Stick number of knots and links

Sungjong No

Kyonggi University

Knots and Spatial Graphs 2021

February 3, 2021

Sungjong No

Stick number of knots and links

- 2 Stick number of 2-bridge links
- **3** Rational tangles
- **4** Stick number of Montesinos links

Introduction		
0000		

Definitions

- A *stick knot* is a simple closed curve in \mathbb{R}^3 which consists of finite number of straight line segments.
- A stick number s(K) of a knot K is the minimal number of sticks required to construct this stick knot.

• $s(3_1) = 6$

•
$$s(4_1) = 7$$
.

General upper bound

Negami(1991)

 $\frac{5 + \sqrt{8c(K) + 9}}{2} \le s(K) \text{ for a link } K \text{ except for the trivial knot,} \\ \text{and } s(K) \le 2c(K) \text{ for a link } K \text{ which has neither the Hopf link} \\ \text{as a connected sum factor nor a splittable trivial component.} \end{cases}$

$\operatorname{Huh-Oh}(2011)$

 $s(K) \leq \frac{3}{2}(c(K)+1)$ for any nontrivial knot K. In particular, $s(K) \leq \frac{3}{2}c(K)$ for any non-alternating prime knot. Stick number of 2-bridge links 0000000

Upper bound of knots and links

- Torus knot(Jin 1997) : $s(T_{p,q}) \le 2q(p < q)$ and equiity holds if $2 \le p < q \le 2p$.
- Composite knot(Adams et al. 1997, Jin 1997) : $s(K_1 \sharp K_2) \le s(K_1) + s(K_2) 3.$
- 2-bridge(Rational) link(Huh-N.-Oh 2011) : $s(K) \le c(K) + 2$ if $c(K) \le 6$.
- Montesinos link (Lee-N.-Oh 2021+) :

 $s(K) \leq \begin{cases} c(K) + 1 & \text{if } K \text{ is alternating,} \\ c(K) + 3 & \text{if } K \text{ is non-alternating.} \end{cases}$

if each rational tangle of the diagram has five or more index of the related Conway notation. Stick number of 2-bridge links 0000000

Upper bound of knots and links

- Torus knot(Jin 1997) : $s(T_{p,q}) \le 2q(p < q)$ and equiity holds if $2 \le p < q \le 2p$.
- Composite knot(Adams et al. 1997, Jin 1997) : $s(K_1 \sharp K_2) \le s(K_1) + s(K_2) 3.$
- 2-bridge(Rational) link(Huh-N.-Oh 2011) : $s(K) \le c(K) + 2$ if $c(K) \le 6$.
- Montesinos link(Lee-N.-Oh 2021+) :

 $s(K) \leq \begin{cases} c(K) + 1 & \text{ if } K \text{ is alternating,} \\ c(K) + 3 & \text{ if } K \text{ is non-alternating.} \end{cases}$

if each rational tangle of the diagram has five or more index of the related Conway notation.

Stick number of 2-bridge links	
000000	

Huh-N.-Oh (2011)

$s(K) \leq c(K) + 2$ for all 2-bridge links K with $c(K) \geq 6$.

Stick number of knots and links

Introduction 0000

Rational tangle and 2-bridge links

• Integer tangles and a rational tangle with Conway notation $[t_1, t_2, \cdots, t_m]$

Stick Presentation of a 2-bridge link

• How to construct an integer tangle by t + 1 sticks

Stick Presentation of a 2-bridge link

• How to construct a 2-bridge link by c(K) + 2 sticks

Stick number of 2-bridge links 0000●00

• Special case 1 : [p]

Stick number of 2-bridge links 0000000

• Special case 2: [p, q, r]

(p,q,r)

(1,q,r)

(p,2,r)

(1,2,r)

	Stick number of 2-bridge links 000000●	

• Knotinfo

		KnotInfo: Table Search Resul	of Knots ts Export to CSV
Name	Stick Number		
3_1	6		
4_1	7		
5_1	8		
5_2	8		
6_1	8		
6_2	8		
6_3	8		
<u>7_1</u>	9		
7_2	9		
7_3	9		
7_4	9		
<u>7_5</u>	9		
7_6	9		
<u>7_</u> 7	9		
<u>8_1</u>	[9,10]		
8_2	[9,10]		
8_3	[9,10]		
8_4	[9,10]		
8_5	[9,10]		
8_6	[9,10]		
(First) (P	revious] [Next] [Last] [Show All]		Total 249 knots found: show 20 knots starting from 1 Go

0000 C	000000		

• Pillowcase form of a rational tangle

0000 000000	

• Pillowcase form of a rational tangle

[2, 1, 2]

• Pillowcase form of a rational tangle

3/8

<u> </u>	

Definition

• Montesinos link

• Each R_i 's are rational tangles and $n \ge 3$.

