Aztec Bipyramid and Dicube Tiling

Sunmook Choi
Korea University
(Jointwork with Sangyop Lee and Seungsang Oh)

Knots and Spatial Graphs 2023
June 16, 2023

Contents

1. Motivation and Introduction
2. Replacing Dicube Tilings by Delannoy Paths.
3. The Number of Dicube Tilings of Aztec Bipyramid.

1. Motivation \& Introduction

Aztec Diamond and Domino Tiling

- The Aztec diamond of order n is a quadrilaterally symmetric region composed of $2 n$ rows of unit squares, where the rows have lengths $2,4, \ldots, 2 n-2,2 n, 2 n, 2 n-2, \ldots, 4,2$.

Aztec diamond of order 4 and its domino tiling.

Theorem (Elkies-Kuperberg-Largen-Propp, 1992)

The number of domino tilings of the Aztec diamond of order n is $2^{n(n+1) / 2}$.

Augmented Aztec Diamond and Domino Tiling

- The augmented Aztec diamond of order n is obtained from the Aztec diamond of order n by replacing the two longest columns in the middle with three columns.

Augmented Aztec diamond of order 4 and its domino tiling.

Theorem (Sachs-Zernits, 1994)

The number of domino tilings of the augmented Aztec diamond of order n is $\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}$, known as the nth central Delannoy number $D(n)$.

Delannoy Paths and Delannoy numbers

A Delannoy path consists of finite steps in

$$
\{(0,-2),(1,-1),(-1,-1)\} .
$$

The nth central Delannoy number is the number of Delannoy paths on an $n \times n$ square grid.

$$
D(n)=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}
$$

A Delannoy path on a 4×4 square grid.

Connection between Delannoy Paths and Domino Tilings (Kim-Lee-Oh, 2017)

Aztec Bipyramid and Dicube Tilings

A three-dimensional extension of an augmented Aztec diamond and domino tilings.

- A dicube is a $2 \times 1 \times 1$ cuboid.
- The Aztec bipyramid \mathcal{P}_{n} is a 3D-extension of an augmented Aztec diamond.
* The figure is the Aztec bipyramid of order 4.
* The largest cross section of \mathcal{P}_{4} is the augmented Aztec diamond of order 4.
- \mathcal{P}_{n} admits a dicube tiling because each vertical column has even number of unit cubes.

Aztec Bipyramid and Dicube Tilings

Theorem (Choi-Lee-Oh, 2022)

The number of dicube tilings of the Aztec bipyramid \mathcal{P}_{n} of order n is given by

$$
\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{2 k}{k}^{2}
$$

2. Replacing Dicube Tilings by Delannoy Paths

Settings for Dicube Tilings of General Polycubes

A Polycube is a union of a finite number of unit cubes in \mathbb{R}^{3} with a connected interior.
We place polycubes in \mathbb{R}^{3} as follows:

- the unit cubes in the polycubes have centers at integer lattice points;
- their faces are parallel to the $x y-, y z$ - or $z x$-planes.

A polycube is said to be dicube-tilable if it has a dicube tiling.

Settings for Dicube Tilings of General Polycubes

The cubes in C are alternately colored black and white like a 3D-checkerboard coloring. Given a colored polycube C,

- a black cube is called a pivot cube if it is in C and has its top face in ∂C;
- a unit cube is called a ghost cube if it is not in C but adjacent to a white cube in C along its top face.
Naturally, we color the ghost cubes black.

Dual Lattice Graph of a polycube

We associate C with a graph $\Gamma_{C}=\left(V_{C}, E_{C}\right)$, called the dual lattice graph of C.

- V_{C} contains all the center points of black cubes in C and the ghost cubes of C.

We call the center points of pivot / ghost cubes the pivot / ghost vertices.

- For each non-ghost vertex (x, y, z) in V_{C}, if C contains a white cube centered at $(x+1, y, z)$, then (x, y, z) and $(x+1, y, z-1)$ are joined by an edge in E_{C}.
(Likewise, for possible white cubes at $(x-1, y, z),(x, y+1, z),(x, y-1, z),(x, y, z-1)$.)

Polycube C and its dual lattice graph Γ_{C}.

A Necessary Condition for a Polycube to be Dicube-Tilable

Proposition

If a polycube C is dicube-tilable, then C must have the same number of pivot cubes and ghost cubes.
(hence the dual lattice graph Γ_{C} has the same number of pivot vertices and ghost vertices).

Idea of Proof: "Dicube-tilable polycubes have the same number of black and white cubes."
Attach the following cubes to C, then we obtain another polycube C^{\prime} :

- a white cube on the top of each pivot cube of C. (p more white cubes)
- all ghost cubes of C. (g more black cubes)

Then C^{\prime} is dicube-tilable because all the topmost / bottommost cubes are white / black.
$\therefore p(\#$ of pivot cubes $)=g$ (\# of ghost cubes).

