Introduction to the intrinsic properties of spatial graphs

Knots and Spatial Graphs 2021 - Dongguk University
Hyoungjun Kim
Feburary 3, 2021
Kookmin University

Spatial Graph Theory

Spatial graph theory is the study of graphs embedded in \mathbb{R}^{3}.

- A graph $G=(V, E)$ is a set of vertices and edges.
- A spatial graph is an embedding of a graph in \mathbb{R}^{3}.
- A knot is an embedding of a circle in \mathbb{R}^{3}.
- A link is a collection of knots which do not intersect.

Conway and Gordon's result

Conway-Gordon [1983]

Every embedding of K_{6} contains a non-split link.

Every embedding of K_{7} contains a non-trivial knot.

Conway and Gordon's result

Conway-Gordon [1983]

For every embedding of K_{6},

$$
\sum_{(3,3)-\text { cycles }} I k(L) \equiv 1(\bmod 2) .
$$

For every embedding of K_{7},

$$
\sum_{7-\text { cycles }} \alpha(K) \equiv 1(\bmod 2)
$$

Linking number

Each point at which L_{1} crosses under L_{2} counts as following;

The sum of these numbers over all crossings of L_{1} under L_{2} is called $I k\left(L_{1}, L_{2}\right)$.

Linking number

Linking number

Linking number

Intrinsically linked graphs

- A graph G is intrinsically linked (IL) if every embedding of G contains a non-splittable link.
- A graph G is intrinsically linked and has no proper minor which is intrinsically linked, G is said to be minor minimal intrinsically linked.

∇-Y move

- $\nabla-Y$ move and $Y-\nabla$ move

If G^{\prime} is obtained from G by some $\nabla-Y$ or $Y-\nabla$ moves then G and G^{\prime} are cousin. The set of all cousins of G is called the G family.

Minor minimal intrinsically linked graphs

Robertson-Seymour-Thomas [1995]

There are exactly seven minor minimal intrinsically linked graphs.

Conway and Gordon's result

Conway-Gordon [1983]

For every embedding of K_{6},

$$
\sum_{(3,3)-\text { cycles }} I k(L) \equiv 1(\bmod 2) .
$$

For every embedding of K_{7},

$$
\sum_{7-\text { cycles }} \alpha(K) \equiv 1(\bmod 2)
$$

Arf invariant and pass equivalent

Arf invariant

$$
\alpha(K)= \begin{cases}0 & K \text { is pass equivalent to the unknot } \\ 1 & K \text { is pass equivalent to the trefoil knot }\end{cases}
$$

Two knots are pass equivalent if they are related by a finite sequence of pass-moves, which are illustrated below.

Example of pass-move

Example of pass-move

Example of pass-move

Example of pass-move

\uparrow

Intrinsically knotted graphs

- A graph G is intrinsically knotted (IK) if every embedding of G contains a non-trivial knot.
- A graph G is intrinsically knotted and has no proper minor which is intrinsically knotted, G is said to be minor minimal intrinsically knotted.

Motwani-Raghunathan-Saran [1988]

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly Motwani, et al. are incorrect by showing a particular embedding of (conjectured that $K_{3,3,1,1}$ is IK.)

Motwani-Raghunathan-Saran [1988]

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly

Kohara-Suzuki [1992]

Motwani, et al. are incorrect by showing a particular embedding of $K_{3,3,1,1}$ that contains exactly two trefoil knots as Hamiltonian cycles.
(conjectured that $K_{3,3,1,1}$ is IK.)
$K_{3,3,1,1}$ is an intrinsically knotted graph

Motwani-Raghunathan-Saran [1988]

They claimed that they could prove that $K_{3,3,1,1}$ is intrinsically knotted using Conway-Gordon techniques directly

Kohara-Suzuki [1992]

Motwani, et al. are incorrect by showing a particular embedding of $K_{3,3,1,1}$ that contains exactly two trefoil knots as Hamiltonian cycles.
(conjectured that $K_{3,3,1,1}$ is IK.)
Foisy [2002]
$K_{3,3,1,1}$ is an intrinsically knotted graph.

Key Lemma

Foisy’s Key Lemma

Given an embedding of the graph D_{4},
$\sigma \neq 0 \Longleftrightarrow \operatorname{lk}\left(C_{1}, C_{3}\right) \neq 0$ and $\operatorname{lk}\left(C_{2}, C_{4}\right) \neq 0$.
$\sigma: \bmod 2$ sum of the Arf invariants of the all Hamiltonian cycles in that embedding.

Foisy showed that every embedding of $K_{3,3,1,1}$ has D_{4} with $\operatorname{lk}\left(C_{1}, C_{3}\right) \neq 0$ and $\operatorname{lk}\left(C_{2}, C_{4}\right) \neq 0$ as minor.

$K_{3,3,1,1}$

$K_{3,3,1,1}$

$K_{3,3,1,1}$

$K_{3,3,1,1}$

$$
K_{3,3,1,1}
$$

$K_{3,3,1,1}$

Minor minimal intrinsically knotted graphs

Robertson-Seymour [2003]

There are only finite number of minor minimal intrinsically knotted graphs.

