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1. Motivation & Introduction



Aztec Diamond and Domino Tiling

¢ The Aztec diamond of order 7 is a quadrilaterally symmetric region composed of 2n
rows of unit squares, where the rows have lengths 2,4,...,2n—-2,2n,2n,2n-2,...,4,2.
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Aztec diamond of order 4 and its domino tiling.

Theorem (Elkies-Kuperberg-Largen-Propp, 1992)

The number of domino tilings of the Aztec diamond of order n is 2""+D/2,



Augmented Aztec Diamond and Domino Tiling

e The augmented Aztec diamond of order » is obtained from the Aztec diamond of order n
by replacing the two longest columns in the middle with three columns.
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Augmented Aztec diamond of order 4 and its domino tiling.

Theorem (Sachs-Zernits, 1994)

The number of domino tilings of the augmented Aztec diamond of order n is 3} _, (Z)("Zk)

known as the nth central Delannoy number D(n).



Delannoy Paths and Delannoy numbers

> A Delannoy path consists of finite steps in
IRVZRNZEN ((0,-2), (1,=1), (=1,=1)}.

The nth central Delannoy number is the number
of Delannoy paths on an n X n square grid.
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A Delannoy path on a 4 x 4 square grid.




Connection between Delannoy Paths and Domino Tilings (Kim-Lee-Oh, 2017)




Aztec Bipyramid and Dicube Tilings

A three-dimensional extension of an augmented Aztec diamond and domino tilings.
e Adicubeisa?2x 1 x 1 cuboid.

e The Aztec bipyramid £, is a 3D-extension of an augmented Aztec diamond.

+ The figure is the Aztec bipyramid of order 4.

= The largest cross section of Py is
the augmented Aztec diamond of order 4.

e P, admits a dicube tiling because
each vertical column has even number of unit cubes.




Aztec Bipyramid and Dicube Tilings

Theorem (Choi-Lee-Oh, 2022)
The number of dicube tilings of the Aztec bipyramid P, of order n is given by
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k=0



2. Replacing Dicube Tilings
by Delannoy Paths



Settings for Dicube Tilings of General Polycubes

A Polycube is a union of a finite number of unit cubes in R? with a connected interior.

We place polycubes in R? as follows:

« the unit cubes in the polycubes have centers at integer lattice points;

e their faces are parallel to the xy—, yz- or zx-planes.

A polycube is said to be dicube-tilable if it has a dicube tiling.



Settings for Dicube Tilings of General Polycubes

The cubes in C are alternately colored black and white like a 3D-checkerboard coloring.
Given a colored polycube C,

» ablack cube is called a pivor cube if it is in C and has its top face in dC;

* aunit cube is called a ghost cube if it is not in C but adjacent to a white cube in C along
its top face.

Naturally, we color the ghost cubes black.




Dual Lattice Graph of a polycube

We associate C with a graph I'c = (V, E), called the dual lattice graph of C.

¢ Vc contains all the center points of black cubes in C and the ghost cubes of C.

We call the center points of pivot / ghost cubes the pivot / ghost vertices.

¢ For each non-ghost vertex (x,y,z) in Vg, if C contains a white cube centered at (x+1,y, z),

then (x,y,7) and (x+1,y,z—1) are joined by an edge in E¢.
(Likewise, for possible white cubes at (x—1,y, z), (x, y+1,2), (x,y—1,2), (x,y,2—1).)

Polycube C and its dual lattice graph I'c.



A Necessary Condition for a Polycube to be Dicube-Tilable

Proposition
If a polycube C is dicube-tilable,
then C must have the same number of pivot cubes and ghost cubes.

(hence the dual lattice graph U'c has the same number of pivot vertices and ghost vertices).

Idea of Proof: “Dicube-tilable polycubes have the same number of black and white cubes.”
Attach the following cubes to C, then we obtain another polycube C”:

» a white cube on the top of each pivot cube of C. (p more white cubes)

« all ghost cubes of C. (g more black cubes)

Then C’ is dicube-tilable because all the topmost / bottommost cubes are white / black.

.. p (# of pivot cubes) = g (# of ghost cubes).



Three-dimensional Delannoy paths
A three-dimensional Delannoy path is a lattice path in Z> of finite length with steps in
{(O’ 1’ _1)’ (0’ _17 _1), (la 0’ _1), (_1’ O’ _1)7 (O’ 0’ _2)}
Given a dicube-tilable polycube C,
a Delannoy path system in I'¢ is a non-intersecting family of Delannoy paths satisfying

« each path runs from a pivot vertex to a ghost vertex in ['¢;

* every pivot vertex of ['¢ is joined to a ghost vertex of I'c by a path in the system.

Note that every ghost vertex is an endpoint of a Delannoy path by the previous proposition.



Theorem (Choi-Lee-Oh, 2022)

If a polycube C is dicube-tilable, then there is a bijection between the set of dicube tilings
of C and the set of Delannoy path systems in I'c.

Sketch of proof
» Te: the set of dicube tilings of C
e Sc: the set of Delannoy path systems in I'¢

Construct a map @: Te — Sc as follows:

For a dicube tiling T € T¢, ® replaces D-dicubes with steps in I'¢, ignoring t-dicubes;

D-dicubes —» n-dicube s-dicube e-dicube w-dicube b-dicube
(Osls 1) (0’ 19_1) (190’ 1) ( 1909 1) (0’ 17 1)



Sketch of proof
1. @ is well defined.
¢ For each pivot vertex, ®(7T') contains a Delannoy path joining it to some ghost vertex of I'¢.

¢ Any two Delannoy paths in ®(7") do not intersect.
o O(T) € S¢.

2. @ is injective. It follows immediately from the definition of ®.

3. @ is surjective.

¢ Given a Delannoy path system in S,
replace each step in the system with a D-dicube by reversing the construction of ®.

¢ Let Q be the union of the D-dicubes, which is the sub-polycube of C.
+ The complementary polycube Q¢ of Q in C can be tiled only by t-dicubes.
*+ Any white cube W in Q¢ has a black cube in Q¢ adjacent to the bottom face of W.



3. The Number of Dicube Tilings
of Aztec Bipyramid



Aztec Bipyramid #, and Dicube Tiling

The number of dicube tilings of $,, = the number of Delannoy path systems in I'p, =T',,.

» P, has a unique pivot cube centered at (0, 0, n) and ghost cube centered at (0, 0, —n).

» That is, I', contains one Delannoy path.




The Number of Delannoy Paths in I,

A Delannoy path in I',, is a path from (0, 0, n) to (0, 0, —n).

« Given (a,b,c) € Z3, such thata + b + ¢ = n,
we construct a Delannoy path in I, by arranging, in a row,
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« ¢ steps of (0, 1, —1) and ¢ steps of (0, -1, —1). W “’/&

* A Delannoy path in I', corresponds to a triple (a, b, c) € Zio suchthata+ b +c = n.

i

.. #of Delannoy paths = # of arrangements of steps = (

a+2b+2c)_(b+c+n)
witha+b+c=n

a,b,b,c,c a,b,b,c,c



The Number of Dicube Tilings of the Aztec bipyramid

Theorem (Choi-Lee-Oh, 2022)
The number of dicube tilings of the Aztec bipyramid P, of order n is given by
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