Aztec Bipyramid and Dicube Tiling

Sunmook Choi

Korea University

(Jointwork with Sangyop Lee and Seungsang Oh)

Knots and Spatial Graphs 2023 June 16, 2023

Contents

- 1. Motivation and Introduction
- **2.** Replacing Dicube Tilings by Delannoy Paths.
- **3.** The Number of Dicube Tilings of Aztec Bipyramid.

1. Motivation & Introduction

Aztec Diamond and Domino Tiling

• The Aztec diamond of order *n* is a quadrilaterally symmetric region composed of 2n rows of unit squares, where the rows have lengths $2, 4, \ldots, 2n - 2, 2n, 2n, 2n - 2, \ldots, 4, 2$.

Aztec diamond of order 4 and its domino tiling.

Theorem (Elkies-Kuperberg-Largen-Propp, 1992)

The number of domino tilings of the Aztec diamond of order n is $2^{n(n+1)/2}$.

Augmented Aztec Diamond and Domino Tiling

• The augmented Aztec diamond of order *n* is obtained from the Aztec diamond of order *n* by replacing the two longest columns in the middle with three columns.

Augmented Aztec diamond of order 4 and its domino tiling.

Theorem (Sachs-Zernits, 1994)

The number of domino tilings of the augmented Aztec diamond of order n is $\sum_{k=0}^{n} {n \choose k} {n+k \choose k}$, known as the nth central Delannoy number D(n).

Delannoy Paths and Delannoy numbers

A Delannoy path on a 4×4 square grid.

A Delannoy path consists of finite steps in

$$\{(0, -2), (1, -1), (-1, -1)\}$$

The *n*th central Delannoy number is the number of Delannoy paths on an $n \times n$ square grid.

$$D(n) = \sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k}.$$

Connection between Delannoy Paths and Domino Tilings (Kim-Lee-Oh, 2017)

Aztec Bipyramid and Dicube Tilings

A three-dimensional extension of an augmented Aztec diamond and domino tilings.

- A dicube is a $2 \times 1 \times 1$ cuboid.
- The Aztec bipyramid \mathcal{P}_n is a 3D-extension of an augmented Aztec diamond.
 - * The figure is the Aztec bipyramid of order 4.
 - * The largest cross section of \mathcal{P}_4 is the augmented Aztec diamond of order 4.
- \mathcal{P}_n admits a dicube tiling because each vertical column has even number of unit cubes.

Aztec Bipyramid and Dicube Tilings

Theorem (Choi-Lee-Oh, 2022)

The number of dicube tilings of the Aztec bipyramid \mathcal{P}_n of order n is given by

$$\sum_{k=0}^{n} \binom{n+k}{n-k} \binom{2k}{k}^{2}.$$

2. Replacing Dicube Tilings by Delannoy Paths

Settings for Dicube Tilings of General Polycubes

A Polycube is a union of a finite number of unit cubes in \mathbb{R}^3 with a connected interior.

We place polycubes in \mathbb{R}^3 as follows:

- the unit cubes in the polycubes have centers at integer lattice points;
- their faces are parallel to the *xy*-, *yz* or *zx*-planes.

A polycube is said to be *dicube-tilable* if it has a dicube tiling.

Settings for Dicube Tilings of General Polycubes

The cubes in C are alternately colored black and white like a 3D-checkerboard coloring. Given a colored polycube C,

- a black cube is called a *pivot cube* if it is in C and has its top face in ∂C ;
- a unit cube is called a *ghost cube* if it is not in *C* but adjacent to a white cube in *C* along its top face.

Naturally, we color the ghost cubes black.

Dual Lattice Graph of a polycube

We associate *C* with a graph $\Gamma_C = (V_C, E_C)$, called the *dual lattice graph* of *C*.

- *V_C* contains all the center points of black cubes in *C* and the ghost cubes of *C*. We call the center points of pivot / ghost cubes the *pivot* / *ghost vertices*.
- For each non-ghost vertex (x, y, z) in V_C, if C contains a white cube centered at (x+1, y, z), then (x, y, z) and (x+1, y, z-1) are joined by an edge in E_C.
 (Likewise, for possible white cubes at (x-1, y, z), (x, y+1, z), (x, y-1, z), (x, y, z-1).)

Polycube *C* and its dual lattice graph Γ_C .

A Necessary Condition for a Polycube to be Dicube-Tilable

Proposition

If a polycube C is dicube-tilable, then C must have the same number of pivot cubes and ghost cubes. (hence the dual lattice graph Γ_C has the same number of pivot vertices and ghost vertices).

Idea of Proof: "Dicube-tilable polycubes have the same number of black and white cubes." Attach the following cubes to C, then we obtain another polycube C':

- a white cube on the top of each pivot cube of *C*. (*p* more white cubes)
- all ghost cubes of *C*. (*g* more black cubes)

Then C' is dicube-tilable because all the topmost / bottommost cubes are white / black.

 $\therefore p$ (# of pivot cubes) = g (# of ghost cubes).

