
knot with the petal permutation (1, 4, 2, 5, 3).
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Grid diagram and petal grid diagram
A grid diagram is a knot diagram which is composed
of finitely many horizontal edges and the same number
of vertical edges such that vertical edges always cross
over horizontal edges.
Every knot admits a grid diagram.
According to Adams et al. [2015], a p-petal of a knot has an
associated grid diagram with p vertical edges satisfying the
following properties:

1 There is exactly one vertical edge whose adjacent horizontal
edges point in opposite directions — one points to the left of
the vertical edge, and the other points to the right. We call
this edge the inflection edge, and denote it I. The horizontal
edges adjacent to I have length p−1

2 .
2 Each remaining vertical edge’s adjacent horizontal edges have

length p+1
2 and p−1

2 .
Such a grid diagram will be called a petal grid diagram.

Hwa Jeong Lee / Gyo Taek Jin Petal number of torus knots of type (r, r + 2)



5-petal of a trefoil knot from its petal grid diagram
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Main theorem
Let α(K ) denote the arc index of K which is the minimum
number of vertical edges among all grid diagrams of K .

Proposition 1. (Adams et al.)
Let K be a nontrivial knot. Then

p(K ) ≥
{
α(K ) if α(K ) is odd,
α(K ) + 1 if α(K ) is even.

Proposition 2. (Etnyre and Honda)
Let r and s be relatively prime integers such that 2 ≤ r < s. Then

α (Tr ,s) = r + s.

Theorem

Let r be an odd integer and r ≥ 3. Then p (Tr ,r+2) = 2r + 3.
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Proof of main theorem

By the propositions, we have p(Tr ,r+2) ≥ 2r + 3 for any odd
number r ≥ 3.
To prove the theorem, we show that p(Tr ,r+2) ≤ 2r + 3 by
constructing a petal grid diagram of Tr ,r+2 having 2r + 3 vertical
edges.

The figure shows minimal grid diagrams of T3,5, T5,7, and T7,9.
They are closed braids. We will deform such grid diagrams by braid
conjugations and then obtain petal grid diagrams using grid
diagram moves.
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Deformation of grid diagrams by braid conjugation
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Tr ,r+2 as closures of two conjugate braids
Let r = 2n + 1 and let σi denote the standard i-th generator of the
braid group Br of r strings.

Let ∆ denote the positive half-twist of r strings and let
τ =

∏2n
i=1 σi = σ1σ2 · · ·σ2n.

Lemma
∆2τ2 and ∆2τ(σn+1σn+2 · · ·σ2n)(σ2nσ2n−1 · · ·σn+1) are
conjugates.
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Proof of lemma

We use the following braid relations:

σiσjσ
ε
i = σε

j σiσj |i − j | = 1, ε = ±1, 1 ≤ i , j ≤ 2n
σiσ

ε
j = σε

j σi |i − j | > 1, ε = ±1, 1 ≤ i , j ≤ 2n
(1)

σε
i ∆2 = ∆2σε

i ε = ±1, 1 ≤ i ≤ 2n (2)

σε
i τ = τσε

i−1 ε = ±1, 2 ≤ i ≤ 2n (3)
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Cases n = 1 and n = 2

When n = 1, τ = σ1σ2 and the following shows that ∆2τ(σ2)(σ2)
is a conjugate of ∆2τ2:

(σ−1
2 )∆2τ2(σ2) = ∆2τσ−1

1 τ(σ2)
= ∆2τσ−1

1 (σ1σ2)(σ2)
= ∆2τ(σ2)(σ2)

When n = 2, τ = σ1σ2σ3 and the following shows that
∆2τ(σ3σ4)(σ4σ3) is a conjugate of ∆2τ2:

(σ−1
3 σ−1

4 σ−1
2 )∆2τ2(σ2σ4σ3) = ∆2τ(σ−1

2 σ−1
3 σ−1

1 )τ(σ2σ4σ3)
= ∆2τ(σ−1

2 σ−1
1 )τσ−1

2 (σ2σ4σ3)
= ∆2τ(σ−1

2 σ−1
1 )(σ1σ2σ3σ4)σ−1

2 (σ2σ4σ3)
= ∆2τ(σ3σ4)(σ4σ3)
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Cases n ≥ 3
Let n ≥ 3 and let

ck = σk+1σk+3 · · ·σ2n−k+1, k = 1, . . . , n
β0 = ∆2τ2

β1 = c−1
1 β0c1

βk = c−1
k βk−1ck , k = 2, . . . , n.

Then β1, β2, . . . , βn are all conjugates of β0 = ∆2τ2. We compute
them inductively.

