Quasi-Alternating Links, Examples and Obstructions

Nafaa Chbili

United Arab Emirates University

Knots and Spatial Graphs 2023 KAIST, Daejeon June 15-17, 2023

N 4 3 N 4

Outline

→ < Ξ → <</p>

Alternating links

- A link diagram is alternating if the overpass and the underpass alternate as one travels along the diagram.
- A link is said to be alternating if it can be represented by an alternating diagram. Otherwise, the link is non-alternating.

Non-alternating knot diagram

Alternating links

Quasi-Alternating Links, Examples and Obstructions

Alternating links

Suppose that K is an alternating knot, $\Delta_K(t)$ its Alexander polynomial and $V_K(t)$ its Jones polynomial.

- The genus of the knot g(K) is the degree of its "symmetric" Alexander polynomial.
- 2 The coefficients of $\Delta_{\mathcal{K}}(t)$ alternate in sign and have no gaps.
- The span of $V_K(t)$ is equal to the crossing number of K.
- The coefficients of V_K(t) alternate in sign and have no gaps (if K is prime and not a torus knot).

- 4 周 ト 4 戸 ト 4 戸 ト

Alternating links

Given an alternating link L and Σ_L the branched double-cover of L.

- Σ_L is an L-space (i.e. Heegard Floer Homology of Σ_L is determined by det(L)), [Ozsváth and Szabó];
- ② Σ_L bounds a negative definite 4-manifold W with $H_1(W) = 0$, [Ozsv*á*th and Szab*ó*];
- The reduced ordinary Khovanov homology group of *L* is thin, $KH^{i,j}(L)$ is trivial whenever $i - j \neq \frac{\sigma(L)}{2}$, [Lee];
- The Z₂ link Floer homology group of L is thin, [Rasmussen, Ozsváth- Szabó];
- The reduced odd Khovanov homology group of L is thin, [Ozsváth, Rasmussen and Szabó];

Alternating links

QA links, Examples and Properties Invariants of QA links

A Khovanov Homology Thin Knot

Khovanov Homology Thick Knot

・ロト ・部ト ・ヨト ・ヨト

3

Topological Characterization of Alternating links

A topological characterization of alternating link is obtained by Greene and Howie.

Greene, Howie

A link is alternating if and only if it simultaneously bounds both positive and negative definite spanning surfaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quasi-alternating links

Definition

The set $\mathcal Q$ of quasi-alternating links is the smallest set such that:

- The unknot belongs to \mathcal{Q} .
- If L is a link with a diagram D having a crossing c such that
 - Both smoothing of D at c, L_0 and L_∞ are in Q,
 - $\ \ \, {\rm Other}(L_0), \det(L_\infty)\geq 1, \\$
 - det(L) = det(L₀) + det(L_∞); then L ∈ Q
 We say that L is quasi-alternating at the crossing c with quasi-alternating diagram D.

Quasi-alternating links

- Any non-split alternating link is QA at any crossing of any reduced alternating diagram [Ozsváth and Szabó].
- **②** First examples of non-alternating QA knots are 8_{20} and 8_{21} .

From the definition

- The determinant of a QA link is positive and it is equal to 1 if and only if *L* is the unknot;
- If K₁ and K₂ are two QA knots, then so is their connected sum K₁#K₂, [Champanerkar and Kofman];
- If L is quasi-alternating, then so is its mirror image L!;

Problem

Decide whether a given knot or link is QA or not.

・ 同 ト ・ ヨ ト ・ ヨ ト

Obstruction for QA links

- The branched double-cover of a QA link L, Σ_L is an L-space (i.e. Heegard Floer Homology of Σ_L is determined by det(L)) [Ozsváth and Szabó];
- **②** The branched double-cover of a QA link bounds a negative definite 4-manifold W with $H_1(W) = 0$, [Ozsváth and Szabó];
- The reduced ordinary Khovanov homology group of a QA link is thin; $KH^{i,j}(L)$ is trivial whenever $i j \neq \frac{\sigma(L)}{2}$; [Manolescu and Ozsváth];
- The Z₂ link Floer homology group of a QA link is thin [Manolescu and Ozsváth];
- The reduced odd Khovanov homology group of a QA link is thin, [Ozsváth, Rasmussen and Szabó];

Homologically thin non QA links

- Torus links T(p, q), p, q ≥ 3 are Khovanov homologically thick so not QA.
- The first homologically thin non QA knot: 11n₅₀; [Greene]
- An infinite family of homologically thin, hyperbolic non QA knots: Kanenobu knots of type K(-10n, 10n + 3) [Greene-Watson].

The K(p, q) Kanenobu knot.

Examples of QA links

Champanerkar-Kofman: Given a link L with QA diagram D at a crossing c. Then any link diagram obtained from D by replacing c by an alternating rational tangle of the same type is QA.

This twisting technique has been applied to classify all QA Montesinos links.

QA Montesinos Links

This theorem was first conjectured by Qazaqzeh-Qublan-C and Champanerkar-Ording, then recently proved by Issa.

