Linear spatial complete graphs and generalized Conway-Gordon theorems

NIKKUNI Ryo

Tokyo Woman's Christian University

Knots and Spatial Graphs 2020, KAIST Feb. 18, 2020

§1. Conway-Gordon theorems

Spatial graph $=$ The image of a spatial embedding f of a finite graph G into \mathbb{R}^{3}

G

For a (disjoint union of) cycle(s) λ of $G, f(\lambda)$ is called a constituent knot (link) of the spatial graph.
$\operatorname{SE}(G) \stackrel{\text { def. }}{=}\left\{\right.$ embedding $\left.f: G \rightarrow \mathbb{R}^{3}\right\}$
$\Gamma_{k}(G) \stackrel{\text { def. }}{=}\{k$-cycles of $G\}$
$\Gamma_{k, l}(G) \stackrel{\text { def. }}{=}$ \{a disjoint pair of k-cycle and l-cycle of G$\}$

§1. Conway-Gordon theorems

Spatial graph $=$ The image of a spatial embedding f of a finite graph G into \mathbb{R}^{3}

G

For a (disjoint union of) cycle(s) λ of $G, f(\lambda)$ is called a constituent knot (link) of the spatial graph.
$\operatorname{SE}(G) \stackrel{\text { def. }}{=}\left\{\right.$ embedding $\left.f: G \rightarrow \mathbb{R}^{3}\right\}$
$\Gamma_{k}(G) \stackrel{\text { def. }}{=}\{k$-cycles of $G\}$
$\Gamma_{k, l}(G) \stackrel{\text { def. }}{=}$ \{a disjoint pair of k-cycle and l-cycle of G$\}$
K_{n} : complete graph on n vertices
Theorem 1.1. [Conway-Gordon '83]
(1) $\forall f \in \operatorname{SE}\left(K_{6}\right), \sum_{\lambda \in \Gamma_{3,3}\left(K_{6}\right)} \operatorname{lk}(f(\lambda)) \equiv 1(\bmod 2)$.
(2) $\forall f \in \operatorname{SE}\left(K_{7}\right), \sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma)) \equiv 1(\bmod 2)$.

Here, Ik: linking number, a_{2} : 2nd coefficient of $\nabla(z)$.

$\therefore \forall f\left(K_{6}\right) \supset$ nonsplittable link, $\forall f\left(K_{7}\right) \supset$ nontrivial knot.
K_{n} : complete graph on n vertices
Theorem 1.1. [Conway-Gordon '83]
(1) $\forall f \in \operatorname{SE}\left(K_{6}\right), \sum_{\lambda \in \Gamma_{3,3}\left(K_{6}\right)} \operatorname{lk}(f(\lambda)) \equiv 1(\bmod 2)$.
(2) $\forall f \in \operatorname{SE}\left(K_{7}\right), \sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma)) \equiv 1(\bmod 2)$.

Here, Ik: linking number, a_{2} : 2nd coefficient of $\nabla(z)$.

$\therefore \forall f\left(K_{6}\right) \supset$ nonsplittable link, $\forall f\left(K_{7}\right) \supset$ nontrivial knot.

Integral lifts of the Conway-Gordon theorems are known:

Theorem 1.2.

(1) [Nikkuni '09] $\forall f \in \operatorname{SE}\left(K_{6}\right)$,
$\sum_{\gamma \in \Gamma_{6}\left(K_{6}\right)} a_{2}(f(\gamma))-\sum_{\gamma \in \Gamma_{5}\left(K_{6}\right)} a_{2}(f(\gamma))=\frac{1}{2} \sum_{\lambda \in \Gamma_{3,3}\left(K_{6}\right)} \operatorname{lk}(f(\lambda))^{2}-\frac{1}{2}$.
(2) [Nikkuni '09] $\forall f \in \operatorname{SE}\left(K_{7}\right)$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma))-2 \sum_{\gamma \in \Gamma_{5}\left(K_{7}\right)} a_{2}(f(\gamma)) \\
= & \frac{1}{7}\left(\sum_{\lambda \in \Gamma_{3,4}\left(K_{7}\right)} \sum_{i k}(f(\lambda))^{2}+\sum_{\lambda \in \Gamma_{3,3}\left(K_{7}\right)} \operatorname{Ik}^{2}(f(\lambda))^{2}\right)-6 .
\end{aligned}
$$

