Twisted torus knots which are torus knots

February 17, 2020

Sangyop Lee

Twisted torus knots $T(p, q, r, s)$
p, q : coprime integers with $1<q<p$
r : an integer with $1 \leq r \leq p+q$
s : a nonzero integer
$T(p, q)$: the torus knot of type (p, q)
$T(p, q, r, s)$ is a knot obtained from $T(p, q)$ by twisting r adjacent strands fully s times.

$\mathrm{T}(9,4)$

$$
\mathrm{T}(9,4,6,-1)
$$

Question. Can we determine the parameters p, q, r, s for which $T(p, q, r, s)$ is a torus knot?

Known

Easy to see: $T(p, q, p, s)=T(p, q+p s)$
Theorem 1. $T(p, q, k q, s)$ is the $\left(q, p+k^{2} q s\right)$-cable knot on $T(k, k s+1)$.
Theorem 2. Assume $r \neq p$ and r is not a multiple of q. If $T(p, q, r, s)$ is a torus knot, then $s=-2,-1$, or 1 .

$$
\begin{aligned}
s=-2: & T(p, q, r, s)=T(2 n+\varepsilon, n, n+\varepsilon,-2)=T(2 n+\varepsilon,-2 \varepsilon) \\
& n \geq 1, \varepsilon= \pm 1,(n, \varepsilon) \neq(1,-1) \\
s=1: & T(p, q, r, s)=T(m n+1, n, n-1,1)=T(m n+n-1, n) \\
& m \geq 1, n \geq 3
\end{aligned}
$$

$s=-1: T(p, q, r, s)=?$

What if $r=p-k q$ for some integer k ?

Main Results

$p-k q=r<q$	Theorem 3	
$q<r=p-k q$	Theorem 4(2)	Theorem 4(1)
	$k=1$	$k \geq 2$

Theorem 3. Let p, q, k be positive integers such that p and q are coprime, $1<q<p$ and $2 \leq p-k q$. Suppose that $p-k q<q$. Then

$$
\begin{aligned}
& T(p, q, p-k q,-1) \text { is a torus knot } \\
& \Longleftrightarrow(p, q, p-k q)=(m n+n-1, n, n-1)
\end{aligned}
$$

for some integers $m \geq 1$ and $n \geq 3$. In this case,

$$
T(p, q, p-k q,-1)=T(m n+1, n)
$$

Theorem 4. Let p, q, k be positive integers such that p and q are coprime, $1<q<p$ and $2 \leq p-k q$. Suppose that $q<p-k q$. Then
$T(p, q, p-k q,-1)$ is a torus knot \Longleftrightarrow one of the following holds:
(1) if $k \geq 2$, then either
(i) $(p, q, p-k q)=(m n+n+1, n, n+1)$ for some integers $m \geq 2$ and $n \geq 2$; or
(ii) $(p, q, p-k q)=(4 n+3 \varepsilon, n+\varepsilon, 2 n+\varepsilon)$ for some integers $n \geq 1$ and $\varepsilon= \pm 1$ such that $(n, \varepsilon) \neq(1,-1)$ and $(n, \varepsilon) \neq(2,-1)$.

In the former, $T(p, q, p-k q,-1)=T(m n-1, n)$, and in the latter, $T(p, q, p-k q,-1)=T(2 n+\varepsilon, 2 \varepsilon)$.
(2) if $k=1$, then either
(i) $(p, q, p-q)=\left(n f_{m+3}-f_{m+2}, n f_{m+1}-f_{m}, n f_{m+2}-f_{m+1}\right)$ for some integers $m \geq 1$ and $n \geq 2$ such that $(m, n) \neq(1,2)$; or
(ii) $(p, q, p-q)=\left(n f_{m+1}+f_{m+2}, n f_{m-1}+f_{m}, n f_{m}+f_{m+1}\right)$ for some integers $m \geq 2$ and $n \geq 2$,
where f_{m} is the m th Fibonacci number defined by the recurrence relation $f_{m+1}=f_{m-1}+f_{m}$ with seed values $f_{1}=1$ and $f_{2}=1$. In this case, $T(p, q, r,-1)=T\left(n+1,(-1)^{m} n\right)$.
H_{1}, H_{2} : genus two handlebodies such that $\partial H_{1}=\partial H_{2}$ contains $T(p, q, r, s)$

$T(p, q, r, s)$ defines two elements $w_{p, q, r, s} \in \pi_{1} H_{1}$ and $w_{p, q, r, s}^{\prime} \in \pi_{1} H_{2}$

Lemma (John Dean).
(1) $w_{p, q, r, s}$ is primitive in $\pi_{1} H_{1} \Longleftrightarrow r \equiv \pm 1$ or $\pm q \bmod p$.
(2) $w_{p, q, r, s}^{\prime}$ is primitive in $\pi_{1} H_{2} \Longleftrightarrow r \equiv \pm 1$ or $\pm p \bmod q$ and $|s|=1$.