Three-dimensional Delannoy paths

A three-dimensional Delannoy path is a lattice path in \mathbb{Z}^{3} of finite length with steps in

$$
\{(0,1,-1),(0,-1,-1),(1,0,-1),(-1,0,-1),(0,0,-2)\} .
$$

Given a dicube-tilable polycube C,
a Delannoy path system in $\Gamma_{\mathcal{C}}$ is a non-intersecting family of Delannoy paths satisfying

- each path runs from a pivot vertex to a ghost vertex in Γ_{C};
- every pivot vertex of Γ_{C} is joined to a ghost vertex of Γ_{C} by a path in the system.

Note that every ghost vertex is an endpoint of a Delannoy path by the previous proposition.

Theorem (Choi-Lee-Oh, 2022)

If a polycube C is dicube-tilable, then there is a bijection between the set of dicube tilings of C and the set of Delannoy path systems in Γ_{C}.

Sketch of proof

- \mathbb{T}_{C} : the set of dicube tilings of C
- \mathbb{S}_{C} : the set of Delannoy path systems in Γ_{C}

Construct a map $\Phi: \mathbb{T}_{C} \rightarrow \mathbb{S}_{C}$ as follows:
For a dicube tiling $T \in \mathbb{T}_{\mathcal{C}}$, Φ replaces D -dicubes with steps in $\Gamma_{\mathcal{C}}$, ignoring t -dicubes;

Sketch of proof

1. Φ is well defined.

- For each pivot vertex, $\Phi(T)$ contains a Delannoy path joining it to some ghost vertex of Γ_{C}.
- Any two Delannoy paths in $\Phi(T)$ do not intersect.
- $\Phi(T) \in \mathbb{S}_{C}$.

2. Φ is injective. It follows immediately from the definition of Φ.
3. Φ is surjective.

- Given a Delannoy path system in \mathbb{S}_{C}, replace each step in the system with a D-dicube by reversing the construction of Φ.
- Let Q be the union of the D-dicubes, which is the sub-polycube of C.
* The complementary polycube Q^{c} of Q in C can be tiled only by t-dicubes.
* Any white cube W in Q^{c} has a black cube in Q^{c} adjacent to the bottom face of W.

3. The Number of Dicube Tilings of Aztec Bipyramid

Aztec Bipyramid \mathcal{P}_{n} and Dicube Tiling

The number of dicube tilings of $\mathcal{P}_{n}=$ the number of Delannoy path systems in $\Gamma_{\mathcal{P}_{n}}=\Gamma_{n}$.

- \mathcal{P}_{n} has a unique pivot cube centered at $(0,0, n)$ and ghost cube centered at $(0,0,-n)$.
- That is, Γ_{n} contains one Delannoy path.

The Number of Delannoy Paths in Γ_{n}

A Delannoy path in Γ_{n} is a path from $(0,0, n)$ to $(0,0,-n)$.

- Given $(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}$ such that $a+b+c=n$,
we construct a Delannoy path in Γ_{n} by arranging, in a row,
* a steps of $(0,0,-2)$,
* b steps of $(1,0,-1), b$ steps of $(-1,0,-1)$,
* c steps of $(0,1,-1)$ and c steps of $(0,-1,-1)$.

- A Delannoy path in Γ_{n} corresponds to a triple $(a, b, c) \in \mathbb{Z}_{\geq 0}^{3}$ such that $a+b+c=n$.
$\therefore \begin{gathered}\text { \# of Delannoy paths } \\ \text { with } a+b+c=n\end{gathered}=$ \# of arrangements of steps $=\binom{a+2 b+2 c}{a, b, b, c, c}=\binom{b+c+n}{a, b, b, c, c}$

The Number of Dicube Tilings of the Aztec bipyramid

Theorem (Choi-Lee-Oh, 2022)

The number of dicube tilings of the Aztec bipyramid \mathcal{P}_{n} of order n is given by

$$
\sum_{\substack{a+b+c=n \\ a, b, c \geq 0}}\binom{b+c+n}{a, b, b, c, c}=\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{2 k}{k}^{2}
$$

$$
\begin{aligned}
\sum_{a+b+c=n}\binom{b+c+n}{a, b, b, c, c} & =\sum_{a+b+c=n} \frac{(b+c+n)!}{a!(b!c!)^{2}}=\sum_{k=0}^{n} \sum_{b=0}^{k} \frac{(n+k)!}{(n-k)!(b!(k-b)!)^{2}} \quad(\text { let } b+c=k) \\
& =\sum_{k=0}^{n} \sum_{b=0}^{k} \frac{(n+k)!}{(n-k)!(2 k)!} \frac{(2 k)!}{k!k!} \frac{(k!)^{2}}{(b!(k-b)!)^{2}} \\
& =\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{2 k}{k} \sum_{b=0}^{k}\binom{k}{b}\binom{k}{k-b}=\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{2 k}{k}^{2}
\end{aligned}
$$

Thank You!