Remark. Thm $1.2 \xrightarrow{\text { mod }}{ }^{2}$ Conway-Gordon theorems
Our purposes are to give "integral Conway-Gordon theorem" for K_{n} with arbitrary $n \geq 6$ and investigate the behavior of the "Hamiltonian" constituent knots and links.

Integral lifts of the Conway-Gordon theorems are known:

Theorem 1.2.

(1) [Nikkuni '09] $\forall f \in \operatorname{SE}\left(K_{6}\right)$,
$\sum_{\gamma \in \Gamma_{6}\left(K_{6}\right)} a_{2}(f(\gamma))-\sum_{\gamma \in \Gamma_{5}\left(K_{6}\right)} a_{2}(f(\gamma))=\frac{1}{2} \sum_{\lambda \in \Gamma_{3,3}\left(K_{6}\right)} \operatorname{lk}(f(\lambda))^{2}-\frac{1}{2}$.
(2) [Morishita-Nikkuni ' 19$] \forall f \in \operatorname{SE}\left(K_{7}\right)$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{7}\left(K_{7}\right)} a_{2}(f(\gamma))-2 \sum_{\gamma \in \Gamma_{5}\left(K_{7}\right)} a_{2}(f(\gamma)) \\
& =\sum_{\lambda \in \Gamma_{3,3}\left(K_{7}\right)} \operatorname{lk}(f(\lambda))^{2}-6 .
\end{aligned}
$$

Remark. Thm $1.2 \xrightarrow{\text { mod }}{ }^{2}$ Conway-Gordon theorems
Our purposes are to give "integral Conway-Gordon theorem" for K_{n} with arbitrary $n \geq 6$ and investigate the behavior of the "Hamiltonian" constituent knots and links.

§2. Generalizations of the Conway-Gordon theorems

Theorem 2.1. [Morishita-Nikkuni '19]
For $n \geq 6, \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma))-(n-5)!\sum_{\gamma \in \Gamma_{5}\left(K_{n}\right)} a_{2}(f(\gamma)) \\
= & \frac{(n-5)!}{2}\left(\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{lk}(f(\lambda))^{2}-\binom{n-1}{5}\right) .
\end{aligned}
$$

$n=6: \quad \sum_{6} a_{2}-\sum_{5} a_{2}=\frac{1}{2} \sum_{3,3} \mathrm{I}^{2}-\frac{1}{2}$.
(Thm. 1.2 (1))
$n=7: \quad \sum_{7} a_{2}-2 \sum_{5} a_{2}=\sum_{3,3} \mathrm{k}^{2}-6 . \quad$ (Thm. 1.2 (2))
$n=8: \quad \sum_{8} a_{2}-6 \sum_{5} a_{2}=3 \sum_{3,3} \mathrm{Ik}^{2}-63$.

Note: $\nexists \lambda \in \Gamma_{3,3}\left(K_{n}\right)$ s.t. λ is shared by two distinct subgraphs of K_{n} isomorphic to K_{6}.
$\stackrel{\text { Thm. }}{=}{ }^{1.1}(1) \quad \forall f \in \operatorname{SE}\left(K_{n}\right), \sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \mathrm{Ik}(f(\lambda))^{2} \geq\binom{ n}{6}$.
Corollary 2.2. For $n \geq 6, \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma))-(n-5)!\sum_{\gamma \in \Gamma_{5}\left(K_{n}\right)} a_{2}(f(\gamma)) \\
\geq & \frac{(n-5)(n-6)(n-1)!}{2 \cdot 6!}
\end{aligned}
$$

Remark. [Otsuki '96] For $n \geq 6, \exists f_{\mathrm{b}} \in \operatorname{SE}\left(K_{n}\right)$ s.t.
$f_{\mathrm{b}}\left(K_{n}\right) \supset$ exactly $\binom{n}{6}$ triangle-triangle Hopf links.
(f_{b} : canonical book presentation of K_{n} [Endo-Otsuki '94])
Thus the lower bound of Cor. 2.2 is sharp.