Dehn surgery along surface slope

Lemma (John Dean).
The surface slope of $T(p, q, r, s)$ with respect to ∂H_{1} is $p q+r^{2} s$.

$$
K\left(p q+r^{2} s\right)=H_{1}[K] \cup_{\partial} H_{2}[K]
$$

Lemma (Franks-Williams).
Let β be a positive braid on n strands with $\beta=a \Delta^{2}$, where Δ^{2} is the full twist word. Then n is the braid index of $\widehat{\beta}$.

Lemma 1. Suppose that $p \geq q+r$ and $q>r$. Then

$$
\begin{gathered}
\operatorname{br}(T(p, q, r,-1))=q \\
2 \mathrm{~g}(T(p, q, r,-1))=(p-1)(q-1)-r(r-1)
\end{gathered}
$$

Proof. Dean: $T(p, q, r,-1) \sim T(q, p, r,-1)$.
$T(q, p, r,-1)$ is isotopic to the closure of the positive q-braid.

The case where $(p, q, r)=(8,5,3)$ is shown below. Since $p-r \geq q$, the resulting positive braid knot contains a full twist and it follows from a result of Franks-Williams that the knot has braid index q.

Known: $K=$ a positive b-braid knot with c crossings

$$
\Rightarrow \mathrm{g}(K)=\frac{1-b+c}{2}
$$

$T(q, p, r,-1): q$ strands, \#crossing $=(q-1)(p-r)+r(q-r)$, so

$$
2 \mathrm{~g}(T(q, p, r,-1))=(p-1)(q-1)-r(r-1)
$$

Lemma 1. $p \geq q+r$ and $r<q \Rightarrow \operatorname{br}(T(p, q, r,-1))=q$, and

$$
2 \mathrm{~g}(T(p, q, r,-1))=(p-1)(q-1)-r(r-1) .
$$

Lemma 2. Suppose $T(p, q, p-q,-1)$ is a torus knot and $1 \leq p-q<q$. Then $p=q+1$ or $p=2 q-1$.

Proof. Suppose $T(p, q, p-q,-1)=T(a, b)$, where $a<b$.
Since $\operatorname{br}(T(a, b))=a$ and $2 \mathrm{~g}(T(a, b))=(a-1)(b-1)$,
by Lemma 1 we obtain

$$
a=q
$$

and

$$
(a-1)(b-1)=(p-1)(q-1)-(p-q)(p-q-1)
$$

$$
p-q \equiv-q \quad \bmod p
$$

and

$$
p-q \equiv p \quad \bmod q,
$$

so Dean's Lemmas show that Dehn surgery on $T(p, q, p-q,-1)$ with slope $p q-(p-q)^{2}$ gives a lens space with order $p q-(p-q)^{2}(\geq 2)$.

Lemma (John Dean).
(1) $w_{p, q, r, s}$ is primitive in $\pi_{1} H_{1} \Longleftrightarrow r \equiv \pm 1$ or $\pm q \bmod p$.
(2) $w_{p, q, r, s}^{\prime}$ is primitive in $\pi_{1} H_{2} \Longleftrightarrow r \equiv \pm 1$ or $\pm p \bmod q$ and $|s|=1$.

$$
K\left(p q+r^{2} s\right)=H_{1}[K] \cup_{\partial} H_{2}[K]
$$

By the classification of the manifolds obtained by Dehn surgery on a torus knot, we must have an integer $\varepsilon= \pm 1$ such that

$$
a b+\varepsilon=p q-(p-q)^{2} .
$$

Thus we have

$$
\begin{aligned}
b & =(a b+\varepsilon)-(a-1)(b-1)-a-\varepsilon+1 \\
& =\left[p q-(p-q)^{2}\right]-[(p-1)(q-1)-(p-q)(p-q-1)]-q-\varepsilon+1 \\
& =q-\varepsilon .
\end{aligned}
$$

Since $a<b$, we have $\varepsilon=-1$ and $b=q+1$. Putting $a=q, b=q+1$, and $\varepsilon=-1$ in the equation $a b+\varepsilon=p q-(p-q)^{2}$, we get

$$
q(q+1)-1=p q-(p-q)^{2}
$$

Solving the resulting quadratic equation, we obtain $p=q+1$ or $p=2 q-1$ as desired.

Lemma 3. Suppose $q<p-q$. Then $T(p, q, p-q,-1)$ is isotopic to the mirror image of $T(p-q, p-2 q, q,-1)$.

Theorem 4. Suppose $T(p, q, p-q,-1)$ is a torus knot and $2 \leq q<p-q$. Then $T(p, q, p-q,-1)=T\left(n+1,(-1)^{m} n\right)$ and either
(i) $(p, q, p-q)=\left(n f_{m+3}-f_{m+2}, n f_{m+1}-f_{m}, n f_{m+2}-f_{m+1}\right)$ for some integers $m \geq 1$ and $n \geq 2$ such that $(m, n) \neq(1,2)$; or
(ii) $(p, q, p-q)=\left(n f_{m+1}+f_{m+2}, n f_{m-1}+f_{m}, n f_{m}+f_{m+1}\right)$ for some integers $m \geq 2$ and $n \geq 2$,
where f_{m} is the m th Fibonacci number defined by the recurrence relation $f_{m+1}=f_{m-1}+f_{m}$ with seed values $f_{1}=1$ and $f_{2}=1$.