β1 = (σ−1
2n σ

−1
2n−2 · · ·σ

−1
2 )∆2τ2(σ2σ4 · · ·σ2n)

= ∆2τ(σ−1
2n−1σ

−1
2n−3 · · ·σ

−1
1 )τ(σ2σ4 · · ·σ2n)

= ∆2τσ−1
1 (σ−1

2n−1 · · ·σ
−1
3 )τ(σ2σ4 · · ·σ2n)

= ∆2τσ−1
1 τ(σ−1

2n−2 · · ·σ
−1
2 )(σ2σ4 · · ·σ2n)

= ∆2τ(σ−1
1 )τ(σ2n)
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Cases n ≥ 3 (Continued)

β1 = ∆2τ(σ−1
1 )τ(σ2n)

β2 = c−1
2 β1c2

= (σ−1
2n−1σ

−1
2n−3 · · ·σ

−1
3 )∆2τ(σ−1

1 )τ(σ2n)(σ3σ5 · · ·σ2n−1)
= ∆2τ(σ−1

2n−2σ
−1
2n−4 · · ·σ

−1
2 )σ−1

1 τ(σ2n)(σ3σ5 · · ·σ2n−1)
= ∆2τ(σ−1

2 σ−1
1 )τ(σ2n)(σ−1

2n−3 · · ·σ
−1
3 )(σ3σ5 · · ·σ2n−1)

= ∆2τ(σ−1
2 σ−1

1 )τ(σ2nσ2n−1)

Suppose that

βk = ∆2τ(σ−1
k · · ·σ

−1
2 σ−1

1 )τ(σ2nσ2n−1 · · ·σ2n−k+1),

for k < n. We proceed by an induction on k.

Hwa Jeong Lee / Gyo Taek Jin Petal number of torus knots of type (r, r + 2)



βn = ∆2τ (σn+1σn+2 · · ·σ2n)(σ2nσ2n−1 · · ·σn+1)
βk+1 = (σ−1

2n−kσ
−1
2n−k−2 · · ·σ

−1
k+2)βk(σk+2σk+4 · · ·σ2n−k)

= (σ−1
2n−kσ

−1
2n−k−2 · · ·σ

−1
k+2)∆2τ(σ−1

k · · ·σ
−1
2 σ−1

1 )τ
(σ2nσ2n−1 · · ·σ2n−k+1)(σk+2σk+4 · · ·σ2n−k)

= ∆2τ(σ−1
2n−k−1σ

−1
2n−k−3 · · ·σ

−1
k+1)(σ−1

k · · ·σ
−1
2 σ−1

1 )τ
(σ2nσ2n−1 · · ·σ2n−k+1)(σk+2σk+4 · · ·σ2n−k)

= ∆2τ(σ−1
k+1σ

−1
k · · ·σ

−1
2 σ−1

1 )τ(σ−1
2n−k−2σ

−1
2n−k−4 · · ·σ

−1
k+2)

(σ2nσ2n−1 · · ·σ2n−k+1)(σk+2σk+4 · · ·σ2n−k)
= ∆2τ(σ−1

k+1σ
−1
k · · ·σ

−1
2 σ−1

1 )τ(σ2nσ2n−1 · · ·σ2n−k+1σ2n−k)
...

βn = ∆2τ(σ−1
n σ−1

n−1 · · ·σ
−1
2 σ−1

1 )τ(σ2nσ2n−1 · · ·σn+1)
= ∆2τ(σ−1

n σ−1
n−1 · · ·σ

−1
2 σ−1

1 )(σ1σ2 · · ·σ2n)(σ2nσ2n−1 · · ·σn+1)
= ∆2τ(σn+1σn+2 · · ·σ2n)(σ2nσ2n−1 · · ·σn+1)

This proves the lemma.
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Proof of main theorem

In the diagrams above, m = n + 1. The part (a) is the grid
diagram we described in the lemma and the left half of the part
(b) shows local details of that of (a). Notice that the vertical edge
on the left of the bottom horizontal edge of (a) is moved to the
(n + 2)nd position from the right. The part (c) is obtained by
moving the rightmost vertical edge of (b) through the back of the
diagram to the (n + 2)nd position from the left. The part (d) is
obtained by moving the bottom horizontal edge of (c) to the top
through the front of the diagram. The part (d) has a single
inflection edge and satisfies the conditions of a petal grid diagram.
This proves the main theorem.
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Petal permutations
From the petal grid diagram (d), we can read the petal
permutation of the associated (2r + 3)-petal of Tr ,r+2:

([1, 3n + 4], [n + 2, 3n + 3], [n + 1, 3n + 2], . . . , [2, 2n + 3],
[4n + 5, 2n + 2], [4n + 4, 2n + 1], . . . , [3n + 6, n + 3], 3n + 5)

The above are petal grid diagrams of T3,5,T5,7,T7,9 with petal
permutations:

T3,5 : (1, 7, 3, 6, 2, 5, 9, 4, 8)
T5,7 : (1, 10, 4, 9, 3, 8, 2, 7, 13, 6, 12, 5, 11)
T7,9 : (1, 13, 5, 12, 4, 11, 3, 10, 2, 9, 17, 8, 16, 7, 15, 6, 14)
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A short remembrance of Vaughan

It was my final year of graduate study at Brandeis when I first met
Vaughan. He came to explain about his polynomial at the Physics
Department of Harvard to a small audience. As he explained what
a knot is, one asked,

“What is the equivalence relation for knots?”
Then Vaughan grabbed an imaginary knot in his hand, juggled
with it around his body, and showed his hand saying

“This is the relation.”
It was a very physical and impressive explanation.

https://doi.org/10.1142/S0218216523400084
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