Minor minimal intrinsically knotted graphs

Robertson-Seymour [2003]

There are only finite number of minor minimal intrinsically knotted graphs.

Open Problem

Finding the complete set of minor minimal intrinsically knotted graphs.

Minor minimal intrinsically knotted graphs

Foisy [2003]

H is a minor minimal intrinsically knotted graph.

Motwani-Raghunathan-Saran [1988]

$\nabla-\mathrm{Y}$ move preserves intrinsic knottedness.

Motwani-Raghunathan-Saran [1988]

$\nabla-\mathrm{Y}$ move preserves intrinsic knottedness.

Flapan-Naimi [2008]

Some $\mathrm{Y}-\nabla$ moves do not preserve intrinsic knottedness.
K_{7} family

K_{7} family

K_{7} family

K_{7} family

Minor minimal intrinsically knotted graphs

Goldberg-Mattman-Naimi [2014]

Family	Total graphs	IK graphs	MMIK graphs
K_{7}	20	14	14
$K_{3,3,1,1}$	58	58	58
$E_{9}+e$	110	110	33
$G_{9,28}$	1609	1609	≥ 156
$G_{14,25}$	$>600,000$	unknown	≥ 1

There are at least 263 MMIK graphs(include H).

Intrinsically knotted graphs with at most 21 edges

A graph is n-apex if it can obtain a planar graph by removing n vertices.

Intrinsically knotted graphs with at most 21 edges

A graph is n-apex if it can obtain a planar graph by removing n vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007], Ozawa-Tsutsumi [2007]

If G is a 2-apex, then G is not intrinsically knotted. Any intrinsically knotted graph consists at least 21 edges. Exactly 14 intrinsically knotted graphs have 21 edges

Intrinsically knotted graphs with at most 21 edges

A graph is n-apex if it can obtain a planar graph by removing n vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007],

Ozawa-Tsutsumi [2007]
If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]
Any intrinsically knotted graph consists at least 21 edges.

Exactly 14 intrinsically knotted graphs have 21 edges.

Intrinsically knotted graphs with at most 21 edges

A graph is n-apex if it can obtain a planar graph by removing n vertices.

Blain-Bowlin-Fleming-Foisy-Hendricks-Lacombe [2007],

Ozawa-Tsutsumi [2007]
If G is a 2-apex, then G is not intrinsically knotted.

Johnson-Kidwell-Michael [2010]
Any intrinsically knotted graph consists at least 21 edges.

K-Lee-Lee-Oh [2015], Barsotti-Mattman [2016]
Exactly 14 intrinsically knotted graphs have 21 edges.

Intrinsically knotted graphs with 22 edges

K-Lee-Lee-Mattman-Oh [2017], K-Mattman-Oh [2018]

There are exactly eight triangle-free intrinsically knotted graphs with 22 edges which has a vertex with degree 5 or more.

Conjecture for TFIK
There are exactly 19 triangle-free intrinsically knotted graphs with 22 edges.

Conjecture for MMIK

There are exactly 92 minor minimal intrinsically knotted graphs with 22 edges.

Bipartite intrinsically knotted graphs

K-Mattman-Oh [2017]

There are exactly two minor minimal bipartite intrinsically knotted graphs with at most 22 edges

K-Mattman-Oh [2021+]

There are exactly six bipartite intrinsically knotted graphs with 23 edges which satisfies $\delta(G) \geq 3$.

Chirality

Chirality is a geometric property of some molecules and ions.
A chiral molecule/ion is non-superposable on its mirror image.

Gal [2012]

The artificial sweetener aspartame has two enantiomers.
L-aspartame tastes sweet whereas D-aspartame is tasteless.

Jaffe-Altman-Merryman [1964]

D-penicillamine is used in chelation therapy and for the treatment of rheumatoid arthritis whereas L-penicillamine is toxic as it inhibits the action of pyridoxine, an essential B vitamin.

A Molecular Structure and a Spatial Graph

In spatial graph theory, molecular structures are interpreted as a graph embedded in S^{3}

- A molecule is chemically achiral if it can continuously change to its mirror image, otherwise it is chemically chiral.
- An embedding of a graph G in S^{3} is topologically achiral if it is ambient isotopic to its mirror image, otherwise it is topologically chiral.
- A graph G is intrinsically chiral if every embedding of G in S^{3} is topologically chiral, otherwise it is achirally embeddable.

Möbius Ladder M_{n}

A Möbius ladder, denoted by M_{n}, is the graph consisting of a $2 n$-cycle K and n edges $\alpha_{1}, \ldots, \alpha_{n}$.

