Twisted torus knots which are torus knots

February 17, 2020

Sangyop Lee

Twisted torus knots T(p,q,r,s)

p,q: coprime integers with 1 < q < pr: an integer with $1 \le r \le p+q$ s: a nonzero integer T(p,q): the torus knot of type (p,q)

T(p,q,r,s) is a knot obtained from T(p,q) by twisting r adjacent strands fully s times.

Question. Can we determine the parameters p, q, r, s for which T(p, q, r, s) is a torus knot?

Known

Easy to see: T(p,q,p,s) = T(p,q+ps)Theorem 1. T(p,q,kq,s) is the $(q,p+k^2qs)$ -cable knot on T(k,ks+1). Theorem 2. Assume $r \neq p$ and r is not a multiple of q. If T(p,q,r,s) is a torus knot, then s = -2, -1, or 1.

$$s = -2: T(p,q,r,s) = T(2n + \varepsilon, n, n + \varepsilon, -2) = T(2n + \varepsilon, -2\varepsilon),$$

$$n \ge 1, \varepsilon = \pm 1, (n,\varepsilon) \ne (1,-1)$$

$$s = 1$$
: $T(p,q,r,s) = T(mn+1,n,n-1,1) = T(mn+n-1,n),$
 $m \ge 1, n \ge 3$

$$s = -1$$
: $T(p, q, r, s) = ?$

What if r = p - kq for some integer k?

Main Results

p - kq = r < q	Theorem 3	
q < r = p - kq	Theorem 4(2)	Theorem 4(1)
	k = 1	$k \ge 2$

Theorem 3. Let p, q, k be positive integers such that p and q are coprime, 1 < q < p and $2 \le p - kq$. Suppose that p - kq < q. Then

 $T(p,q,p-kq,-1) \text{ is a torus knot} \\ \iff (p,q,p-kq) = (mn+n-1,n,n-1)$

for some integers $m \ge 1$ and $n \ge 3$. In this case,

T(p,q,p-kq,-1) = T(mn+1,n).

Theorem 4. Let p, q, k be positive integers such that p and q are coprime, 1 < q < p and $2 \le p - kq$. Suppose that q . Then

T(p,q,p-kq,-1) is a torus knot \iff one of the following holds:

(1) if $k \geq 2$, then either

(i) (p,q,p-kq) = (mn+n+1,n,n+1) for some integers $m \ge 2$ and $n \ge 2$; or

(ii) $(p,q,p-kq) = (4n + 3\varepsilon, n + \varepsilon, 2n + \varepsilon)$ for some integers $n \ge 1$ and $\varepsilon = \pm 1$ such that $(n,\varepsilon) \ne (1,-1)$ and $(n,\varepsilon) \ne (2,-1)$.

In the former, T(p,q,p-kq,-1) = T(mn-1,n), and in the latter, $T(p,q,p-kq,-1) = T(2n + \varepsilon, 2\varepsilon)$. (2) if k = 1, then either

- (i) $(p,q,p-q) = (nf_{m+3} f_{m+2}, nf_{m+1} f_m, nf_{m+2} f_{m+1})$ for some integers $m \ge 1$ and $n \ge 2$ such that $(m,n) \ne (1,2)$; or
- (ii) $(p,q,p-q) = (nf_{m+1} + f_{m+2}, nf_{m-1} + f_m, nf_m + f_{m+1})$ for some integers $m \ge 2$ and $n \ge 2$,

where f_m is the *m*th Fibonacci number defined by the recurrence relation $f_{m+1} = f_{m-1} + f_m$ with seed values $f_1 = 1$ and $f_2 = 1$. In this case, $T(p,q,r,-1) = T(n+1,(-1)^m n)$. H_1, H_2 : genus two handlebodies such that $\partial H_1 = \partial H_2$ contains T(p,q,r,s)

T(p,q,r,s) defines two elements $w_{p,q,r,s} \in \pi_1 H_1$ and $w'_{p,q,r,s} \in \pi_1 H_2$

Lemma (John Dean). (1) $w_{p,q,r,s}$ is primitive in $\pi_1 H_1 \iff r \equiv \pm 1$ or $\pm q \mod p$. (2) $w'_{p,q,r,s}$ is primitive in $\pi_1 H_2 \iff r \equiv \pm 1$ or $\pm p \mod q$ and |s| = 1.

