Arc presentations of Montesinos links

Hwa Jeong Lee

(Dongguk University - Gyeongju)

February 2, 2021
Knots and Spatial Graphs 2021

Table of Contents

(1) Arc Presentation and Arc Index
(2) Known Results
(3) Montesinos Links
(4) Main Results

Arc presentation

An arc presentation of a knot or a link L is an embedding of L contained in the union of finitely many half planes with a common boundary line, called binding axis, in such a way that each half plane contains a properly embedded single simple arc.

Cromwell, 1995

Every link admits an arc presentation.

Arc index

The minimum number of pages among all arc presentations of a link L is called the arc index of L and is denoted by $\alpha(L)$.

$\alpha(L)$	2	3	4	5
L	unknot	none	2-component unlink, Hopf link	trefoil

Representations of arc presentation

Known results I

- [Beltrami, 2002] Arc index for prime knots up to 10 crossings are determined.
- [$\mathrm{Ng}, 2006$] Arc index for prime knots up to 11 crossings are determined.
\star [Nutt, 1999] All knots up to arc index 9 are identified.
\star [Jin et al., 2006] All prime knots up to arc index 10 are identified.
\star [Jin-Park, 2010] All prime knots up to arc index 11 are identified.
\star [Jin-Kim, 2021] All prime knots up to arc index 12 are identified.

Known results II

Let $F_{L}(a, z)$ denote the Kauffman polynomial of a link L.

- L : non-split alternating link $\Longrightarrow \alpha(L)=c(L)+2$.
- [Morton-Beltrami, 1998] For any link $L, \alpha(L) \geq \operatorname{spread}_{a}\left(F_{L}(a, z)\right)+2$.
- [Thistlethwaite, 1988] If L is an alternating link, $\operatorname{spread}_{a}\left(F_{L}(a, z)\right) \geq c(L)$.
- [Bae-Park, 2000] If L is a non-split link, then

$$
\alpha(L) \leq c(L)+2 .
$$

- L : nonalternating prime $\Longrightarrow \operatorname{spread}_{a}\left(F_{L}(a, z)\right)+2 \leq \alpha(L) \leq c(L)$.
- [M-B] For any link $L, \alpha(L) \geq \operatorname{spread}_{a}\left(F_{L}(a, z)\right)+2$.
- [Jin-Park, 2010] A prime link L is nonalternating if and only if

$$
\alpha(L) \leq c(L)
$$

Known Results III

\star [Etnyre-Honda, 2001] $\alpha\left(T_{p, q}\right)=|p|+|q|$

* [Beltrami, 2002] Arc index of n-semi alternating links
\star [L.-Jin, 2014] Arc index of pretzel knots of type ($-p, q, r$)
* [L.-Takioka, 2017] Arc index of Kanenobu knots

太 [L.-Takioka, 2016] On the arc index of cable knots and Whitehead doubles

http://makerhome.blogspot.kr/2014/01/day-150-trefoil-torus-knots.html

Rational tangle

The rational tangle diagram with Conway notation $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ can be represented by a slop $\frac{\beta}{\alpha}$ of two co-prime integers $\alpha>1$ and β which is defined by the continued fraction expansion

$$
\frac{\beta}{\alpha}=\frac{1}{a_{k}+\frac{1}{a_{k-1}+\cdots+\frac{1}{a_{2}+\frac{1}{a_{1}}}}}:=\left[a_{1}, a_{2}, \ldots, a_{k}\right]
$$

Rational tangle (Cont.)

$$
\frac{5}{17}=\frac{1}{3+\frac{1}{2+\frac{1}{2}}}:=[2,2,3]
$$

If all a_{i} 's are positive (or negative), then the rational tangle diagram is said to be positively (or negatively) alternating. Hereinafter, for any rational tangle diagram, we assume the following:
(1) k is odd, and
(2) it is positively or negatively alternating.