By Thm 2.1, $\sum_{n} a_{2}(f(\gamma)) \equiv \sum_{n} a_{2}(g(\gamma))(\bmod (n-5)!)$ for $\forall f, g \in \operatorname{SE}\left(K_{n}\right)$. Moreover we have:

Corollary 2.3. For $n \geq 7, \forall f \in \operatorname{SE}\left(K_{n}\right)$, we have the following congruence modulo $(n-5)$!:

$$
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}(f(\gamma)) \equiv \begin{cases}-\frac{(n-5)!}{2}\binom{n-1}{5} & (n \equiv 0 \quad(\bmod 8)) \\ 0 & (n \not \equiv 0,7 \quad(\bmod 8)) \\ \frac{(n-5)!}{2}\binom{n}{6} & (n \equiv 7 \quad(\bmod 8))\end{cases}
$$

$n=7: \quad \sum_{7} a_{2} \equiv 7 \equiv 1(\bmod 2) . \quad($ Thm. $1.1(1))$
$n=8: \sum_{8} a_{2} \equiv-63 \equiv 3(\bmod 6)$. [Foisy '08] $+[$ Hirano '10]
$n=9: \quad \sum_{9} a_{2} \equiv 0(\bmod 24)$.

For "Hamiltonian" 2-component constituent links, we also have the following formula:

Theorem 2.4. [Morishita-Nikkuni '19]
(1) For $n=p+q(p, q \geq 3), \forall f \in \operatorname{SE}\left(K_{n}\right)$,
$\sum_{\lambda \in \Gamma_{p, q}\left(K_{n}\right)} \operatorname{Ik}(f(\lambda))^{2}= \begin{cases}(n-6)!\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{IK}(f(\lambda))^{2} & (p=q) \\ 2(n-6)!\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{lk}(f(\lambda))^{2} \quad(p \neq q) .\end{cases}$
(2) For $n \geq 6, \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\sum_{p+q=n} \sum_{\lambda \in \Gamma_{p, q}\left(K_{n}\right)} \operatorname{lk}(f(\lambda))^{2}=(n-5)!\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{Ik}(f(\lambda))^{2} .
$$

$n=7: \quad \sum_{3,4} \mathrm{Ik}^{2}=2 \sum_{3,3} \mathrm{Ik}^{2}$.
$n=8: \quad \sum_{3,5} \mathrm{IK}^{2}=2 \sum_{4,4} \mathrm{I}^{2}=4 \sum_{3,3} \mathrm{IK}^{2}$.

Since $\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{kk}(f(\lambda))^{2} \geq\binom{ n}{6}$, we have the following:
Corollary 2.5.
(1) For $n=p+q(p, q \geq 3), \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\sum_{\lambda \in \Gamma_{p, q}\left(K_{n}\right)} \operatorname{lk}(f(\lambda))^{2} \geq\left\{\begin{array}{ll}
n!/ 6! & (p=q) \\
2 \cdot n!/ 6! & (p \neq q)
\end{array} .\right.
$$

(2) For $n \geq 6, \forall f \in \operatorname{SE}\left(K_{n}\right)$,

$$
\sum_{p+q=n} \sum_{\lambda \in \Gamma_{p, q}\left(K_{n}\right)} \mathrm{Ik}(f(\lambda))^{2} \geq(n-5) \cdot \frac{n!}{6!} .
$$

$n=7: \sum_{3,4} \mathrm{Ik}^{2} \geq 2 \cdot 7=14$. [Fleming-Mellor '09]
$n=8: \quad \sum_{3,5} \mathrm{lk}^{2} \geq 2 \cdot 8 \cdot 7=112, \quad \sum_{4,4} \mathrm{l} \mathrm{k}^{2} \geq 8 \cdot 7=56$.
Remark. The lower bounds in Cor. 2.5 are sharp.