Dehn surgery along surface slope

Lemma (John Dean). The surface slope of T(p,q,r,s) with respect to ∂H_1 is $pq + r^2s$.

$$K(pq + r^2s) = H_1[K] \cup_{\partial} H_2[K]$$

Lemma (Franks-Williams).

Let β be a positive braid on n strands with $\beta = a\Delta^2$, where Δ^2 is the full twist word. Then n is the braid index of $\hat{\beta}$.

Lemma 1. Suppose that
$$p \ge q + r$$
 and $q > r$. Then
 $br(T(p,q,r,-1)) = q,$
 $2g(T(p,q,r,-1)) = (p-1)(q-1) - r(r-1).$

Proof. Dean: $T(p,q,r,-1) \sim T(q,p,r,-1)$. T(q,p,r,-1) is isotopic to the closure of the positive q-braid.

The case where (p,q,r) = (8,5,3) is shown below. Since $p - r \ge q$, the resulting positive braid knot contains a full twist and it follows from a result of Franks-Williams that the knot has braid index q.

Known: K = a positive *b*-braid knot with *c* crossings

$$\Rightarrow g(K) = \frac{1-b+c}{2}.$$

$$T(q, p, r, -1): \ q \text{ strands, } \#\text{crossing} = (q-1)(p-r) + r(q-r), \text{ so}$$

$$2g(T(q, p, r, -1)) = (p-1)(q-1) - r(r-1).$$

r strands

Lemma 1.
$$p \ge q + r$$
 and $r < q \implies br(T(p,q,r,-1)) = q$, and
 $2g(T(p,q,r,-1)) = (p-1)(q-1) - r(r-1).$

Lemma 2. Suppose T(p,q,p-q,-1) is a torus knot and $1 \le p-q < q$. Then p = q + 1 or p = 2q - 1.

Proof. Suppose T(p,q,p-q,-1) = T(a,b), where a < b. Since br(T(a,b)) = a and 2g(T(a,b)) = (a-1)(b-1), by Lemma 1 we obtain

$$a = q$$

and

$$(a-1)(b-1) = (p-1)(q-1) - (p-q)(p-q-1).$$

$$p-q \equiv -q \mod p$$

and

$$p-q\equiv p \mod q,$$

so Dean's Lemmas show that Dehn surgery on T(p,q,p-q,-1) with slope $pq - (p-q)^2$ gives a lens space with order $pq - (p-q)^2 (\geq 2)$.

Lemma (John Dean). (1) $w_{p,q,r,s}$ is primitive in $\pi_1 H_1 \iff r \equiv \pm 1$ or $\pm q \mod p$. (2) $w'_{p,q,r,s}$ is primitive in $\pi_1 H_2 \iff r \equiv \pm 1$ or $\pm p \mod q$ and |s| = 1.

$$K(pq + r^2s) = H_1[K] \cup_{\partial} H_2[K]$$

By the classification of the manifolds obtained by Dehn surgery on a torus knot, we must have an integer $\varepsilon = \pm 1$ such that

$$ab + \varepsilon = pq - (p - q)^2$$

Thus we have

$$b = (ab + \varepsilon) - (a - 1)(b - 1) - a - \varepsilon + 1$$

= $[pq - (p - q)^2] - [(p - 1)(q - 1) - (p - q)(p - q - 1)] - q - \varepsilon + 1$
= $q - \varepsilon$.

Since a < b, we have $\varepsilon = -1$ and b = q + 1. Putting a = q, b = q + 1, and $\varepsilon = -1$ in the equation $ab + \varepsilon = pq - (p - q)^2$, we get

$$q(q + 1) - 1 = pq - (p - q)^2.$$

Solving the resulting quadratic equation, we obtain p = q + 1 or p = 2q - 1 as desired.

Lemma 3. Suppose q < p-q. Then T(p,q,p-q,-1) is isotopic to the mirror image of T(p-q,p-2q,q,-1).

Theorem 4. Suppose T(p,q,p-q,-1) is a torus knot and $2 \le q < p-q$. Then $T(p,q,p-q,-1) = T(n+1,(-1)^m n)$ and either

(i) $(p,q,p-q) = (nf_{m+3} - f_{m+2}, nf_{m+1} - f_m, nf_{m+2} - f_{m+1})$ for some integers $m \ge 1$ and $n \ge 2$ such that $(m,n) \ne (1,2)$; or

(ii) $(p,q,p-q) = (nf_{m+1} + f_{m+2}, nf_{m-1} + f_m, nf_m + f_{m+1})$ for some integers $m \ge 2$ and $n \ge 2$,

where f_m is the *m*th Fibonacci number defined by the recurrence relation $f_{m+1} = f_{m-1} + f_m$ with seed values $f_1 = 1$ and $f_2 = 1$.