Montesinos link

Let R_{i} be the rational tangle diagram with slope $\frac{\beta_{i}}{\alpha_{i}}$ for $1 \leq i \leq n$. A Montesinos link $L=M\left(e ; \frac{\beta_{1}}{\alpha_{1}}, \ldots, \frac{\beta_{n}}{\alpha_{n}}\right)$ is a link that admits a diagram D composed of n rational tangle diagrams $R_{1}, R_{2}, \ldots, R_{n}$ and e half-twists. If $e=0$, it will be omitted in the notation as $M\left(\frac{\beta_{1}}{\alpha_{1}}, \ldots, \frac{\beta_{n}}{\alpha_{n}}\right)$.

Reduced Montesinos diagram

Owing to the study of Lickorish and Thistlethwaite, we may assume that Montesinos diagram D satisfies exactly one of the following conditions:
(M1) D is alternating;
(M2) $e=0$, and each R_{i} is an alternating diagram, with at least two crossings, placed in D, such that the two lower ends of R_{i} belong to arcs incident to a common crossing in R_{i}.
Then, we call D a reduced Montesinos diagram.

Two conditions above can be rephrased as follows:
(M1*) $e \geq 0$, and all R_{i} 's are positively alternating in D;
(M2*) $e=0$, and R_{1}, \ldots, R_{k} are negatively alternating in D, whereas R_{k+1}, \ldots, R_{n} are positively alternating for some k, where $1 \leq k<n$.

Main Theorem A

Jin-Park, 2010

A prime link L is nonalternating if and only if $\alpha(L) \leq c(L)$.

Corollary

Let $L=M(-p, q, r)$ be a Montesinos link. Then $\alpha(L) \leq c(L)$.

Theorem A

(1) If $L=M(-p, q, r)$ is a link with $0<p<1,0<q<\frac{1}{2}$ and $0<r<\frac{1}{2}$, then

$$
\alpha(L) \leq c(L)-1 .
$$

(2) Let n be an integer greater than 2. If $L=M\left(-\frac{1}{n}, q, r\right)$ is a link with $0<q<\frac{1}{3}, 0<r<\frac{1}{3}$, then

$$
\alpha(L) \leq c(L)-2 .
$$

Main Theorem B

Theorem B

(1) Let n be an integer greater than 1 .

If $L=M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{2}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L) .
$$

(2) Let n be an integer greater than 2 .

If $L=M\left(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{3}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L)-1 .
$$

(3) Let n be an integer greater than 3 .

If $L=M\left(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{4}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L)-2 .
$$

Strategy

Our strategy is ...

- For the upper bound of $\alpha(L)$, we find arc presentations of L with the minimum number of arcs for various values of p, q and r.
- For the lower bound of $\alpha(L)$, we compute the

$$
\operatorname{spread}_{a}\left(F_{L}(a, z)\right) .
$$

([Morton-Beltrami] For any link $L, \alpha(L) \geq \operatorname{spread}_{a}\left(F_{L}(a, z)\right)+2$.)

Arc presentation

Let D be a diagram of a link L which lies on a plane P. Suppose that there is a simple closed curve C in P meeting D in $k(>1)$ distinct points which divide D into k arcs $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ with the following two properties:
(C1) Each α_{i} has no self-crossings.
(C2) Let R_{I} be the inner region bounded by the curve C in the plane P and R_{O} the outer region. If α_{i} crosses over α_{j} at a crossing point in $R_{I}\left(\right.$ resp. $\left.R_{O}\right)$, then $i>j($ resp. $i<j)$ and it crosses over α_{j} at any other crossing points with α_{j}.

Then the pair (D, C) is called an arc presentation of L with k arcs, and C is called the dividing circle of the arc presentation.