A spatial embedding f_{r} of G is rectilinear (or linear) $\stackrel{\text { def. }}{\Leftrightarrow} \forall$ edge e of $G, f_{r}(e)$ is a straight line segment in \mathbb{R}^{3} $\operatorname{RSE}(G) \stackrel{\text { def. }}{=}\left\{\right.$ rectilinear embedding $\left.f_{r}: G \rightarrow \mathbb{R}^{3}\right\}$
Example. (Standard rectilinear embedding of K_{n})

Take n vertices on the curve (t, t^{2}, t^{3}) and connect every pair of distinct vertices by a straight line segment.

Stick number $s(L)$ of a link (knot) L :
$s(L)=$ min. \# of edges in a polygon which represents L
Proposition 3.1.
(1) L is a nontrivial knot $\Longrightarrow s(L) \geq 6$.
(2) $s(L)=6 \Longleftrightarrow L \cong$ or
(3) $s(L)=7 \Longleftrightarrow L \cong$
 or

Theorem 3.2. [$\mathrm{M}-\mathrm{N}$ '19] For $n \geq 6, \forall f_{r} \in \operatorname{RSE}\left(K_{n}\right)$, $\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{\mathrm{r}}(\gamma)\right)=\frac{(n-5)!}{2}\left(\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{lk}\left(f_{\mathrm{r}}(\lambda)\right)^{2}-\binom{n-1}{5}\right)$.

$$
\sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{Ik}\left(f_{r}(\lambda)\right)^{2}=\# \text { of } \sim \wedge \text { 's }
$$

Proposition 3.3. [Hughes '06] [Huh-Jeon '06] [N '09] $\forall f_{r} \in \operatorname{RSE}\left(K_{6}\right), f_{r}\left(K_{6}\right) \supset$ at most 3 Hopf links.

$$
\Longrightarrow \forall f_{r} \in \operatorname{RSE}\left(K_{n}\right),\binom{n}{6} \leq \sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{lk}\left(f_{r}(\lambda)\right)^{2} \leq 3\binom{n}{6} .
$$

Corollary 3.4. For $n \geq 6, \forall f_{r} \in \operatorname{RSE}\left(K_{n}\right)$,

$$
\frac{(n-5)(n-6)(n-1)!}{2 \cdot 6!} \leq \sum_{n} a_{2} \leq \frac{3(n-2)(n-5)(n-1)!}{2 \cdot 6!} .
$$

$n=6: \quad 0 \leq \sum_{6} a_{2} \leq 1 .(\Longrightarrow \exists$ at most one trefoil knot)
$n=7: \quad 1 \leq \sum_{7} a_{2} \leq 15, \quad \sum_{7} a_{2} \equiv 1(\bmod 2) .(\Longrightarrow \exists$ trefoil $)$
$n=8: 21 \leq \sum_{8} a_{2} \leq 189, \sum_{8} a_{2} \equiv 3(\bmod 6)$.
Remark. The lower bound in Cor. 3.4 is sharp (realized by a standard rectilinear embedding), but the upper bound is not expected to be sharp if $n \geq 7$.

Example. ($n=8$) Each of the following spatial K_{8} contains exactly 21 trefoils as nontrivial Hamiltonian knots:

[BBFHL '07]

[Alfonsín '08]

$$
\forall 5 \text {-cycle knots are trivial } \stackrel{\text { Cor.2.2 }}{\Longrightarrow} \sum_{8} a_{2} \geq 21 \text {. }
$$

Remark. The above mentioned spatial graphs of K_{8} are NOT equivalent. (Observe the link with $\mathrm{Ik}=2$)

Example. ($n=8$) Each of the following spatial K_{8} contains exactly 21 trefoils as nontrivial Hamiltonian knots:

[BBFHL '07]

