Arc presentations of Montesinos links

Hwa Jeong Lee

(Dongguk University - Gyeongju)

February 2, 2021 Knots and Spatial Graphs 2021

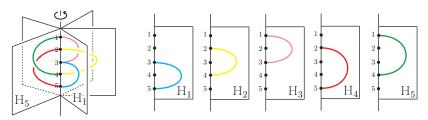
Table of Contents

Arc Presentation and Arc Index

- Known Results
- Montesinos Links
- Main Results

Arc presentation

An *arc presentation* of a knot or a link L is an embedding of L contained in the union of finitely many half planes with a common boundary line, called *binding axis*, in such a way that each half plane contains a properly embedded single simple arc.



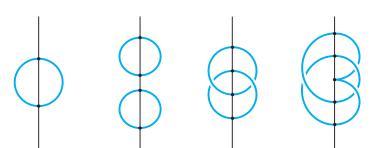
Cromwell, 1995

Every link admits an arc presentation.

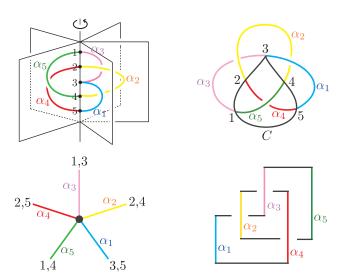
Arc index

The minimum number of pages among all arc presentations of a link L is called the *arc index* of L and is denoted by $\alpha(L)$.

$\alpha(L$) 2	3	4	5
L	unknot	none	2-component unlink, Hopf link	trefoil



Representations of arc presentation



Known results I

- [Beltrami, 2002] Arc index for prime knots up to 10 crossings are determined.
- [Ng, 2006] Arc index for prime knots up to 11 crossings are determined.
- * [Nutt, 1999] All knots up to arc index 9 are identified.
- ★ [Jin et al., 2006] All prime knots up to arc index 10 are identified.
- ★ [Jin-Park, 2010] All prime knots up to arc index 11 are identified.
- ★ [Jin-Kim, 2021] All prime knots up to arc index 12 are identified.

Known results II

Let $F_L(a, z)$ denote the Kauffman polynomial of a link L.

- L: non-split alternating link $\Longrightarrow \alpha(L) = c(L) + 2$.
 - [Morton-Beltrami, 1998] For any link L, $\alpha(L) \ge \operatorname{spread}_a(F_L(a, z)) + 2$.
 - [Thistlethwaite, 1988] If L is an alternating link, spread_a $(F_L(a, z)) \ge c(L)$.
 - \circ [Bae-Park, 2000] If L is a non-split link, then

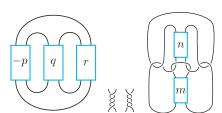
$$\alpha(L) \le c(L) + 2.$$

- L: **nonalternating prime** \Longrightarrow spread_a $(F_L(a, z)) + 2 \le \alpha(L) \le c(L)$.
 - ∘ [M-B] For any link L, $\alpha(L) \ge \operatorname{spread}_a(F_L(a, z)) + 2$.
 - [Jin-Park, 2010] A prime link L is nonalternating if and only if $\alpha(L) \le c(L)$.

Known Results III

- ★ [Etnyre-Honda, 2001] $\alpha(T_{p,q}) = |p| + |q|$
- ★ [Beltrami, 2002] Arc index of n-semi alternating links
- ★ [L.-Jin, 2014] Arc index of pretzel knots of type (-p, q, r)
- ★ [L.-Takioka, 2017] Arc index of Kanenobu knots
- * [L.-Takioka, 2016] On the arc index of cable knots and Whitehead doubles

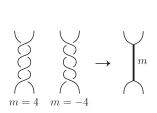
http://makerhome.blogspot.kr/2014/01/day=150=trefoil=torus=knots.html

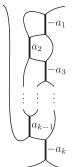


Rational tangle

The *rational tangle diagram* with Conway notation $[a_1, a_2, ..., a_k]$ can be represented by a slop $\frac{\beta}{\alpha}$ of two co-prime integers $\alpha > 1$ and β which is defined by the continued fraction expansion

$$\frac{\beta}{\alpha} = \frac{1}{a_k + \frac{1}{a_{k-1} + \dots + \frac{1}{a_2 + \frac{1}{a_2}}}} := [a_1, a_2, \dots, a_k].$$





Rational tangle (Cont.)

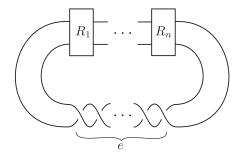
$$\frac{5}{17} = \frac{1}{3 + \frac{1}{2 + \frac{1}{2}}} := [2, 2, 3]$$

If all a_i 's are positive (or negative), then the rational tangle diagram is said to be *positively* (or *negatively*) *alternating*. Hereinafter, for any rational tangle diagram, we assume the following:

- (1) k is odd, and
- (2) it is positively or negatively alternating.

