Introduction to the intrinsic properties of spatial graphs

Knots and Spatial Graphs 2021 - Dongguk University

Hyoungjun Kim Feburary 3, 2021

Kookmin University

Spatial graph theory is the study of graphs embedded in \mathbb{R}^3 .

- A graph G = (V, E) is a set of vertices and edges.
- A *spatial graph* is an embedding of a graph in \mathbb{R}^3 .
- A *knot* is an embedding of a circle in \mathbb{R}^3 .
- A *link* is a collection of knots which do not intersect.

Conway and Gordon's result

Conway-Gordon [1983]

Every embedding of K_6 contains a non-split link.

Every embedding of K_7 contains a non-trivial knot.

Conway-Gordon [1983]

For every embedding of K_6 ,

$$\sum_{3,3)-cycles} lk(L) \equiv 1 \pmod{2}.$$

For every embedding of K_7 ,

$$\sum_{\text{7-cycles}} \alpha(\mathcal{K}) \equiv 1 \pmod{2}.$$

Each point at which L_1 crosses under L_2 counts as following;

The sum of these numbers over all crossings of L_1 under L_2 is called $lk(L_1, L_2)$.

$lk(L_1, L_2) = -1 + 1 = 0.$

Linking number

$lk(L_1, L_2) = -1 + 1 = 0.$

Linking number

$lk(L_1, L_2) = -1 + 1 = 0.$

- A graph *G* is *intrinsically linked* (IL) if every embedding of *G* contains a non-splittable link.
- A graph *G* is intrinsically linked and has no proper minor which is intrinsically linked, *G* is said to be *minor minimal intrinsically linked*.

• ∇ -*Y* move and *Y*- ∇ move

If G' is obtained from G by some ∇ -Y or Y- ∇ moves then G and G' are *cousin*. The set of all cousins of G is called the G *family*.

Robertson-Seymour-Thomas [1995]

There are exactly seven minor minimal intrinsically linked graphs.

Conway-Gordon [1983]

For every embedding of K_6 ,

$$\sum_{3,3)-cycles} lk(L) \equiv 1 \pmod{2}.$$

For every embedding of K_7 ,

$$\sum_{\text{7-cycles}} \alpha(\mathcal{K}) \equiv 1 \pmod{2}.$$

Arf invariant

$$\alpha(K) = \begin{cases} 0 & K \text{ is pass equivalent to the unknot} \\ 1 & K \text{ is pass equivalent to the trefoil knot} \end{cases}$$

Two knots are *pass equivalent* if they are related by a finite sequence of pass-moves, which are illustrated below.

pass-move

- A graph G is *intrinsically knotted* (IK) if every embedding of G contains a non-trivial knot.
- A graph G is intrinsically knotted and has no proper minor which is intrinsically knotted, G is said to be *minor minimal intrinsically knotted*.

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly

Kohara-Suzuki [1992]

Motwani, et al. are incorrect by showing a particular embedding of $K_{3,3,1,1}$ that contains exactly two trefoil knots as Hamiltonian cycles.

(conjectured that $K_{3,3,1,1}$ is IK.)

Foisy [2002]

 $K_{3,3,1,1}$ is an intrinsically knotted graph.

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly

Kohara-Suzuki [1992]

Motwani, et al. are incorrect by showing a particular embedding of $K_{3,3,1,1}$ that contains exactly two trefoil knots as Hamiltonian cycles.

```
(conjectured that K_{3,3,1,1} is IK.)
```

Foisy [2002]

 $K_{3,3,1,1}$ is an intrinsically knotted graph.

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly

Kohara-Suzuki [1992]

Motwani, et al. are incorrect by showing a particular embedding of $K_{3,3,1,1}$ that contains exactly two trefoil knots as Hamiltonian cycles.

```
(conjectured that K_{3,3,1,1} is IK.)
```

Foisy [2002]

 $K_{3,3,1,1}$ is an intrinsically knotted graph.

Key Lemma

Foisy's Key Lemma

Given an embedding of the graph D_4 ,

$$\sigma \neq 0 \iff lk(C_1, C_3) \neq 0 \text{ and } lk(C_2, C_4) \neq 0.$$

 σ : mod 2 sum of the Arf invariants of the all Hamiltonian cycles in that embedding.