	Rational tangles 000€0000	
\rightarrow	\sim	\times
\rightarrow	\sim	****
	\sim	\times

-5/8

	Rational tangles 0000●000	

• If
$$p < \frac{q}{2}$$
 and $\frac{p}{q} = \frac{1}{r + \frac{s}{t}}$, then $\frac{q - p}{q} = \frac{1}{1 + \frac{1}{(r - 1) + \frac{s}{t}}}$.

• Thus $\frac{p}{q}$ - and $-\frac{q-p}{q}$ - tangles have same number of crossings.

	Rational tangles 00000●00	

- A reduced Montesinos diagram *D* is a diagram of a Montesinos link satisfying one of the following two conditions;
 - (1) D is alternating, or
 - (2) e = 0 and each R_i is an alternating rational tangle diagram, with at least two crossings, placed in D so that the two lower ends of R_i belong to arcs incident to a common crossing in R_i .
- They are can be respectively rephrased by

 (1*) e ≥ 0 and all R_i's are positively alternating in D, or
 (2*) e = 0, and R₁,..., R_t are positively alternating in D and R_{t+1},..., R_n are negatively alternating for some t.

	Rational tangles 00000000	

- A reduced Montesinos diagram D is a diagram of a Montesinos link satisfying one of the following two conditions;
 - (1) D is alternating, or
 - (2) e = 0 and each R_i is an alternating rational tangle diagram, with at least two crossings, placed in D so that the two lower ends of R_i belong to arcs incident to a common crossing in R_i .
- They are can be respectively rephrased by
 - (1^{*}) $e \ge 0$ and all R_i 's are positively alternating in D, or (2^{*}) e = 0, and R_1, \ldots, R_t are positively alternating in D and R_{t+1}, \ldots, R_n are negatively alternating for some t.

	Rational tangles 000000●0	

Example

Stick number of knots and links

0000	0000000	

Likorish-Thistlethwaite (1988)

If a link L admits a reduced Montesinos diagram having n crossings, then L has the crossing number n.

Stick number of knots and links

Sungjong No

Lee-N.-Oh (2021+)

Let K be a knot or link which admits a reduced Montesinos diagram having c(K) crossings. If each rational tangle of the diagram has five or more index of the related Conway notation, then

$$s(K) \leq \begin{cases} c(K) + 1 & \text{if } K \text{ is alternating,} \\ c(K) + 3 & \text{if } K \text{ is non-alternating.} \end{cases}$$

• How to construct a rational tangle by $t_1 + t_2 + \cdots + t_m + 1$ sticks

Stick number of 2-bridge links

Rational tangles

Proof of Main Theorem

• Stick rational tangles in a virtual boxes

• How to combine rational tangles

• Alternating Montesinos link

• $e \neq 0$ case

• Non-alternating Montesinos link

• For the case

(1^{*}) $e \ge 0$ and all R_i 's are positively alternating in D, we need one more stick to connect c_n and d_1 . Then we can construct K by c(K) + 1 sticks.

• For the case

(2*) e = 0, and R_1, \ldots, R_t are positively alternating in D and R_{t+1}, \ldots, R_n are negatively alternating for some t,

we need one more stick to connect c_t and d_{t+1} , and two more sticks to connect R_n and R_1 . Therefore we need c(K) + 3 sticks to construct K.

Thus the proof is complete.

- (1) What is the upper bound of stick number for the Montesinos link including rational tangles with Conway notation $[r_1]$ or $[r_1, r_2, r_3]$?
- (2) In general, non-alternating links have better upper bound for stick numbers. How about for Montesinos links?

Stick number of 2-bridge links

Rational tangles 00000000 Stick number of Montesinos links

Stick number of knots and links

Sungjong No