Stick number of knots and links

Sungjong No

Kyonggi University

Knots and Spatial Graphs 2021
February 3, 2021

Contents

(1) Introduction
(2) Stick number of 2-bridge links
(3) Rational tangles
(4) Stick number of Montesinos links

Definitions

- A stick knot is a simple closed curve in \mathbb{R}^{3} which consists of finite number of straight line segments.
- A stick number $s(K)$ of a knot K is the minimal number of sticks required to construct this stick knot.

- $s\left(3_{1}\right)=6$
- $s\left(4_{1}\right)=7$.

General upper bound

Negami(1991)

$5+\sqrt{8 c(K)+9}$
$\frac{2}{2} \leq s(K)$ for a link K except for the trivial knot, and $s(K) \leq 2 c(K)$ for a link K which has neither the Hopf link as a connected sum factor nor a splittable trivial component.

Huh-Oh(2011)

$s(K) \leq \frac{3}{2}(c(K)+1)$ for any nontrivial knot K. In particular, $s(K) \leq \frac{3}{2} c(K)$ for any non-alternating prime knot.

Upper bound of knots and links

- Torus knot(Jin 1997) : $s\left(T_{p, q}\right) \leq 2 q(p<q)$ and equlity holds if $2 \leq p<q \leq 2 p$.
- Composite knot(Adams et al. 1997, Jin 1997) : $s\left(K_{1} \sharp K_{2}\right) \leq s\left(K_{1}\right)+s\left(K_{2}\right)-3$.
- 2-bridge(Rational) $\operatorname{link}(H u h-N .-O h 2011)$: $s(K) \leq c(K)+2$ if $c(K) \leq 6$.
- Montesinos link(Lee-N.-Oh 2021+) :

$$
s(K) \leq \begin{cases}c(K)+1 & \text { if } K \text { is alternating } \\ c(K)+3 & \text { if } K \text { is non-alternating }\end{cases}
$$

if each rational tangle of the diagram has five or more index of the related Conway notation.

Upper bound of knots and links

- Torus $\operatorname{knot}(\operatorname{Jin} 1997): s\left(T_{p, q}\right) \leq 2 q(p<q)$ and equlity holds if $2 \leq p<q \leq 2 p$.
- Composite knot(Adams et al. 1997, Jin 1997) : $s\left(K_{1} \sharp K_{2}\right) \leq s\left(K_{1}\right)+s\left(K_{2}\right)-3$.
- 2-bridge(Rational) $\operatorname{link}(H u h-N .-O h 2011)$: $s(K) \leq c(K)+2$ if $c(K) \leq 6$.
- Montesinos link(Lee-N.-Oh 2021+) :

$$
s(K) \leq \begin{cases}c(K)+1 & \text { if } K \text { is alternating } \\ c(K)+3 & \text { if } K \text { is non-alternating. }\end{cases}
$$

if each rational tangle of the diagram has five or more index of the related Conway notation.

Huh-N.-Oh (2011)
 $s(K) \leq c(K)+2$ for all 2-bridge links K with $c(K) \geq 6$.

Rational tangle and 2-bridge links

- Integer tangles and a rational tangle with Conway notation $\left[t_{1}, t_{2}, \cdots, t_{m}\right]$

Stick Presentation of a 2-bridge link

- How to construct an integer tangle by $t+1$ sticks

(a)

(b)

Stick Presentation of a 2-bridge link

- How to construct a

2-bridge link by $c(K)+2$ sticks

- Special case $1:[p]$

- Special case $2:[p, q, r]$

(1,q,r)

(1,2,r)

(p, 1,r)

(1,1,r)

- Knotinfo

- Pillowcase form of a rational tangle

$[2,1,2]$

3/8

- Pillowcase form of a rational tangle

- Pillowcase form of a rational tangle

Definition

- Montesinos link

- Each R_{i} 's are rational tangles and $n \geq 3$.

$$
\cdot \frac{3}{8}=\frac{1}{2+\frac{1}{1+\frac{1}{2}}} \text { and }-\frac{5}{8}=-\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}
$$

- If $p<\frac{q}{2}$ and $\frac{p}{q}=\frac{1}{r+\frac{s}{t}}$, then $\frac{q-p}{q}=\frac{1}{1+\frac{1}{(r-1)+\frac{s}{t}}}$.
- Thus $\frac{p}{q}$ - and $-\frac{q-p}{q}$ - tangles have same number of crossings.
- A reduced Montesinos diagram D is a diagram of a Montesinos link satisfying one of the following two conditions;
(1) D is alternating, or
(2) $e=0$ and each R_{i} is an alternating rational tangle diagram, with at least two crossings, placed in D so that the two lower ends of R_{i} belong to arcs incident to a common crossing in R_{i}.
- A reduced Montesinos diagram D is a diagram of a Montesinos link satisfying one of the following two conditions;
(1) D is alternating, or
(2) $e=0$ and each R_{i} is an alternating rational tangle diagram, with at least two crossings, placed in D so that the two lower ends of R_{i} belong to arcs incident to a common crossing in R_{i}.
- They are can be respectively rephrased by
(1*) $e \geq 0$ and all R_{i} 's are positively alternating in D, or
$\left(2^{*}\right) e=0$, and R_{1}, \ldots, R_{t} are positively alternating in D and R_{t+1}, \ldots, R_{n} are negatively alternating for some t.

Example

Likorish-Thistlethwaite (1988)

If a link L admits a reduced Montesinos diagram having n crossings, then L has the crossing number n.

Lee-N.-Oh (2021+)

Let K be a knot or link which admits a reduced Montesinos diagram having $c(K)$ crossings. If each rational tangle of the diagram has five or more index of the related Conway notation, then

$$
s(K) \leq \begin{cases}c(K)+1 & \text { if } K \text { is alternating } \\ c(K)+3 & \text { if } K \text { is non-alternating }\end{cases}
$$

Proof of Main Theorem

- How to construct a rational tangle by $t_{1}+t_{2}+\cdots+t_{m}+1$ sticks

Proof of Main Theorem

- Stick rational tangles in a virtual boxes

[2,2,2,2,2,2,2]
[2,2,3,3,2,5,2]

[2,2,3,2,1,5,2]

[1,2,2,1,2,2,3]

Proof of Main Theorem

- How to combine rational tangles

Proof of Main Theorem

- Alternating Montesinos link

Proof of Main Theorem

- $e \neq 0$ case

Proof of Main Theorem

- Non-alternating Montesinos link

Proof of Main Theorem

- For the case
$\left(1^{*}\right) e \geq 0$ and all R_{i} 's are positively alternating in D, we need one more stick to connect c_{n} and d_{1}. Then we can construct K by $c(K)+1$ sticks.
- For the case
$\left(2^{*}\right) e=0$, and R_{1}, \ldots, R_{t} are positively alternating in D and R_{t+1}, \ldots, R_{n} are negatively alternating for some t,
we need one more stick to connect c_{t} and d_{t+1}, and two more sticks to connect R_{n} and R_{1}. Therefore we need $c(K)+3$ sticks to construct K.
Thus the proof is complete.

Questions

(1) What is the upper bound of stick number for the Montesinos link including rational tangles with Conway notation $\left[r_{1}\right]$ or $\left[r_{1}, r_{2}, r_{3}\right]$?
(2) In general, non-alternating links have better upper bound for stick numbers. How about for Montesinos links?

Than