Montesinos link

Let R_i be the rational tangle diagram with slope $\frac{\beta_i}{\alpha_i}$ for $1 \le i \le n$. A *Montesinos link* $L = M(e; \frac{\beta_1}{\alpha_1}, \dots, \frac{\beta_n}{\alpha_n})$ is a link that admits a diagram D composed of n rational tangle diagrams R_1, R_2, \dots, R_n and e half-twists. If e = 0, it will be omitted in the notation as $M(\frac{\beta_1}{\alpha_1}, \dots, \frac{\beta_n}{\alpha_n})$.



Reduced Montesinos diagram

Owing to the study of Lickorish and Thistlethwaite, we may assume that Montesinos diagram *D* satisfies exactly one of the following conditions:

- (M1) D is alternating;
- (M2) e = 0, and each R_i is an alternating diagram, with at least two crossings, placed in D, such that the two lower ends of R_i belong to arcs incident to a common crossing in R_i .

Then, we call *D* a *reduced Montesinos diagram*.

Two conditions above can be rephrased as follows:

- (M1*) $e \ge 0$, and all R_i 's are positively alternating in D;
- (M2*) e = 0, and R_1, \ldots, R_k are negatively alternating in D, whereas R_{k+1}, \ldots, R_n are positively alternating for some k, where $1 \le k < n$.

Main Theorem A

Jin-Park, 2010

A prime link *L* is nonalternating *if and only if* $\alpha(L) \leq c(L)$.

Corollary

Let L = M(-p, q, r) be a Montesinos link. Then $\alpha(L) \le c(L)$.

Theorem A

(1) If L = M(-p, q, r) is a link with $0 , <math>0 < q < \frac{1}{2}$ and $0 < r < \frac{1}{2}$, then

$$\alpha(L) \le c(L) - 1.$$

(2) Let *n* be an integer greater than 2. If $L = M\left(-\frac{1}{n}, q, r\right)$ is a link with $0 < q < \frac{1}{3}, 0 < r < \frac{1}{3}$, then

$$\alpha(L) \le c(L) - 2$$
.

Main Theorem B

Theorem B

(1) Let *n* be an integer greater than 1. If $L = M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$ or $L = M\left(-\frac{1}{n}, \frac{1}{2}, \frac{5}{17}\right)$, then

$$\alpha(L) = c(L)$$
.

(2) Let *n* be an integer greater than 2. If $L = M(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5})$ or $L = M(-\frac{1}{n}, \frac{1}{3}, \frac{5}{17})$, then

$$\alpha(L) = c(L) - 1.$$

(3) Let *n* be an integer greater than 3.

If
$$L = M(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7})$$
 or $L = M(-\frac{1}{n}, \frac{1}{4}, \frac{5}{17})$, then

$$\alpha(L) = c(L) - 2.$$

Strategy

Our strategy is ...

- For the upper bound of $\alpha(L)$, we find arc presentations of L with the minimum number of arcs for various values of p, q and r.
- For the lower bound of $\alpha(L)$, we compute the

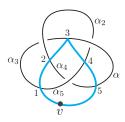
spread_{$$a$$}($F_L(a, z)$).

([Morton-Beltrami] For any link L, $\alpha(L) \ge \operatorname{spread}_a(F_L(a, z)) + 2$.)

Arc presentation

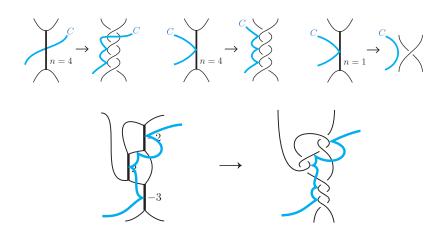
Let *D* be a diagram of a link *L* which lies on a plane *P*. Suppose that there is a simple closed curve *C* in *P* meeting *D* in k(>1) distinct points which divide *D* into k arcs $\alpha_1, \alpha_2, \ldots, \alpha_k$ with the following two properties:

- (C1) Each α_i has no self-crossings.
- (C2) Let R_I be the inner region bounded by the curve C in the plane P and R_O the outer region. If α_i crosses over α_j at a crossing point in R_I (resp. R_O), then i > j(resp. i < j) and it crosses over α_j at any other crossing points with α_j .



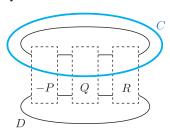
Then the pair (D, C) is called an *arc presentation* of L with k arcs, and C is called the *dividing circle* of the arc presentation.

