Disk surgery and the primitive disk complexes of the 3-sphere

Jung Hoon Lee (joint with Sangbum Cho and Yuya Koda)

February 18, 2020

Knots and Spatial Graphs 2020 A workshop in memory of Choonbae Jeon KAIST

Outline

- disk complex
- primitive disk complex
- disk surgery
- result (example)

• compressing disk

- V: a handlebody of genus $g(\geq 2)$
- A compressing disk D of V is

a properly embedded $(D \cap \partial V = \partial D)$ disk in V such that ∂D does not bound a disk in ∂V .

• disk complex

A disk complex $\mathcal{D}(V)$ is a simplicial complex defined as follows.

• Vertices of $\mathcal{D}(V)$ are isotopy classes of compressing disks of V.

• A collection of k + 1 vertices forms a k-simplex if there are representatives for each that are pairwise disjoint.

• primitive disk

 $M = V \cup_{\Sigma} W$: a Heegaard splitting

A disk $D \subset V$ is *primitive* if there is a disk $\overline{D} \subset W$ such that $|D \cap \overline{D}| = 1$. (dual disk)

 $\iff \partial D$ is a primitive element of $\pi_1(W)$ ([Gordon]).

(An element w of a free group is *primitive* if w can be a member of a basis.)

• primitive elements of F(x, y) ([Osborne-Zieschang])

Suppose
$$0 \le m < n$$
, $(m, n) = 1$. $(\mod m + n) : 1, 2, ..., m + n$.
 $f: \{1 + im\}_{i=0}^{m+n-1} \longrightarrow \{x, y\}$
 $f(1 + im) = \begin{cases} x & \text{if } 1 \le 1 + im \pmod{m+n} \le m, \\ y & \text{if } m+1 \le 1 + im \pmod{m+n} \le m+n. \end{cases}$
 $W(x, y) = \prod_{i=0}^{m+n-1} f(1 + im)$
primitive elements $= W(x^{\pm 1}, y^{\pm 1})$ or their conjugates
example) $m = 5, n = 7, m + n - 1 = 11, \pmod{12}$
 $1 \ 6 \ 11 \ 16 \ 21 \ 26 \ 31 \ 36 \ 41 \ 46 \ 51 \ 56 \\ 1 \ 6 \ 11 \ 4 \ 9 \ 2 \ 7 \ 12 \ 5 \ 10 \ 3 \ 8 \pmod{12}$
 $W(x, y) = xy^2 xyxy^2 xyxy$

7

• primitive disk complex

The *primitive disk complex* $\mathcal{P}(V)$ for V is a subcomplex of $\mathcal{D}(V)$ spanned by primitive disks.

 \rightarrow mapping class group of the splitting:

the group of isotopy classes of homeomorphisms of ${\cal M}$ that preserve V and W setwise

• intersection pattern

 $D, E : \mathsf{disks}$ $D \cap E \neq \emptyset$

The intersection pattern of D and E may not be unique, by isotopy of D and E.

• outermost disk

 $D \cap E \neq \emptyset$

 $D \cap E$ in E

• disk surgery

Suppose $D \cap E \neq \emptyset$.

 δ : an outermost arc of $D\cap E$ in E

 Δ : the corresponding outermost disk in E cut off by δ

The arc δ cuts D into two disks C_1 and C_2 . We call $C_1 \cup \Delta$ and $C_2 \cup \Delta$ the disks obtained by a *disk surgery* on D along E.

\mathcal{X} : a subcomplex of $\mathcal{D}(V)$

(1) \mathcal{X} is closed under disk surgery operation if

for any disks D and E with $D \cap E \neq \emptyset$ representing vertices of \mathcal{X} , there exists an intersection pattern $D \cap E$ such that **every** surgery on D along E always yields a disk representing a vertex of \mathcal{X} .

(2) \mathcal{X} is weakly closed under disk surgery operation if for any disks D and E with $D \cap E \neq \emptyset$ representing vertices of \mathcal{X} , there exists an intersection pattern $D \cap E$ with **a** surgery on Dalong E yielding a disk representing a vertex of \mathcal{X} .

Proposition.

- (1) If \mathcal{X} is weakly closed under disk surgery operation, then \mathcal{X} is connected.
- (2) If \mathcal{X} is closed under disk surgery operation, then \mathcal{X} is contractible ([McCullough], [Cho]).

For a genus-2 Heegaard splitting of S^3 , $\mathcal{P}(V)$ is closed under disk surgery operation ([Cho]), hence it is contractible.

It is still an open question whether $\mathcal{P}(V)$ in the case of g > 3 is connected, contractible or not, and whether $\mathcal{P}(V)$ in the case of g = 3 is contractible or not.

Recently, it is shown that $\mathcal{P}(V)$ is connected in the case of g = 3 ([Freedman-Scharlemann], [Zupan]).

Theorem ([Cho-Koda-L.]).

Let $V \cup_{\Sigma} W$ be a genus-g Heegaard splitting of S^3 with $g \geq 3$.

Then $\mathcal{P}(V)$ is **not** weakly closed under disk surgery operation,

i.e. there exist two intersecting primitive disks in, say V, such that any disk surgery on one along the other yields **no** primitive disks.

non-primitive disks in genus three

(a) : $x_1 x_2^{-1} x_1 x_2 x_1^{-1} x_2$, not primitive (b) : $x_1 x_2^{-1} x_1 x_2^{-1} x_1 x_2 x_1^{-1} x_2 x_2 x_1^{-1} x_2$, not primitive

 \therefore In a free group of rank two, if a cyclically reduced word has both x_i and x_i^{-1} , then it is not primitive ([Osborne-Zieschang]).

 $\begin{array}{l} D \text{ and } E \text{ are primitive disks.} \\ E: (x_1 x_2^{-1} x_1 x_2^{-1} x_1 x_2 x_1^{-1} x_2 x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1 x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_2^{-1} x_1^{-1} x_2 x_1^{-1} x_2 x_1^{-1})(x_1 x_2^{-1} x_1^{-1} x_2 x_1^{-1})(x_1 x_1^{-1} x_1^{-1} x_2 x_1^{-1} x_1^{-1})(x_1 x_1^{-1} x_1^{-1} x_1^{-1} x_1^{-1} x_1^{-1})(x$

Thank you for your attention.