Symmetric unions and essential tori

Toshifumi Tanaka
Gifu University

> 10:55-11:35, Monday 17 February, 2020 Workshop "Knots and Spatial Graphs 2020" KAIST, Daejeon Korea

Def. A link is a disjoint union of embedded circles in S^{3}.

Def. If K_{1} and K_{2} are knots, the connected sum $K_{1} \# K_{2}$ is defined as follows:

K_{0}

K_{1}

K_{1}

The connected sum

Swallow-follow tori
We have two non-parallel essential tori in the complement.

The connected sum

Swallow-follow tori

We have two non-parallel essential tori in the complement.

We have an essential torus in the complement of the pattern link $J \cup K_{1}$.

Satellite knot

Def. Let V_{h} be a solid torus which is the complement of the unknot J in S^{3}.
Let K_{h} be a knot in V_{h} such that K_{h} is a geometrically essential.
We define the order of the pair $\left(V_{h}, K_{h}\right)$ as the geometric intersection number of K_{h} to any meridian disk of V_{h}.
Let V_{c} be a regular neighborhood of a non-trivial knot K_{c} in S^{3}.
We call a knot K is a satellite knot if K is the image $\Phi\left(K_{h}\right)$ for a homeo. $\Phi: V_{h} \longrightarrow V_{c}$, the order of $\left(V_{h}, K_{h}\right)$ is not zero and K_{h} is not the core of V_{h}.

$J \cup K_{h}:$ Pattern link

Symmetric Union

A symmetric union $D \cup D^{*}\left(n_{1}, \cdots, n_{k}\right)\left(\mathbb{Z} \ni n_{i} \neq \infty\right)$ is defined by the following diagram:

Symmetric Union

Tangles

Property

Fact.

(1) $D \cup D^{*}(n)(S$. Kinoshita-H. Terasaka (OMJ 1957))
(2) $D \cup D *\left(n_{1}, \cdots, n_{k}\right)$ (C. Lamm (OJM 2000))

Fact (Lamm).
(1) Every symmetric union is a ribbon knot.
(2) $\Delta\left(D \cup D^{*}\left(n_{1}, \cdots, n_{k}\right)\right)=\Delta\left(D \cup D{ }^{*}\left(n_{1}, \cdots, n_{k}\right)\right)$ if $n_{i} \equiv n_{i}{ }^{\prime}(\bmod 2)$ for all i.
(\triangle : Alexander polynomial.)
(3) $\operatorname{det}\left(D \cup D *\left(n_{1}, \cdots, n_{k}\right)\right)=\operatorname{det}(D)^{2}$.

Minimal twisting number

Def.

We call the number of non-zero elements in $\left\{n_{1}, \cdots, n_{k}\right\}$ the twisting number for $D \cup D^{*}\left(n_{1}, \cdots, n_{k}\right)$.
The minimal twisting number of a symmetric union K is the smallest number of the twisting numbers of all symmetric union presentations to K denoted by $\operatorname{tw}(K)$.

Fact

Prop. (T. JKTR (2019)).
Let K_{1} and K_{2} be prime symmetric union with $\operatorname{tw}\left(K_{1}\right)=\operatorname{tw}\left(K_{2}\right)=1$.
Then
$\operatorname{tw}\left(K_{1} \# K_{2}\right)=2$ iff K_{1} is not the mirror image of K_{2}.
$K_{1}, K_{2} \in\left\{6_{1}, 8_{8}, 8_{20}, 9_{46}, 10_{3}, 10_{22}, 10_{35}, 10_{137}, 10_{140}, 10_{153}\right\}$

$$
\Rightarrow \operatorname{tw}\left(K_{1} \# K_{2}\right)=2 .
$$

Prop. (T. JKMS (2015)). $\operatorname{tw}\left(10_{99}\right)=\operatorname{tw}\left(10_{123}\right)=2$.

Th. (T. JKTR (2019)).
There are infinitely many symmetric unions with minimal twisting number two.

Ribbon knot

Def. A ribbon knot is a knot that bounds a selfintersecting disk with only ribbon singularities.

Ribbon singularity

Open problem

Every symmetric union is a ribbon knot.

Problem (Lamm OJM (2000)).
Is every ribbon knot, symmetric union?
(1) Every ribbon knot with crossing number $\leqq 10$ is a symmetric union.
(2) Every two-bridge ribbon knot is a symmetric union.
C. Lamm, The search for non-symmetric ribbon knots, arXiv:1710.06909, 2017.

Potential counterexample

C. Lamm, The search for non-symmetric ribbon knots, arXiv:1710.06909, 2017.

Th. (T).
Let K be a satellite symmetric union with minimal twisting number one.
If the $o r d e r$ of the pattern of K is an odd number $\geqq 3$, then the complement of K has two disjoint non-parallel essential tori which are symmetric with respect to a plane.

In particular, the pattern link complement contains an essential torus.

Conj. The condition for minimum twisting number is unnecessary.

Example

K

K is a symmetric union with minimal twisting number ≤ 1.

Example

W. B. R. Lickorish, Prime knots and tangles,

Trans. Amer. Math. Soc. 267 (1981)
K is a prime knot $\Rightarrow K$ has minimal twisting number one.

Example

Pattern
The order is 3 .

Example

Pattern link

Example

(a)

(b)

The order of this pattern is 3 .

Let K_{c} be a non-trivial ribbon knot as a companion knot \Rightarrow the satellite knot K is ribbon knot.

Example

(a)

The computer program HIKMOT, which is integrated into SnapPy by M. Culler, N. Dunfield and J. Weeks, shows that the pattern link $J \cup K_{h}$ is hyperbolic and in particular it does not contain an essential torus.
(b)

Theorem \Rightarrow The satellite knot K is not a symmetric union with minimal twisting number one.

Reference

1. S. Kinoshita and H.Terasaka, On unions of knots, Osaka J. Math. Vol. 9 (1957), 131-153.
2. C. Lamm, Symmetric unions and ribbon knots, Osaka J. Math., Vol. 37 (2000), 537-550.
3. T. Tanaka, The Jones polynomial of knots with symmetric union presentations, J. Korean Math. Soc. 52 (2015), no. 2, 389-402.
4. C. Lamm, The search for non-symmetric ribbon knots, arXiv:1710.06909, 2017.
5. T. Tanaka, On composite knots with symmetric union presentations, J. Knot Theory Ramifications 28 (2019), no. 10.
