Disk surgery and the primitive disk complexes of the 3-sphere

Jung Hoon Lee
(joint with Sangbum Cho and Yuya Koda)

February 18, 2020

Knots and Spatial Graphs 2020
A workshop in memory of Choonbae Jeon KAIST

Outline

- disk complex
- primitive disk complex
- disk surgery
- result (example)

- compressing disk

V : a handlebody of genus $g(\geq 2)$

A compressing disk D of V is a properly embedded ($D \cap \partial V=\partial D$) disk in V such that ∂D does not bound a disk in ∂V.

- disk complex

A disk complex $\mathcal{D}(V)$ is a simplicial complex defined as follows.

- Vertices of $\mathcal{D}(V)$ are isotopy classes of compressing disks of V.
- A collection of $k+1$ vertices forms a k-simplex if there are representatives for each that are pairwise disjoint.

- primitive disk

$M=V \cup_{\Sigma} W$: a Heegaard splitting
A disk $D \subset V$ is primitive if there is a disk $\bar{D} \subset W$ such that $|D \cap \bar{D}|=1$. (dual disk)
$\Longleftrightarrow \partial D$ is a primitive element of $\pi_{1}(W)$ ([Gordon]).
(An element w of a free group is primitive if w can be a member of a basis.)

- primitive elements of $F(x, y)$ ([Osborne-Zieschang])

$$
\begin{aligned}
& \text { Suppose } 0 \leq m<n,(m, n)=1 . \quad(\bmod m+n): 1,2, \ldots, m+n . \\
& f:\{1+i m\}_{i=0}^{m+n-1} \longrightarrow\{x, y\}
\end{aligned} \quad \begin{array}{ll}
x(1+i m)=\left\{\begin{array}{lll}
x & \text { if } & 1 \leq 1+i m(\bmod m+n) \leq m \\
y & \text { if } & m+1 \leq 1+i m(\bmod m+n) \leq m+n .
\end{array}\right. \\
W(x, y)=\prod_{i=0}^{m+n-1} f(1+i m)
\end{array}
$$

$$
\text { primitive elements }=W\left(x^{ \pm 1}, y^{ \pm 1}\right) \text { or their conjugates }
$$

$$
\text { example) } m=5, n=7, m+n-1=11,(\bmod 12)
$$

$$
\begin{array}{rlrrrrrrrrrrrl}
1 & 6 & 11 & 16 & 21 & 26 & 31 & 36 & 41 & 46 & 51 & 56 & \\
1 & 6 & 11 & 4 & 9 & 2 & 7 & 12 & 5 & 10 & 3 & 8 & (\bmod 12) \\
x & y & y & x & y & x & y & y & x & y & x & y & \\
W(x, y) & =x y^{2} x y x y^{2} x y x y
\end{array}
$$

- primitive disk complex

The primitive disk complex $\mathcal{P}(V)$ for V is a subcomplex of $\mathcal{D}(V)$ spanned by primitive disks.
\longrightarrow mapping class group of the splitting:
the group of isotopy classes of homeomorphisms of M that preserve V and W setwise

- intersection pattern

$$
\begin{aligned}
& D, E: \text { disks } \\
& D \cap E \neq \emptyset
\end{aligned}
$$

The intersection pattern of D and E may not be unique, by isotopy of D and E.

- outermost disk
$D \cap E \neq \emptyset$

- disk surgery

Suppose $D \cap E \neq \emptyset$.
δ : an outermost arc of $D \cap E$ in E
Δ : the corresponding outermost disk in E cut off by δ

The arc δ cuts D into two disks C_{1} and C_{2}. We call $C_{1} \cup \Delta$ and $C_{2} \cup \Delta$ the disks obtained by a disk surgery on D along E.

\mathcal{X} : a subcomplex of $\mathcal{D}(V)$
(1) \mathcal{X} is closed under disk surgery operation if
for any disks D and E with $D \cap E \neq \emptyset$ representing vertices of \mathcal{X}, there exists an intersection pattern $D \cap E$ such that every surgery on D along E always yields a disk representing a vertex of \mathcal{X}.
(2) \mathcal{X} is weakly closed under disk surgery operation if for any disks D and E with $D \cap E \neq \emptyset$ representing vertices of \mathcal{X}, there exists an intersection pattern $D \cap E$ with a surgery on D along E yielding a disk representing a vertex of \mathcal{X}.

Proposition.

(1) If \mathcal{X} is weakly closed under disk surgery operation, then \mathcal{X} is connected.
(2) If \mathcal{X} is closed under disk surgery operation, then \mathcal{X} is contractible ([McCullough], [Cho]).

For a genus-2 Heegaard splitting of S^{3}, $\mathcal{P}(V)$ is closed under disk surgery operation ([Cho]), hence it is contractible.

It is still an open question whether $\mathcal{P}(V)$ in the case of $g>3$ is connected, contractible or not, and whether $\mathcal{P}(V)$ in the case of $g=3$ is contractible or not.

Recently, it is shown that $\mathcal{P}(V)$ is connected in the case of $g=3$ ([Freedman-Scharlemann], [Zupan]).

Theorem ([Cho-Koda-L.]).

Let $V \cup_{\Sigma} W$ be a genus- g Heegaard splitting of S^{3} with $g \geq 3$.

Then $\mathcal{P}(V)$ is not weakly closed under disk surgery operation,
i.e. there exist two intersecting primitive disks in, say V, such that any disk surgery on one along the other yields no primitive disks.

- non-primitive disks in genus three

(a) : $x_{1} x_{2}^{-1} x_{1} x_{2} x_{1}^{-1} x_{2}$, not primitive
(b) : $x_{1} x_{2}^{-1} x_{1} x_{2}^{-1} x_{1} x_{2} x_{1}^{-1} x_{2} x_{2} x_{1}^{-1} x_{2}$, not primitive
\because In a free group of rank two, if a cyclically reduced word has both x_{i} and x_{i}^{-1}, then it is not primitive ([Osborne-Zieschang]).

D and E are primitive disks.
$E:\left(x_{1} x_{2}^{-1} x_{1} x_{2}^{-1} x_{1} x_{2} x_{1}^{-1} x_{2} x_{2} x_{1}^{-1}\right)\left(x_{1} x_{2}^{-1} x_{2}^{-1} x_{1} x_{2}^{-1} x_{1}^{-1} x_{2} x_{1}^{-1} x_{2} x_{1}^{-1}\right) x_{2}$ \forall disk surgery on D and $E \longrightarrow$ disks (a) or (b), not primitive

Thank you for your attention.