Three-dimensional Delannoy paths

A three-dimensional *Delannoy path* is a lattice path in \mathbb{Z}^3 of finite length with steps in

$$\{(0, 1, -1), (0, -1, -1), (1, 0, -1), (-1, 0, -1), (0, 0, -2)\}.$$

Given a dicube-tilable polycube *C*,

a *Delannoy path system* in Γ_C is a non-intersecting family of Delannoy paths satisfying

- each path runs from a pivot vertex to a ghost vertex in Γ_C ;
- every pivot vertex of Γ_C is joined to a ghost vertex of Γ_C by a path in the system.

Note that every ghost vertex is an endpoint of a Delannoy path by the previous proposition.

Theorem (Choi-Lee-Oh, 2022)

If a polycube *C* is dicube-tilable, then there is a bijection between the set of dicube tilings of *C* and the set of Delannoy path systems in Γ_C .

Sketch of proof

D-

- \mathbb{T}_C : the set of dicube tilings of *C*
- \mathbb{S}_C : the set of Delannoy path systems in Γ_C

Construct a map $\Phi \colon \mathbb{T}_C \to \mathbb{S}_C$ as follows:

For a dicube tiling $T \in \mathbb{T}_{\mathcal{C}}$, Φ replaces D-dicubes with steps in $\Gamma_{\mathcal{C}}$, ignoring t-dicubes;

dicubes
$$\rightarrow$$
 n-dicube s-dicube e-dicube w-dicube b-dicube
 $(0, 1, -1) (0, -1, -1) (1, 0, -1) (-1, 0, -1) (0, 1, -1)$

Sketch of proof

1. Φ is well defined.

- For each pivot vertex, $\Phi(T)$ contains a Delannoy path joining it to some ghost vertex of Γ_C .
- Any two Delannoy paths in $\Phi(T)$ do not intersect.
- $\Phi(T) \in \mathbb{S}_C$.
- 2. Φ is injective. It follows immediately from the definition of Φ .

3. Φ is surjective.

- Given a Delannoy path system in \mathbb{S}_C , replace each step in the system with a D-dicube by reversing the construction of Φ .
- Let Q be the union of the D-dicubes, which is the sub-polycube of C.
 - * The complementary polycube Q^c of Q in C can be tiled only by t-dicubes.
 - * Any white cube W in Q^c has a black cube in Q^c adjacent to the bottom face of W.

3. The Number of Dicube Tilings of Aztec Bipyramid

Aztec Bipyramid \mathcal{P}_n and Dicube Tiling

The number of dicube tilings of \mathcal{P}_n = the number of Delannoy path systems in $\Gamma_{\mathcal{P}_n} = \Gamma_n$.

- \mathcal{P}_n has a unique pivot cube centered at (0, 0, n) and ghost cube centered at (0, 0, -n).
- That is, Γ_n contains one Delannoy path.

The Number of Delannoy Paths in Γ_n

A Delannoy path in Γ_n is a path from (0, 0, n) to (0, 0, -n).

- Given (a, b, c) ∈ Z³_{≥0} such that a + b + c = n, we construct a Delannoy path in Γ_n by arranging, in a row,
 - * *a* steps of (0, 0, -2),
 - * *b* steps of (1, 0, -1), *b* steps of (-1, 0, -1),
 - * *c* steps of (0, 1, -1) and *c* steps of (0, -1, -1).

$$\therefore \text{ # of Delannoy paths} = \text{ # of arrangements of steps} = \binom{a+2b+2c}{a,b,b,c,c} = \binom{b+c+n}{a,b,b,c,c}$$

The Number of Dicube Tilings of the Aztec bipyramid

Theorem (Choi-Lee-Oh, 2022)

The number of dicube tilings of the Aztec bipyramid \mathcal{P}_n of order n is given by

$$\sum_{\substack{a+b+c=n\\a,b,c\geq 0}} \binom{b+c+n}{a,b,b,c,c} = \sum_{k=0}^{n} \binom{n+k}{n-k} \binom{2k}{k}^{2}.$$

$$\sum_{a+b+c=n} {\binom{b+c+n}{a,b,b,c,c}} = \sum_{a+b+c=n} \frac{(b+c+n)!}{a!(b!\,c!)^2} = \sum_{k=0}^n \sum_{b=0}^k \frac{(n+k)!}{(n-k)!\,(b!\,(k-b)!)^2}$$
(let $b+c=k$)
$$= \sum_{k=0}^n \sum_{b=0}^k \frac{(n+k)!}{(n-k)!\,(2k)!} \frac{(2k)!}{k!\,k!} \frac{(k!)^2}{(b!\,(k-b)!)^2}$$
$$= \sum_{k=0}^n {\binom{n+k}{n-k}} \binom{2k}{k} \sum_{b=0}^k \binom{k}{b} \binom{k}{k-b} = \sum_{k=0}^n {\binom{n+k}{n-k}} \binom{2k}{k}^2$$

Thank You!