An standard embedding of M_{n}

Möbius Ladder M_{n}

A Möbius ladder, denoted by M_{n}, is the graph consisting of a $2 n$-cycle K and n edges $\alpha_{1}, \ldots, \alpha_{n}$.
K is the loop of M_{n}

An standard embedding of M_{n}

Möbius Ladder M_{n}

A Möbius ladder, denoted by M_{n}, is the graph consisting of a $2 n$-cycle K and n edges $\alpha_{1}, \ldots, \alpha_{n}$.
K is the loop of M_{n} and $\alpha_{1}, \ldots, \alpha_{n}$ are the rungs of M_{n}.

An standard embedding of M_{n}

Möbius Ladder

Simon [1986]

Every standard embedding of M_{n}, for $n \geq 4$, there is no orientation reversing diffeomorphism h of S^{3} with $h\left(M_{n}\right)=M_{n}$ and $h(K)=K$.

Flapan [1989]

Every embedding of M_{n}, for $n \geq 3$ be odd, there is no orientation reversing homeomorphism h of S^{3} with $h\left(M_{n}\right)=M_{n}$ and $h(K)=K$.

Intrinsically Chiral Graphs

Flapan-Weaver [2013]

The complete graphs $K_{4 n+3}$ with $n \geq 1$ are intrinsically chiral, and all other complete graphs are achirally embeddable.

K-Choi-No [2021]

Γ_{7} and Γ_{8} are minor minimal intrinsically chiral graphs.

The Mirror Symmetry Embedding

An embedding of a graph G is mirror symmetry when it is symmetrical on the left and right with respect to a plane \mathcal{M}.

The mirror symmetry embedding is topologically achiral.

Intrinsically Chiral Graphs

Flapan [1989]

Let M_{n} be a Möbius ladder which is embedded in S^{3} with loop K, where n is an odd number. Then there is no diffeomorphism $h: S^{3} \rightarrow S^{3}$ which is orientation reversing with $h\left(M_{n}\right)=M_{n}$ and $h(K)=K$.

Definition

A graph automorphism of G is a permutation ϕ on the set of vertices V that satisfies the property that $\left\{u_{i}, u_{j}\right\} \in E$ if and only if $\left\{\phi\left(u_{i}\right), \phi\left(u_{j}\right)\right\} \in E$.

Notations

Let G be a simple connected graph, v be a vertex of G, and e be an edge of G.

- $|G|$: the number of vertices of G
- $\|G\|$: the number of edges of G
- $\operatorname{deg}(v)$: degree of a vertex v in G
- $\delta(G)$: the minimum degree among all vertices of G
- G / e : a graph obtained from G by contracting e
- $G \backslash e$: a graph obtained from G by deleting e

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_{5} as minor.
Let e be an edge of G.
$\|G\|-|G|$

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_{5} as minor.
Let e be an edge of G.
$\|G\|-|G|=\|G / e\|-|G / e|$

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_{5} as minor.
Let e be an edge of G.
$\|G\|-|G|=\|G / e\|-|G / e|>\|G \backslash e\|-|G \backslash e|$

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_{5} as minor.
Let e be an edge of G.
$\|G\|-|G|=\|G / e\|-|G / e|>\|G \backslash e\|-|G \backslash e|$
This means that if H is a minor of G, then $\|G\|-|G| \geq\|H\|-|H|$.
Since $\left\|K_{3,3}\right\|-\left|K_{3,3}\right|=3$ and $\left\|K_{5}\right\|-\left|K_{5}\right|=5,\|G\|-|G| \geq 3$.

Counting Lemma

Lemma

Let G be a connected graph. If G is not planar, then $\|G\|-|G| \geq 3$.

Proof.

If G is a non-planar graph, then G has $K_{3,3}$ or K_{5} as minor.
Let e be an edge of G.
$\|G\|-|G|=\|G / e\|-|G / e|>\|G \backslash e\|-|G \backslash e|$
This means that if H is a minor of G, then $\|G\|-|G| \geq\|H\|-|H|$.
Since $\left\|K_{3,3}\right\|-\left|K_{3,3}\right|=3$ and $\left\|K_{5}\right\|-\left|K_{5}\right|=5,\|G\|-|G| \geq 3$.

n-apex and intrinsic properties

For connected graphs,

- not - 1 -apex $\Rightarrow\|G\|-|G| \geq 1$

$$
\left\|K_{2,3}\right\|-\left|K_{2,3}\right|=6-5=1
$$

- not 0 -apex $\Rightarrow\|G\|-|G| \geq 3 \quad$ Intrinsically Chiral $\left\|\Gamma_{8}\right\|-\left|\Gamma_{8}\right|=11-8=3$
- not \quad 1-apex $\Rightarrow\|G\|-|G| \geq 5 \quad$ Intrinsically Linked ||PetersenGraph $\|-\mid$ PetersenGraph $\mid=15-10=5$
- not 2 -apex $\Rightarrow\|G\|-|G| \geq 7 \quad$ Intrinsically Knotted ||HeawoodGraph $\|-\mid$ HeawoodGraph $\mid=21-14=7$
- not \quad 3-apex $\Rightarrow\|G\|-|G| \geq 9 \quad$ Intrinsically 3-linked?

Thandra for

Riscternich