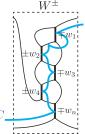
Constructing dividing circles



Arc presentations of M(-p, q, r) with c(L) arcs

Let L be a Montesinos link M(-p,q,r). Let -P, Q, and R be the negatively, positively, and positively alternating rational tangle diagrams represented by $-p := [-p_1, -p_2, \dots, -p_\ell], q := [q_1, q_2, \dots, q_m],$ and $r := [r_1, r_2, \dots, r_n],$ respectively.





 $-P \leftrightarrow W^-, \ Q \leftrightarrow W^+, \ \text{and} \ R \leftrightarrow W^+.$

Example 1

Let n be a positive integer greater than one. Let L_1^n and L_2^n be the Montesinos links of $M\left(-\frac{1}{n},\frac{2}{3},\frac{2}{3}\right)$ and $M\left(-\frac{1}{n},\frac{1}{2},\frac{5}{17}\right)$, respectively. Then the figure below shows are presentations of the link L_1^n and L_2^n with $c(L_1^n) = n + 6$ and $c(L_2^n) = n + 9$ arcs, respectively.

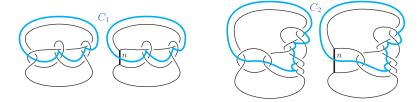
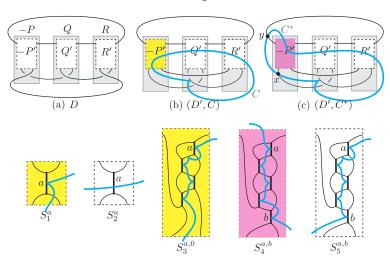


Figure: Arc presentations of L_1^2, L_1^n, L_2^2 , and L_2^n

Arc presentations of M(-p, q, r) **with** c(L) - 1 **arcs**

Suppose that both q and r are less than $\frac{1}{2}$.



Example 2

Let n be an integer greater than 1. Let L_3^n and L_4^n be the Montesinos links of $M\left(-\frac{1}{n},\frac{2}{5},\frac{2}{5}\right)$ and $M\left(-\frac{1}{n},\frac{1}{3},\frac{5}{17}\right)$, respectively. Then the figure below shows arc presentations of the link L_3^n and L_4^n with $c(L_3^n) - 1 = n + 7$ and $c(L_4^n) - 1 = n + 9$ arcs, respectively.

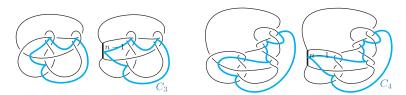
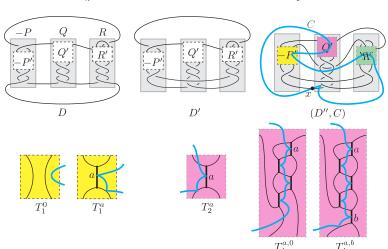


Figure: Arc presentations of L_3^n and L_4^n for $n \ge 2$

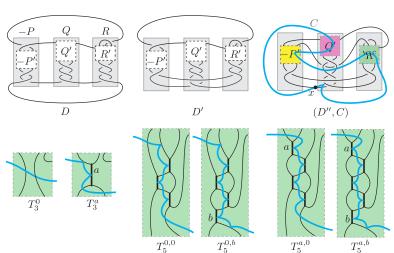
Arc presentations of M(-p, q, r) with c(L) - 2 arcs

Suppose that $p = \frac{1}{n} (n > 2)$ and both q and r are less than $\frac{1}{3}$.



Arc presentations of M(-p, q, r) **with** c(L) - 2 **arcs**

Suppose that $p = \frac{1}{n} (n > 2)$ and both q and r are less than $\frac{1}{3}$.



Example 3

Let *n* be an integer greater than 2. Let L_5^n and L_6^n be the Montesinos links of $M\left(-\frac{1}{n},\frac{2}{7},\frac{2}{7}\right)$ and $M\left(-\frac{1}{n},\frac{1}{4},\frac{5}{17}\right)$, respectively.

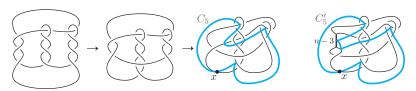


Figure: Arc presentations of L_5^3 and L_5^n for $n \ge 4$

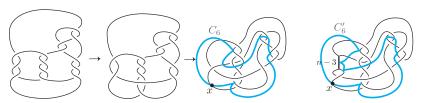


Figure: Arc presentations of L_6^3 and L_6^n for $n \ge 4$

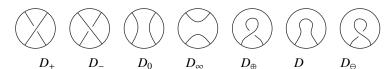
Kauffman polynomial $F_L(a, z)$

The *Kauffman polynomial* of an oriented knot or link *L* is defined by

$$F_L(a, z) = a^{-w(D)} \Lambda_D(a, z)$$

where *D* is a diagram of *L*, w(D) the writhe of *D* and $\Lambda_D(a, z)$ the polynomial determined by the rules (K1), (K2) and (K3).

