Twisted torus knots

$T(m n+m+1, m n+1, m n+m+2,-1)$ and $T(n+1, n, 2 n-1,-1)$ are torus knots

February 2, 2021

Twisted torus knots $T(p, q, r, s)$
p, q : coprime integers with $p>q \geq 1$
r : an integer with $2 \leq r<p$
s : a nonzero integer
$T(p, q)$: the torus knot of type (p, q)
$T(p, q, r, s)$ is a knot obtained from $T(p, q)$ by performing s full twists on adjacent r strands.

Twisted torus knots $T(p, q, r, s)$ and Dehn surgery

$$
|\theta| \theta \mid
$$

We may define $T(p, q, r, s)$ for $2 \leq r \leq p+q$.

Lemma (Franks and Williams). If a positive b-braid contains a full twist on b strands, then its closure has braid index b.

Lemma (Murasugi). Let γ be a homogeneous n-braid. Let d_{i} be the exponent sum of σ_{i} in γ. If $b(\hat{\gamma})=n$ or if γ is a reduced pure n-braid, then $c(\hat{\gamma})=\sum_{i=1}^{n-1}\left|d_{i}\right|$.

Theorem. Let p, q, r, s be integers such that p and q are coprime, r is not a multiple of $q, 1<q<p<r \leq p+q$, and $s \neq 0$. Then $T(p, q, r, s)$ is a fibered knot with braid index $b(p, q, r, s)$ given by

$$
b(p, q, r, s)= \begin{cases}r & \text { for } s \geq 1 \\ r-q & \text { for } s=-1 \\ r & \text { for } s \leq-2\end{cases}
$$

Moreover, a diagram of $T(p, q, r, s)$ with a minimal number of crossings is obtained by closing
(a) the braid in (a) if $s \geq 1$, or
(b) the braid in (b) if $s \leq-2$, or
(c) the braid in (c) if $s=-1$ and $r>2 q$, or
(d) the braid in (d) if $s=-1, r<2 q$ and $a_{k+1} \leq 0<a_{k}$ for some $k \geq 0$, where $a_{k}=(k+2) q-k p-r$.

Lemma (Stallings). Let K be a knot obtained by closing a positive braid with b strands and c crossings. Then K is a fibered knot with genus g given by

$$
g=\frac{1-b+c}{2}
$$

Theorem. Let p, q, r be integers such that p and q are coprime, r is not a multiple of q, and $1<q<p<r \leq p+q$. Then $T(p, q, r,-1)$ is a torus knot if and only if either
(a) $(p, q, r)=(m n+m+1, m n+1, m n+m+2)$ for some integers $m \geq 1, n \geq 2$; or
(b) $(p, q, r)=(n+1, n, 2 n-1)$ for some integer $n \geq 3$.

In the former, $T(p, q, r,-1)=T(m n+m+n+2,-m-1)$ and in the latter, $T(p, q, r,-1)=T(3 n-2,-n+1)$.

Lemma. $r<2 q$ if $T(p, q, r,-1)$ is a torus knot.

We assume that $r<2 q$. Define a sequence $\left\{a_{j}\right\}_{j=0}^{\infty}$ as follows:

$$
\begin{aligned}
a_{j} & =(j+2) q-j p-r \\
& =(2 q-r)-j(p-q)
\end{aligned}
$$

Then $\left\{a_{j}\right\}_{j=0}^{\infty}$ is a decreasing sequence and we can find a nonnegative integer k satisfying $a_{k+1} \leq 0<a_{k}$.

Lemma. Suppose $k=0$. If $T(p, q, r,-1)$ is a torus knot, then

$$
\begin{aligned}
& (p, q, r)=(3 m+1,2 m+1,3 m+2) \text { or } \\
& (p, q, r)=(n+1, n, 2 n-1)
\end{aligned}
$$

for some integers $m \geq 1$ and $n \geq 3$.

Proof. Suppose $T(p, q, r,-1)^{*}$ is a torus knot. Then by Theorem $T(p, q, r,-1)^{*}$ has braid index $r-q$ and is obtained by closing the braid below.

