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Definitions

® A stick knot is a simple closed curve in R? which consists of
finite number of straight line segments.

® A stick number s(K) of a knot K is the minimal number of
sticks required to construct this stick knot.

Do

* 5(31)
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General upper bound

Negami( 1991)
5+ /8¢(
LK ) for a link K except for the trivial knot,

and s(K ) < 2¢(K ) for a link K which has neither the Hopf link
as a connected sum factor nor a splittable trivial component.

Huh-Oh(2011)
(¢(K) + 1) for any nontrivial knot K. In particular,

¢(K) for any non-alternating prime knot.
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Upper bound of knots and links

e Torus knot(Jin 1997) : s(T}4) < 2¢(p < q) and equlity
holds if 2 < p < ¢ < 2p.

e Composite knot(Adams et al. 1997, Jin 1997) :
S(KlﬂKg) < S(Kl) + S(Kg) - 3.

® 2-bridge(Rational) link(Huh-N.-Oh 2011) :
s(K) <c¢(K)+2if ¢(K) <6.

® Montesinos link(Lee-N.-Oh 2021+ ) :

¢(K)4+1 if K is alternating,
¢(K)+3 if K is non-alternating.

s(K) < {

if each rational tangle of the diagram has five or more
index of the related Conway notation.
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Huh-N.-Oh (2011)
$(K) < ¢(K) + 2 for all 2-bridge links K with ¢(K) > 6.
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Rational tangle and 2-bridge links

® Integer tangles and a rational tangle with Conway notation
[tlatQa e vtm]

X=X
00oC
Pred

n>0 n<0

Stick number of knots and links



Stick number of 2-bridge links

[e]e] lele]e]e)

Stick Presentation of a 2-bridge link

® How to construct an integer tangle by ¢ + 1 sticks

‘/ ‘ top view
:Zt even ?t odd
T

(a) (b)
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Stick Presentation of a 2-bridge link

e How to construct a
2-bridge link by ¢(K) + 2
sticks
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® Special case 1 : [p]
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® Special case 2 : [p,q,7]

D &

(1,q,r)

b

(@;L,6)
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e Knotinfo

Name Stick Number
31 6
41 7
51 8
52 8
1 8
62 8
63 8
1 )
2 o
3 9
74 9
pa-y 9
76 9
7 o
81 (0.10]
a2 o
83 [0
84 .10
85 [0
86 .10

KnotInfo: Table of Knots
Search Results

Toal 249 kot found: show (20 ot staring fom (1| Go
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e Pillowcase form of a rational tangle

[2, 1, 2]
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e Pillowcase form of a rational tangle
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e Pillowcase form of a rational tangle
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Definition

® Montesinos link

® Fach R;’s are rational tangles and n > 3.
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S q 1
T+ - 1+

(T—1)+¥

® Thus b and _47p tangles have same number of
q q

crossings.
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® A reduced Montesinos diagram D is a diagram of a
Montesinos link satisfying one of the following two
conditions;

(1) D is alternating, or

(2) e =0 and each R; is an alternating rational tangle diagram,
with at least two crossings, placed in D so that the two
lower ends of R; belong to arcs incident to a common
crossing in R;.
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® A reduced Montesinos diagram D is a diagram of a
Montesinos link satisfying one of the following two
conditions;

(1) D is alternating, or

(2) e =0 and each R; is an alternating rational tangle diagram,
with at least two crossings, placed in D so that the two
lower ends of R; belong to arcs incident to a common
crossing in R;.

® They are can be respectively rephrased by
(1*) e >0 and all R;’s are positively alternating in D, or
(2*) e=0, and Ry, ..., R; are positively alternating in D and

Riy1,..., R, are negatively alternating for some t.
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Example

—3/8 2/9 I 14 I 0/6 172
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Likorish-Thistlethwaite (1988)

If a link L admits a reduced Montesinos diagram having n
crossings, then L has the crossing number n.
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Lee-N.-Oh (2021+)

Let K be a knot or link which admits a reduced Montesinos
diagram having ¢(K) crossings. If each rational tangle of the
diagram has five or more index of the related Conway notation,
then

¢(K)+1 if K is alternating,
c¢(K)+3 if K is non-alternating.
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Proof of Main Theorem

e How to construct a rational tangle by t; +to+ -+, + 1
sticks

=
4 D13 | \

I

o o 1@%; il
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Proof of Main Theorem

® Stick rational tangles in a virtual boxes

i

a

™ ANA_7 .
W/—W/%{ 2.2.2,2222]
— O

[2,2,3,3,2,5,2]
,/m
AN [2,2,3,2,1,5,2]
/ //

~
'\
\(A‘}/‘{\ (1,2,2,1,2,2,3]
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Proof of Main Theorem

® How to combine rational tangles
ld lal (: lb2)
1 ~—

c(=d R ‘

C2
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Proof of Main Theorem

® Alternating Montesinos link
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Proof of Main Theorem

® ¢ £ ( case
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Proof of Main Theorem

® Non-alternating Montesinos link
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Proof of Main Theorem

® For the case
(1*) e >0 and all R;’s are positively alternating in D,
we need one more stick to connect ¢, and d;. Then we can
construct K by c¢(K) + 1 sticks.
® For the case
(2*) e=0, and Ry, ..., R; are positively alternating in D and
Riy1, ..., R, are negatively alternating for some t,
we need one more stick to connect ¢; and d41, and two more
sticks to connect R, and R;. Therefore we need c¢(K) + 3 sticks
to construct K.
Thus the proof is complete.
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Questions

(1) What is the upper bound of stick number for the
Montesinos link including rational tangles with Conway
notation [ri] or [ri,r2,rs]?

(2) In general, non-alternating links have better upper bound
for stick numbers. How about for Montesinos links?
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