Constructing dividing circles

Arc presentations of $M(-p, q, r)$ with $c(L)$ arcs

Let L be a Montesinos link $M(-p, q, r)$. Let $-P, Q$, and R be the negatively, positively, and positively alternating rational tangle diagrams represented by $-p:=\left[-p_{1},-p_{2}, \ldots,-p_{\ell}\right], q:=\left[q_{1}, q_{2}, \ldots, q_{m}\right]$, and $r:=\left[r_{1}, r_{2}, \ldots, r_{n}\right]$, respectively.

$$
-P \leftrightarrow W^{-}, Q \leftrightarrow W^{+}, \text {and } R \leftrightarrow W^{+} .
$$

Example 1

Let n be a positive integer greater than one. Let L_{1}^{n} and L_{2}^{n} be the Montesinos links of $M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$ and $M\left(-\frac{1}{n}, \frac{1}{2}, \frac{5}{17}\right)$, respectively. Then the figure below shows arc presentations of the link L_{1}^{n} and L_{2}^{n} with $c\left(L_{1}^{n}\right)=n+6$ and $c\left(L_{2}^{n}\right)=n+9$ arcs, respectively.

Figure: Arc presentations of $L_{1}^{2}, L_{1}^{n}, L_{2}^{2}$, and L_{2}^{n}

Arc presentations of $M(-p, q, r)$ with $c(L)-1$ arcs

Suppose that both q and r are less than $\frac{1}{2}$.

(a) D

(b) $\left(D^{\prime}, C\right)$

Example 2

Let n be an integer greater than 1 . Let L_{3}^{n} and L_{4}^{n} be the Montesinos links of $M\left(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5}\right)$ and $M\left(-\frac{1}{n}, \frac{1}{3}, \frac{5}{17}\right)$, respectively. Then the figure below shows arc presentations of the link L_{3}^{n} and L_{4}^{n} with $c\left(L_{3}^{n}\right)-1=n+7$ and $c\left(L_{4}^{n}\right)-1=n+9$ arcs, respectively.

Figure: Arc presentations of L_{3}^{n} and L_{4}^{n} for $n \geq 2$

Arc presentations of $M(-p, q, r)$ with $c(L)-2$ arcs

Suppose that $p=\frac{1}{n}(n>2)$ and both q and r are less than $\frac{1}{3}$.

Arc presentations of $M(-p, q, r)$ with $c(L)-2$ arcs

Suppose that $p=\frac{1}{n}(n>2)$ and both q and r are less than $\frac{1}{3}$.

Example 3

Let n be an integer greater than 2. Let L_{5}^{n} and L_{6}^{n} be the Montesinos links of $M\left(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7}\right)$ and $M\left(-\frac{1}{n}, \frac{1}{4}, \frac{5}{17}\right)$, respectively.

Figure: Arc presentations of L_{5}^{3} and L_{5}^{n} for $n \geq 4$

Figure: Arc presentations of L_{6}^{3} and L_{6}^{n} for $n \geq 4$

Kauffman polynomial $F_{L}(a, z)$

The Kauffman polynomial of an oriented knot or link L is defined by

$$
F_{L}(a, z)=a^{-w(D)} \Lambda_{D}(a, z)
$$

where D is a diagram of $L, w(D)$ the writhe of D and $\Lambda_{D}(a, z)$ the polynomial determined by the rules (K1), (K2) and (K3).
(K1) $\Lambda_{O}(a, z)=1$ where O is the trivial knot diagram.
(K2) $\Lambda_{D_{+}}(a, z)+\Lambda_{D_{-}}(a, z)=z\left(\Lambda_{D_{0}}(a, z)+\Lambda_{D_{\infty}}(a, z)\right)$.
(K3) $a \Lambda_{D_{\vartheta}}(a, z)=\Lambda_{D}(a, z)=a^{-1} \Lambda_{D_{\ominus}}(a, z)$.