- **(K1)** $\Lambda_O(a, z) = 1$ where O is the trivial knot diagram.
- **(K2)** $\Lambda_{D_0}(a,z) + \Lambda_{D_0}(a,z) = z(\Lambda_{D_0}(a,z) + \Lambda_{D_m}(a,z)).$
- **(K3)** $a \Lambda_{D_{\alpha}}(a,z) = \Lambda_D(a,z) = a^{-1} \Lambda_{D_{\alpha}}(a,z).$



Let the polynomial σ_n be a symmetric polynomial defined by

$$\sigma_n = \begin{cases} \frac{\alpha^n - \beta^n}{\alpha - \beta} & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ -\frac{\alpha^{-n} - \beta^{-n}}{\alpha - \beta} & \text{if } n < 0, \end{cases}$$

for $\alpha + \beta = z$ and $\alpha\beta = 1$.

$$\sigma_1 = 1$$
, $\sigma_2 = z$, $\sigma_3 = z^2 - 1$, $\sigma_4 = z^3 - 2z$, ...

Then the following properties holds immediately.

- (1) $\sigma_{-n} = -\sigma_n$
- $(2) z\sigma_n = \sigma_{n-1} + \sigma_{n+1}$

We use notation $\Lambda_{(-p,q,r)}$ for Λ_D when D=M(-p,q,r). Specifically, Λ_n means the Λ -polynomial of the integer tangle with n crossings.

Let *m* and *n* be positive integers greater than 1. Using skein relation (K1), (K2) and (K3) repeatly, we have

$$\Lambda_n = \sigma_n \Lambda_+ - \sigma_{n-1} \Lambda_0 + z \sum_{i=1}^{n-1} \sigma_i a^{-(n-i)} \Lambda_\infty$$

For example, since the Λ -polynomial of the integer tangle with Conway notation of [-7] can be expressed as

$$\Lambda_7 = \sigma_7 \Lambda_+ - \sigma_6 \Lambda_0 + z \sum_{i=1}^6 \sigma_i a^{-(7-i)} \Lambda_\infty,$$

the Λ -polynomial for $\Lambda_D = M\left(-\frac{1}{7}, q, r\right)$ can be written as

$$\Lambda_{\left(-\frac{1}{7},q,r\right)} = \sigma_7 \Lambda_{\left(-\frac{1}{1},q,r\right)} - \sigma_6 \Lambda_{\left(-\frac{1}{0},q,r\right)} + z \sum_{i=1}^6 \sigma_i a^{-(7-i)} \Lambda_{\left(-\frac{1}{\infty},q,r\right)}.$$

Proposition 1

Let *n* be an integer greater than 1 and *L* a Montesinos link $M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$; then,

$$\operatorname{spread}_a(F_L) = n + 4.$$

Sketch of proof:

$$\Lambda_n = \sigma_n \Lambda_+ - \sigma_{n-1} \Lambda_0 + z \sum_{i=1}^{n-1} \sigma_i a^{-(n-i)} \Lambda_\infty$$

$$\Lambda_{\left(-\frac{1}{n},\frac{2}{3},\frac{2}{3}\right)} = \sigma_n \Lambda_{\left(-\frac{1}{1},\frac{2}{3},\frac{2}{3}\right)} - \sigma_{n-1} \Lambda_{\left(-\frac{1}{0},\frac{2}{3},\frac{2}{3}\right)} + z \sum_{i=1}^{n-1} \sigma_i a^{-(n-i)} \Lambda_{\left(-\frac{1}{\infty},\frac{2}{3},\frac{2}{3}\right)}.$$

Proposition 2

Let *n* be an integer greater than 2 and *L* a Montesinos link $M\left(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5}\right)$; then,

$$\operatorname{spread}_a(F_L) = n + 5.$$

Proposition 3

Let *n* be an integer greater than 3 and *L* a Montesinos link $M\left(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7}\right)$; then,

$$\operatorname{spread}_a(F_L) = n + 6.$$

Main Theorem B

Theorem B

(1) Let n be an integer greater than 1. If $L = M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$ or $L = M\left(-\frac{1}{n}, \frac{1}{2}, \frac{5}{17}\right)$, then

$$\alpha(L) = c(L)$$
.

(2) Let *n* be an integer greater than 2. If $L = M(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5})$ or $L = M(-\frac{1}{n}, \frac{1}{3}, \frac{5}{17})$, then

$$\alpha(L) = c(L) - 1.$$

(3) Let *n* be an integer greater than 3. If $L = M(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7})$ or $L = M(-\frac{1}{n}, \frac{1}{4}, \frac{5}{17})$, then

$$\alpha(L) = c(L) - 2.$$

Thank you

