Non-minimal bridge position of 2-cable links

Jung Hoon Lee (Jeonbuk National University)

February 2, 2021

Knots and Spatial Graphs 2021

Outline

- bridge number, bridge position
- perturbed bridge position
- main result
- three ingredients in the proof

• bridge number

[Schubert, 1954]

D: a regular diagram of a knot (or link) Kb(D): the number of over-bridges(or under-bridges) of D

 $b(K) = \min \{b(D) | D \text{ is a regular diagram of } K\}$ is called the *bridge number* of K.

[Schubert]

$$b(K_1 \# K_2) = b(K_1) + b(K_2) - 1$$

a satellite knot Kcompanion J, wrapping number n $b(K) \ge n \cdot b(J)$

In particular, K = a (p,q)-cable of J (longitudinally p times) $b(K) = p \cdot b(J)$

• bridge position

generalized to bridge splittings for (M^3, K) .

 $S^3 = B_1 \cup_S B_2$, B_1, B_2 : 3-balls $K \cap B_i =$ a collection of ∂ -parallel arcs (= a trivial tangle), say $K \cap B_1 = t_1 \cup \cdots \cup t_n$.

each t_i : a *bridge* We say that K is in *n*-bridge position with respect to S. A bridge cobounds a *bridge disk* D with an arc in S. ((int D) $\cap K = \emptyset$) not properly embedded in B_i

 \exists a collection of *n* pairwise disjoint bridge disks, called a *complete bridge disk system*.

• perturbed bridge position

D: a bridge disk in B_1 , E: a bridge disk in B_2 If $D \cap E = \{a \text{ single point of } K\}$, then each of D and E is called a *cancelling disk*. (D, E): a *cancelling pair*

A bridge position is *perturbed* if it admits a cancelling pair. It gives rise to a lower index bridge position.

7

Every *n*-bridge (n > 1) position of the unknot is perturbed [Otal].

Non-minimal bridge positions of the following classes of knots are perturbed:

2-bridge knots [Otal]

torus knots [Ozawa]

iterated torus knots, iterated cable of 2-bridges knots [Zupan]

* ∃ examples of knots with non-minimal bridge positions that are not perturbed [Jang-Kobayashi-Ozawa-Takao].

If K is an mp-small knot and every non-minimal bridge position of K is perturbed, then every non-minimal bridge position of a (p,q)-cable of K is also perturbed [Zupan].

(A knot is *mp-small* if its exterior does not contain essential meridional planar surface.)

Theorem. [L.]

K : a knot such that every non-minimal bridge position of K is perturbed

L: a (2,2q)-cable link of K

Then every non-minimal bridge position of L is also perturbed.

- t-incompressibility, t- ∂ -incompressibility [Hayashi-Shimokawa]
- changing the order of t- ∂ -compressions [Doll]
- a sufficient condition for a perturbed bridge position [L.]

• t-essential arc

T : a trivial tangle in a 3-ball B

F: a surface in B satisfying $F \cap (\partial B \cup T) = \partial F$

- α : an arc properly embedded in *F*, with $\partial \alpha \subset F \cap \partial B$
- α is *t*-essential if
- α does not cobound a disk in F with a subarc of $F \cap \partial B$.

t-compressing disk D for F

 $D \subset B - T$ $D \cap F = \partial D \text{ does not bound a disk in } F.$

F is *t*-compressible if \exists a t-compressing disk for *F*. Otherwise, *F* is *t*-incompressible.

t-\partial-compressing disk Δ for *F*

$$\Delta \subset B - T$$

$$\partial \Delta = \alpha \cup \beta, \ \alpha = \Delta \cap F \text{ is t-essential, } \beta = \Delta \cap \partial B$$

F is *t*- ∂ -*compressible* if \exists a t- ∂ -compressing disk for *F*. Otherwise, *F* is *t*- ∂ -*incompressible*.

• a sufficient condition for a perturbed bridge position

K : a knot (or link) in *n*-bridge position w.r.t. $S^3 = B_1 \cup_S B_2$

 ${\cal F}$: a surface bounded by ${\cal K}$

Lemma. Suppose a separating arc γ of $F \cap S$ cuts off a disk Γ from F such that (1) $\Gamma \cap B_1$ is a single disk Γ_1 , and (2) $\Gamma \cap B_2 \neq \emptyset$ consists of bridge disks D_1, \ldots, D_k . Then the bridge position of K is parturbed

Then the bridge position of K is perturbed.

• setting

K: a knot s.t. every non-minimal bridge position is perturbed L: a (2, 2q)-cable link of K

 $S^3 = B_1 \cup_S B_2$, B_1, B_2 : 3-balls Suppose *L* is in non-minimal bridge position with respect to *S*. *A*: an annulus bounded by *L*

Maximally t-compress and t- ∂ -compress A in B_2 .

By [Hayashi-Shimokawa], $A \cap B_2$ consists of bridge disks D_i 's and properly embedded disks C_j 's $(C_j \cap L = \emptyset)$.

bridge disk D_i and properly embedded disk C_j (= cap disk)

Take an annulus A bounded by L so that the number m of properly embedded disks C_j is minimal. $\implies m = 0$.

For the proof, suppose that m > 0.

\bullet t- $\partial\text{-compression}$ and its dual operation

• nested t- ∂ -compressing disks

 Δ_k after Δ_{k-1} C_l : cap disk

Replace U_{k-1} by U_{k-1}' so that $\beta_k \cap U_{k-1}' = \emptyset$

We can do the t- ∂ -compression along Δ_k first.

The number m of properly embedded disks C_j is reduced.

 $A \cap B_2$ = bridge disks.

By a further argument, we find a cancelling pair of bridge disks.

Thank you for your attention.