D_{0}

D_{\oplus}

D

Let the polynomial σ_{n} be a symmetric polynomial defined by

$$
\sigma_{n}= \begin{cases}\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & \text { if } n>0, \\ 0 & \text { if } n=0, \\ -\frac{\alpha^{-n}-\beta^{-n}}{\alpha-\beta} & \text { if } n<0,\end{cases}
$$

for $\alpha+\beta=z$ and $\alpha \beta=1$.

$$
\sigma_{1}=1, \quad \sigma_{2}=z, \quad \sigma_{3}=z^{2}-1, \quad \sigma_{4}=z^{3}-2 z, \quad \cdots
$$

Then the following properties holds immediately.
(1) $\sigma_{-n}=-\sigma_{n}$
(2) $z \sigma_{n}=\sigma_{n-1}+\sigma_{n+1}$

We use notation $\Lambda_{(-p, q, r)}$ for Λ_{D} when $D=M(-p, q, r)$. Specifically, Λ_{n} means the Λ-polynomial of the integer tangle with n crossings.

Let m and n be positive integers greater than 1 . Using skein relation (K1), (K2) and (K3) repeatly, we have

$$
\Lambda_{n}=\sigma_{n} \Lambda_{+}-\sigma_{n-1} \Lambda_{0}+z \sum_{i=1}^{n-1} \sigma_{i} a^{-(n-i)} \Lambda_{\infty}
$$

For example, since the Λ-polynomial of the integer tangle with Conway notation of [-7] can be expressed as

$$
\Lambda_{7}=\sigma_{7} \Lambda_{+}-\sigma_{6} \Lambda_{0}+z \sum_{i=1}^{6} \sigma_{i} a^{-(7-i)} \Lambda_{\infty}
$$

the Λ-polynomial for $\Lambda_{D}=M\left(-\frac{1}{7}, q, r\right)$ can be written as

$$
\Lambda_{\left(-\frac{1}{7}, q, r\right)}=\sigma_{7} \Lambda_{\left(-\frac{1}{1}, q, r\right)}-\sigma_{6} \Lambda_{\left(-\frac{1}{0}, q, r\right)}+z \sum_{i=1}^{6} \sigma_{i} a^{-(7-i)} \Lambda_{\left(-\frac{1}{\infty}, q, r\right)}
$$

Proposition 1

Let n be an integer greater than 1 and L a Montesinos link $M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$; then,

$$
\operatorname{spread}_{a}\left(F_{L}\right)=n+4
$$

Sketch of proof:

$$
\begin{gathered}
\Lambda_{n}=\sigma_{n} \Lambda_{+}-\sigma_{n-1} \Lambda_{0}+z \sum_{i=1}^{n-1} \sigma_{i} a^{-(n-i)} \Lambda_{\infty} \\
\Lambda_{\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)}=\sigma_{n} \Lambda_{\left(-\frac{1}{1}, \frac{2}{2}, \frac{2}{3}\right)}-\sigma_{n-1} \Lambda_{\left(-\frac{1}{0}, \frac{2}{3}, \frac{2}{3}\right)}+z \sum_{i=1}^{n-1} \sigma_{i} a^{-(n-i)} \Lambda_{\left(-\frac{1}{\infty}, \frac{2}{3}, \frac{2}{3}\right)} .
\end{gathered}
$$

Proposition 2

Let n be an integer greater than 2 and L a Montesinos link $M\left(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5}\right)$; then,

$$
\operatorname{spread}_{a}\left(F_{L}\right)=n+5 .
$$

Proposition 3

Let n be an integer greater than 3 and L a Montesinos $\operatorname{link} M\left(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7}\right)$; then,

$$
\operatorname{spread}_{a}\left(F_{L}\right)=n+6 .
$$

Main Theorem B

Theorem B

(1) Let n be an integer greater than 1 .

If $L=M\left(-\frac{1}{n}, \frac{2}{3}, \frac{2}{3}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{2}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L) .
$$

(2) Let n be an integer greater than 2 .

If $L=M\left(-\frac{1}{n}, \frac{2}{5}, \frac{2}{5}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{3}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L)-1 .
$$

(3) Let n be an integer greater than 3 .

If $L=M\left(-\frac{1}{n}, \frac{2}{7}, \frac{2}{7}\right)$ or $L=M\left(-\frac{1}{n}, \frac{1}{4}, \frac{5}{17}\right)$, then

$$
\alpha(L)=c(L)-2 .
$$

Thank you