Thus $T(p, q, r,-1)^{*}$ may be assumed to be the torus knot $T(r-q, x)$ for some integer $x>r-q$.

Thus $T(p, q, r,-1)^{*}$ may be assumed to be the torus knot $T(r-q, x)$ for some integer $x>r-q$.

By removing the two full twists on the top, we obtain the braid below. Hence the braid is closed to form the torus knot $T(r-q, x-2 r+2 q)$.

Claim. $r+p-3 q=0$.

(a)

(b)

Since $r+p-3 q=0$, the previous braid becomes the braid in (a).
The braid in (b), which is obtained from the braid in (a) by deleting a full twist on the top, is closed to form the torus knot $T(r-q, x-3 r+3 q)$.

The braid in (b) has $(2 q-r)+(r-p)$ strands and $(2 q-r)(r-p)$ crossings, so by Stallings twice the genus of the torus knot $T(r-q, x-3 r+3 q)$ is

$$
\begin{align*}
& (r-q-1)(x-3 r+3 q-1) \\
= & 1-(2 q-r)-(r-p)+(2 q-r)(r-p) \\
= & (1-2 q+r)(1-r+p) \tag{*}\\
= & (1-2 q+3 q-p)(1-3 q+p+p) \\
= & (1+q-p)(1-3 q+2 p) .
\end{align*}
$$

Note that both integers $2 q-r$ and $r-p$ are positive.
If $2 q-r=r-p$, then along with $r+p-3 q=0$, we see that $p=4 q / 3$ and $r=5 q / 3$.

Since p and q are coprime, this implies that $(p, q, r)=(4,3,5)$, that is, $(p, q, r)=(n+1, n, 2 n-1)$ with $n=3$, as desired in the lemma.

Hence we may assume that $2 q-r$ and $r-p$ are distinct positive integers.

Then the closure of the braid in (b), which is the torus knot $T(r-$ $q, x-3 r+3 q$), has braid index $2 q-r$ if $2 q-r<r-p$, or braid index $r-p$ if $2 q-r>r-p$.

Suppose that the torus knot $T(r-q, x-3 r+3 q)$ has braid index $r-q$, that is, $r-q<x-3 r+3 q$.

Then either $r-q=2 q-r$ or $r-q=r-p$.

In the former, we get $2 r=3 q=r+p$ and hence $r=p$.

In the latter, we get $q=p$.

Any of these is impossible. Thus the torus knot $T(r-q, x-3 r+3 q)$ has braid index $x-3 r+3 q$.

If $2 q-r<r-p$, then $x-3 r+3 q=2 q-r$ and from (*) we get

$$
\begin{aligned}
& (1+q-p)(1-3 q+2 p) \\
= & (r-q-1)(x-3 r+3 q-1) \\
= & (r-q-1)(2 q-r-1) \\
= & (3 q-p-q-1)(2 q-3 q+p-1) \\
= & (2 q-p-1)(p-q-1),
\end{aligned}
$$

which gives

$$
(p-q)(p-q-1)=0
$$

Since $p-q \neq 0$, we have $p=q+1$ and hence $r=3 q-p=2 q-1$. Since $r>p, q \geq 3$. Letting $q=n$, we have $(p, q, r)=(n+1, n, 2 n-1)$.

If $2 q-r>r-p$, then $x-3 r+3 q=r-p$ and from (*) we get

$$
\begin{aligned}
& (1+q-p)(1-3 q+2 p) \\
= & (r-q-1)(x-3 r+3 q-1) \\
= & (r-q-1)(r-p-1) \\
= & (3 q-p-q-1)(3 q-p-p-1) \\
= & (2 q-p-1)(3 q-2 p-1),
\end{aligned}
$$

which gives

$$
(2 p-3 q)(2 p-3 q+1)=0
$$

If $2 p-3 q=0$, then $r=3 q-p=p$, a contradiction.
Thus $2 p=3 q-1$ (and hence q is an odd integer) and $r=3 q-p=p+1$. It follows that $(p, q, r)=(3 m+1,2 m+1,3 m+2)$ for some positive integer m.