Lemma 3. q .

$$\begin{array}{rcl} q$$

÷

As long as $q_m < r_m = p_m - q_m$,

$$T(1p + 0q, 0p + 1q, 1p - 1q, -1)$$

$$= T(1p - 1q, 1p - 2q, 0p + 1q, -1)^{!}$$

$$= T(0p + 1q, -1p + 3q, 1p - 2q, -1)$$

$$= T(1p - 2q, 2p - 5q, -1p + 3q, -1)^{!}$$

$$= T(-1p + 3q, -3p + 8q, 2p - 5q, -1)$$

$$= T(2p - 5q, 5p - 13q, -3p + 8q, -1)^{!}$$

$$= T(-3p + 8q, -8p + 21q, 5p - 13q, -1)$$

$$\vdots$$

We can prove: $p_m - q_m = r_m < q_m$ for some m

Lemma 2. T(p,q,p-q,-1) is a torus knot and $1 \le p-q < q$. $\Rightarrow p = q+1$ or p = 2q-1

By Lemma 2, $p_m = q_m + 1$ or $p_m = 2q_m - 1$.

Suppose $p_m = q_m + 1$ and let $q_m = n$. Then

$$T(p_m, q_m, r_m, -1) = T(n+1, n, 1, -1) = T(n+1, n).$$

$$T(p_m, q_m, r_m, -1) = T(n + 1, n)$$

$$T(p_{m-1}, q_{m-1}, r_{m-1}, -1) = T(n + 1, -n)$$

$$T(p_{m-2}, q_{m-2}, r_{m-2}, -1) = T(n + 1, n)$$

$$\vdots$$

$$T(p, q, r, -1) = T(p_0, q_0, r_0, -1) = T(n + 1, (-1)^m n)$$

T(1p + 0q, 0p + 1q, 1p - 1q, -1)= $T(1p - 1q, 1p - 2q, 0p + 1q, -1)^{!}$ = T(0p + 1q, -1p + 3q, 1p - 2q, -1)= $T(1p - 2q, 2p - 5q, -1p + 3q, -1)^{!}$ = T(-1p + 3q, -3p + 8q, 2p - 5q, -1)= $T(2p - 5q, 5p - 13q, -3p + 8q, -1)^{!}$:

$$= T(p_m, q_m, r_m, -1) = T(n+1, n, 1, -1)$$

$$\Rightarrow \begin{cases} p = p_0 = f_{m+1}n + f_{m+2} \\ q = q_0 = f_{m-1}n + f_m \\ r = r_0 = f_mn + f_{m+1}. \end{cases}$$

Suppose $p_m = 2q_m - 1$.

By a similar argument as in the case that $p_m = q_m + 1$, we can show

$$\begin{cases} p = p_0 = f_{m+3}n - f_{m+2} \\ q = q_0 = f_{m+1}n - f_m \\ r = r_0 = f_{m+2}n - f_{m+1}. \end{cases}$$

$$T(p,q,r,-1) = T(n+1,(-1)^m n)$$

Theorem 5. Let m are n be positive integers. Then we have the following:

(1)
$$T(mn + m + 1, mn + 1, mn, -1) = T(mn + n + 1, m + 1);$$

(2) $T(mn + m + 1, mn + 1, mn + m + 2, -1) = T(mn + m + n + 2, -m - 1);$
(3) $T(mn + m + 1, mn + 1, mn + m, -1) = T(mn + m - n, -m + 1);$
(4) $T(mn + m + 1, mn + 1, mn + 2, -1) = T(mn - n + 1, m - 1);$
(5) $T(mn + m - 1, mn - 1, mn + m - 2, -1) = T(mn + m - n - 2, -m + 1);$
(6) $T(mn + m - 1, mn - 1, mn, -1) = T(mn - n - 1, m - 1);$
(7) $T(2n + 1, n, 2n - 1, -1) = T(2n - 3, -n + 1);$ and
(8) $T(n + 1, n, 2n - 1, -1) = T(3n - 2, -n + 1).$

Question. Are there any other examples?

THANK YOU