Theorem

Let $L = M(e; t_1, ..., t_p)$ be a Montesinos link in standard form, that is, where $t_i = \frac{\alpha_i}{\beta_i} > 1$ and $\alpha_i, \beta_i > 0$ are coprime for all i. Then L is quasi-alternating if and only if (1) e < 1, or (2) e = 1 and $\frac{\alpha_i}{\alpha_i - \beta_i} > \frac{\alpha_j}{\beta_j}$ for some i, j with $i \neq j$, or (3) e > p - 1, or (4) e = p - 1 and $\frac{\alpha_i}{\alpha_i - \beta_i} > \frac{\alpha_j}{\beta_j}$ for some i, j with $i \neq j$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

More Examples

Kaur-C

Let *L* be a QA link diagram and *c* be a QA crossing. If *L'* is a link obtained from *L* by replacing crossing *c* by an alternating tangle *T* (algebraic or non-algebraic) of same type, then *L'* is QA at every crossing of *T* in *L'*.

3.1

More Examples of non-alternating QA knots

 $K(T)\colon$ Diagram obtained by replacing crossing c in knot diagram K by a tangle T

 \hat{T} : Clock-wise 90° rotation of T followed by switching crossings.

-	13n513 : 13n525 ·	$\frac{8_{21}(T_{1121})}{8_{21}(\hat{T}_{1211})}$	$\frac{13n530:8_{21}(T_{1211})}{14n20087:9_{47}(T_{1011})}$	
_	13n325 : 13n344 :	$\frac{8_{21}(T_{1211})}{8_{21}(T_{1112})}$	$\frac{14n20007 \cdot 9_{47}(T_{1211})}{14n20090 \cdot 9_{47}(T_{1121})}$	୬ ୧ (
		N. Chbili	Quasi-Alternating Links, Examples and Obstructions	

In addition to the classification of QA pretzel and Montesinos links,

- QA links with braid index 3 are completely characterized; [Greene]
- QA links with determinants \leq 7 have been characterized; [Lidman-Sivek]
- QA links with at most 11 crossings have been determined;

• • = • • = •

The Jones polynomial

The Jones polynomial is an isotopy invariant of oriented links defined by:

$$egin{aligned} &V_{\bigcirc}(t) = 1\ &tV_{L_+}(t) - t^{-1}V_{L_-}(t) = (\sqrt{t} + rac{1}{\sqrt{t}})V_{L_0}(t), \end{aligned}$$

where L_+ , L_- and L_0 are 3 links as pictured below:

We can always write the Jones polynomial of any link L as follows:

$$V_L(t)=t^r\sum_{i=0}^m a_it^i$$
, where $m\geq 0$, $a_0
eq 0$ and $a_m
eq 0$.

 $m := span(V_L)$

Let L be a QA link.

- The coefficients of $V_L(t)$ alternate in sign. This is a consequence of its thin Khovanov homology.
- KH^{*i*,*j*}(*L*) has no gaps of length larger than 1 in the differential grading, thus *V*_{*L*}(*t*) has no gap of length larger than one [Qazaqzeh-C].

j,i	-3	-2	-1	0
-1				1
-3				1
-5		1		
-7				
-9	1			

Table: The Khovanov homology of the trefoil knot.

・ 同 ト ・ ヨ ト ・ ヨ ト

Colored Jones Polynomials

Let $J_{N,L}(q)$ be the Colored Jones polynomial of L. If L is alternating $J_{N,L}(q)$ satisfies the Head-tail property: The first and the last k coefficients of the polynomial do not depend on N as long as N > k. For example, for $J_{N,63}(q)$ we have:

$$N = 2: \quad 1 - 2q + 2q^2 - 2q^3 + 2q^4 - q^5 + q^6$$

$$N = 3: \quad 1 - 2q + 4q^3 - 5q^4 + 6q^6 + \dots - q^{14} + 3q^{15} - q^{16} - q^{17} + q^{18}$$

$$N = 4: \quad 1 - 2q + 2q^3 + q^4 - 4q^5 - 2q^6 + \dots - 2q^{29} - 3q^{30} + 3q^{32} - q^{34} - q^{35} + q^{36}$$

$$N = 5: \quad 1 - 2q + 2q^3 - q^4 + 2q^5 - 6q^6 + \dots - 2q^{53} - q^{54} + 4q^{55} - q^{58} - q^{59} + q^{60}$$

$$N = 6: \quad 1 - 2q + 2q^3 - q^4 - 2q^7 + q^8 + \dots - 3q^{82} + 3q^{84} + q^{85} - q^{88} - q^{89} + q^{90}$$

$$N = 7: \quad 1 - 2q + 2q^3 - q^4 - 2q^6 + 4q^7 + \dots + 4q^{119} + q^{121} - q^{124} - q^{125} + q^{126}$$

Question. Head-tail property is not true QA links. Does $J_{N,L}(q)$ satisfy any similar property?

Alexander Polynomial

Recall that if K is an alternating knot and $\Delta_{K}(t) = \sum_{-m}^{m} \alpha_{i} t^{i}$, then:

2
$$\alpha_i \alpha_{i+1} < 0$$
, for all $-m \le i \le m-1$.

Condition 1 is true for QA knots and knots which are thin in Floer Homology in general, [Ozsv*á*th-Szab*ó*].

Question. Does condition 2 extend to quasi-alternating links?

Remark. Fox Trapezoid Conjecture does not hold for quasi-alternating links.

・ 同 ト ・ ヨ ト ・ ヨ ト

Open Problem

Problem. Give a topological characterization of QA links.

N. Chbili Quasi-Alternating Links, Examples and Obstructions

• • = • • = •