Foisy showed that every embedding of $K_{3,3,1,1}$ has D_4 with $lk(C_1, C_3) \neq 0$ and $lk(C_2, C_4) \neq 0$ as minor.

Robertson-Seymour [2003]

There are only finite number of minor minimal intrinsically knotted graphs.

Open Problem

Finding the complete set of minor minimal intrinsically knotted graphs.

Robertson-Seymour [2003]

There are only finite number of minor minimal intrinsically knotted graphs.

Open Problem

Finding the complete set of minor minimal intrinsically knotted graphs.

Foisy [2003]

H is a minor minimal intrinsically knotted graph.

 $\nabla\mathchar`-Y$ move preserves intrinsic knottedness.

Flapan-Naimi [2008]

Some Y- ∇ moves do not preserve intrinsic knottedness.

 $\nabla\text{-}Y$ move preserves intrinsic knottedness.

Flapan-Naimi [2008]

Some Y- ∇ moves do not preserve intrinsic knottedness.

K₇ family

K₇ family

K₇ family

Goldberg-Mattman-Naimi [2014]

Family	Total graphs	IK graphs	MMIK graphs
K ₇	20	14	14
K _{3,3,1,1}	58	58	58
$E_9 + e$	110	110	33
G _{9,28}	1609	1609	≥ 156
G _{14,25}	> 600,000	unknown	≥ 1

There are at least **263** MMIK graphs(include H).

Intrinsically knotted graphs with at most 21 edges

A graph is *n*-*apex* if it can obtain a planar graph by removing *n* vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007], Ozawa-Tsutsumi [2007]

If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]

Any intrinsically knotted graph consists at least 21 edges.

K-Lee-Lee-Oh [2015], Barsotti-Mattman [2016]

A graph is *n*-*apex* if it can obtain a planar graph by removing *n* vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007], Ozawa-Tsutsumi [2007]

If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]

Any intrinsically knotted graph consists at least 21 edges.

K-Lee-Lee-Oh [2015], Barsotti-Mattman [2016]

A graph is *n*-*apex* if it can obtain a planar graph by removing *n* vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007], Ozawa-Tsutsumi [2007]

If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]

Any intrinsically knotted graph consists at least 21 edges.

K-Lee-Lee-Oh [2015], Barsotti-Mattman [2016]

A graph is *n*-*apex* if it can obtain a planar graph by removing *n* vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007], Ozawa-Tsutsumi [2007]

If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]

Any intrinsically knotted graph consists at least 21 edges.

K-Lee-Lee-Oh [2015], Barsotti-Mattman [2016]

K-Lee-Lee-Mattman-Oh [2017], K-Mattman-Oh [2018]

There are exactly eight triangle-free intrinsically knotted graphs with 22 edges which has a vertex with degree 5 or more.

Conjecture for TFIK

There are exactly 19 triangle-free intrinsically knotted graphs with 22 edges.

Conjecture for MMIK

There are exactly 92 minor minimal intrinsically knotted graphs with 22 edges.

K-Mattman-Oh [2017]

There are exactly two minor minimal bipartite intrinsically knotted graphs with at most 22 edges

K-Mattman-Oh [2021+]

There are exactly six bipartite intrinsically knotted graphs with 23 edges which satisfies $\delta(G) \ge 3$.

Chirality is a geometric property of some molecules and ions. A chiral molecule/ion is non-superposable on its mirror image.

Gal [2012]

The artificial sweetener aspartame has two enantiomers. L-aspartame tastes sweet whereas D-aspartame is tasteless.

Jaffe-Altman-Merryman [1964]

D-penicillamine is used in chelation therapy and for the treatment of rheumatoid arthritis whereas L-penicillamine is toxic as it inhibits the action of pyridoxine, an essential B vitamin. In spatial graph theory, molecular structures are interpreted as a graph embedded in $S^{\rm 3}$

- A molecule is *chemically achiral* if it can continuously change to its mirror image, otherwise it is *chemically chiral*.
- An embedding of a graph G in S³ is *topologically achiral* if it is ambient isotopic to its mirror image, otherwise it is *topologically chiral*.
- A graph G is *intrinsically chiral* if every embedding of G in S³ is topologically chiral, otherwise it is *achirally embeddable*.

Möbius Ladder M_n

A *Möbius ladder*, denoted by M_n , is the graph consisting of a 2n-cycle K and n edges $\alpha_1, \ldots, \alpha_n$.