Lemma 3. $q<p-q \Rightarrow T(p, q, p-q,-1)=T(p-q, p-2 q, q,-1)$!.

$$
\begin{array}{rlrl}
q<p-q & \Rightarrow & T(p, q, p-q,-1) & =T(p-q, p-2 q, q,-1)! \\
p-2 q<q & \Rightarrow T(p-q, p-2 q, q,-1) & =T(q, 3 q-p, p-2 q,-1)!
\end{array}
$$

As long as $q_{m}<r_{m}=p_{m}-q_{m}$,

$$
\begin{aligned}
& T(1 p+\bigcirc q, 0 p+1 q, 1 p-1 q,-1) \\
= & T(1 p-1 q, 1 p-2 q, \bigcirc p+1 q,-1)^{!} \\
= & T(0 p+1 q,-1 p+3 q, 1 p-2 q,-1) \\
= & T(1 p-2 q, 2 p-5 q,-1 p+3 q,-1)! \\
= & T(-1 p+3 q,-3 p+8 q, 2 p-5 q,-1) \\
= & T(2 p-5 q, 5 p-13 q,-3 p+8 q,-1)^{!} \\
= & T(-3 p+8 q,-8 p+21 q, 5 p-13 q,-1) \\
& \quad \vdots \\
= & T\left(p_{m}, q_{m}, r_{m},-1\right)
\end{aligned}
$$

We can prove: $p_{m}-q_{m}=r_{m}<q_{m}$ for some m

Lemma 2. $T(p, q, p-q,-1)$ is a torus knot and $1 \leq p-q<q$. $\Rightarrow p=q+1$ or $p=2 q-1$

By Lemma 2, $p_{m}=q_{m}+1$ or $p_{m}=2 q_{m}-1$.

Suppose $p_{m}=q_{m}+1$ and let $q_{m}=n$. Then

$$
T\left(p_{m}, q_{m}, r_{m},-1\right)=T(n+1, n, 1,-1)=T(n+1, n)
$$

$$
\begin{aligned}
T\left(p_{m}, q_{m}, r_{m},-1\right) & =T(n+1, n) \\
T\left(p_{m-1}, q_{m-1}, r_{m-1},-1\right) & =T(n+1,-n) \\
T\left(p_{m-2}, q_{m-2}, r_{m-2},-1\right) & =T(n+1, n) \\
\vdots & \\
T(p, q, r,-1)=T\left(p_{0}, q_{0}, r_{0},-1\right) & =T\left(n+1,(-1)^{m} n\right)
\end{aligned}
$$

$$
\begin{aligned}
& T(1 p+0 q, 0 p+1 q, 1 p-1 q,-1) \\
&= T(1 p-1 q, 1 p-2 q, 0 p+1 q,-1)^{!} \\
&= T(0 p+1 q,-1 p+3 q, 1 p-2 q,-1) \\
&= T(1 p-2 q, 2 p-5 q,-1 p+3 q,-1)^{!} \\
&= T(-1 p+3 q,-3 p+8 q, 2 p-5 q,-1) \\
&= T(2 p-5 q, 5 p-13 q,-3 p+8 q,-1)^{!} \\
& \vdots \\
&= T\left(p_{m}, q_{m}, r_{m},-1\right)=T(n+1, n, 1,-1) \\
& \Rightarrow \quad\left\{\begin{array}{l}
p=p_{0}=f_{m+1} n+f_{m+2} \\
q=q_{0}=f_{m-1} n+f_{m} \\
r=r_{0}=f_{m} n+f_{m+1} .
\end{array}\right.
\end{aligned}
$$

Suppose $p_{m}=2 q_{m}-1$.
By a similar argument as in the case that $p_{m}=q_{m}+1$, we can show

$$
\begin{gathered}
\left\{\begin{array}{c}
p=p_{0}=f_{m+3} n-f_{m+2} \\
q=q_{0}=f_{m+1} n-f_{m} \\
r=r_{0}=f_{m+2} n-f_{m+1} .
\end{array}\right. \\
T(p, q, r,-1)=T\left(n+1,(-1)^{m} n\right)
\end{gathered}
$$

Theorem 5. Let m are n be positive integers. Then we have the following:
(1) $T(m n+m+1, m n+1, m n,-1)=T(m n+n+1, m+1)$;
(2) $T(m n+m+1, m n+1, m n+m+2,-1)=T(m n+m+n+2,-m-1)$;
(3) $T(m n+m+1, m n+1, m n+m,-1)=T(m n+m-n,-m+1)$;
(4) $T(m n+m+1, m n+1, m n+2,-1)=T(m n-n+1, m-1)$;
(5) $T(m n+m-1, m n-1, m n+m-2,-1)=T(m n+m-n-2,-m+1)$;
(6) $T(m n+m-1, m n-1, m n,-1)=T(m n-n-1, m-1)$;
(7) $T(2 n+1, n, 2 n-1,-1)=T(2 n-3,-n+1)$; and
(8) $T(n+1, n, 2 n-1,-1)=T(3 n-2,-n+1)$.

Question. Are there any other examples?

THANK YOU