K is the *loop* of M_n and $\alpha_1, \ldots, \alpha_n$ are the *rungs* of M_n .

An standard embedding of M_n

Möbius Ladder M_n

A *Möbius ladder*, denoted by M_n , is the graph consisting of a 2n-cycle K and n edges $\alpha_1, \ldots, \alpha_n$.

K is the *loop* of M_n and $\alpha_1, \ldots, \alpha_n$ are the *rungs* of M_n .

An standard embedding of M_n

Möbius Ladder M_n

A *Möbius ladder*, denoted by M_n , is the graph consisting of a 2n-cycle K and n edges $\alpha_1, \ldots, \alpha_n$.

K is the *loop* of M_n and $\alpha_1, \ldots, \alpha_n$ are the *rungs* of M_n .

An standard embedding of M_n

Simon [1986]

Every standard embedding of M_n , for $n \ge 4$,

there is no orientation reversing diffeomorphism h of S^3 with $h(M_n) = M_n$ and h(K) = K.

Flapan [1989]

Every embedding of M_n , for $n \ge 3$ be odd,

there is no orientation reversing homeomorphism h of S^3 with $h(M_n) = M_n$ and h(K) = K.

Flapan-Weaver [2013]

The complete graphs K_{4n+3} with $n \ge 1$ are intrinsically chiral, and all other complete graphs are achirally embeddable.

K-Choi-No [2021]

 Γ_7 and Γ_8 are minor minimal intrinsically chiral graphs.

An embedding of a graph G is *mirror symmetry* when it is symmetrical on the left and right with respect to a plane \mathcal{M} .

The mirror symmetry embedding is topologically achiral.

Flapan [1989]

Let M_n be a Möbius ladder which is embedded in S^3 with loop K, where n is an odd number. Then there is no diffeomorphism $h: S^3 \to S^3$ which is orientation reversing with $h(M_n) = M_n$ and h(K) = K.

Definition

A graph automorphism of G is a permutation ϕ on the set of vertices V that satisfies the property that $\{u_i, u_j\} \in E$ if and only if $\{\phi(u_i), \phi(u_j)\} \in E$.

Let G be a simple connected graph, v be a vertex of G, and e be an edge of G.

- |G| : the number of vertices of G
- ||G|| : the number of edges of G
- deg(v) : degree of a vertex v in G
- $\delta(G)$: the minimum degree among all vertices of G
- G/e: a graph obtained from G by contracting e
- $G \setminus e$: a graph obtained from G by deleting e

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $||G|| - |G| = ||G/e|| - |G/e| > ||G \setminus e|| - |G \setminus e||$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $\|G\| - |G| = \|G/e\| - |G/e| > \|G \setminus e\| - |G \setminus e|$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $||G|| - |G| = ||G/e|| - |G/e| > ||G \setminus e|| - |G \setminus e||$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $\|G\|-|G|=\|G/e\|-|G/e|>\|G\setminus e\|-|G\setminus e|$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $\|G\|-|G|=\|G/e\|-|G/e|>\|G\setminus e\|-|G\setminus e|$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

Let G be a connected graph. If G is not planar, then $\|G\| - |G| \ge 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_5 as minor.

Let e be an edge of G.

 $\|G\|-|G|=\|G/e\|-|G/e|>\|G\setminus e\|-|G\setminus e|$

This means that if H is a minor of G, then $||G|| - |G| \ge ||H|| - |H|$.

For connected graphs,

- not -1-apex $\Rightarrow ||G|| |G| \ge 1$ $||K_{2,3}|| - |K_{2,3}| = 6 - 5 = 1$
- not 0-apex \Rightarrow $\|G\| |G| \ge 3$ Intrinsically Chiral $\|\Gamma_8\| |\Gamma_8| = 11 8 = 3$
- not 1-apex \Rightarrow $||G|| |G| \ge 5$ Intrinsically Linked ||PetersenGraph|| - |PetersenGraph|| = 15 - 10 = 5
- not 2-apex $\Rightarrow ||G|| |G| \ge 7$ Intrinsically Knotted ||HeawoodGraph|| - |HeawoodGraph| = 21 - 14 = 7
- not 3-apex $\Rightarrow ||G|| |G| \ge 9$ Intrinsically 3-linked?