[Alfonsín '08]

$$
\forall 5 \text {-cycle knots are trivial } \stackrel{\text { Cor.2.2 }}{\Longrightarrow} \sum_{8} a_{2} \geq 21 \text {. }
$$

Remark. The above mentioned spatial graphs of K_{8} are NOT equivalent. (Observe the link with $\mathrm{Ik}=2$)
§4. Jeon's work on linear spatial embeddings of K_{7}, K_{8} and several open problems

According to a computer search with the help of oriented matroid theory in [Jeon et al. IWSG2010] (unpublished) :

The number of knots and links in rectilinear K_{7}					
6 -trefoil	7-trefoil	4_{1}	$(3,3)$-Hopf	$(3,4)$-Hopf	4_{1}^{2}
0	1	0	7	14	0
1	3	0	9	18	0
2	5	0	11	22	0
3	7	0	13	22	1
3	7	0	13	26	0
3	8	1	13	26	0
4	9	0	15	26	1
4	11	2	15	30	0
4	12	3	15	30	0
5	11	0	17	30	1

$$
\nexists f_{r} \in \operatorname{RSE}\left(K_{7}\right) \text { s.t } \sum_{\lambda \in \Gamma_{3,3}\left(K_{7}\right)} \operatorname{Ik}\left(f_{r}(\lambda)\right)^{2}=19,21
$$

According to a computer search with the help of oriented matroid theory in [Jeon et al. IWSG2010] (unpublished) :

The number of knots and links in rectilinear K_{7}					
6 -trefoil	7-trefoil	4_{1}	$(3,3)$-Hopf	$(3,4)$-Hopf	4_{1}^{2}
0	1	0	7	14	0
1	3	0	9	18	0
2	5	0	11	22	0
3	7	0	13	22	1
3	7	0	13	26	0
3	8	1	13	26	0
4	9	0	15	26	1
4	11	2	15	30	0
4	12	3	15	30	0
5	11	0	17	30	1

$$
\nexists f_{r} \in \operatorname{RSE}\left(K_{7}\right) \text { s.t } \sum_{\lambda \in \Gamma_{3,3}\left(K_{7}\right)} \operatorname{Ik}\left(f_{r}(\lambda)\right)^{2}=19,21
$$

Note: If this classification is correct, we have

$$
(n-6) \sum_{\lambda \in \Gamma_{3,3}\left(K_{n}\right)} \operatorname{Ik}\left(f_{\mathrm{r}}(\lambda)\right)^{2} \leq \sum_{i}\left(\sum_{\lambda \in \Gamma_{3,3}\left(K_{7}^{(i)}\right)} \operatorname{Ik}\left(f_{\mathrm{r}}(\lambda)\right)^{2}\right) \leq 17\binom{n}{7}
$$

Corollary 4.1. For $n \geq 7, \forall f_{r} \in \operatorname{RSE}\left(K_{n}\right)$,

$$
\sum_{\gamma \in \Gamma_{n}\left(K_{n}\right)} a_{2}\left(f_{r}(\gamma)\right) \leq \frac{(17 n-42)(n-5)(n-1)!}{2 \cdot 7!} .
$$

Problem 4.2. Determine the sharp upper bound of $\sum_{n} a_{2}$ for all rect. emb. $f_{r} \in \operatorname{RSE}\left(K_{n}\right)$ for each $n \geq 7$.

Problem 4.2 is equivalent to the following problem.
Problem 4.3. Determine the maximum number of triangle-triangle Hopf links in $f_{\mathrm{r}}\left(K_{n}\right)$ for each $n \geq 7$.

Conjecture. (given in [Jeon et al. IWSG2013]) $\forall f_{r} \in \operatorname{RSE}\left(K_{8}\right), f_{r}\left(K_{8}\right)$ contains a figure eight knot 4_{1} or a (2,4)-torus link 42 .

- They examined over 50,000,000 random rectilinear spatial embeddings of K_{8} and could not find a counterexample.
- By Cor. 2.3, Cor. 2.5 and Cor. 3.4,

$$
\begin{gathered}
\sum_{8} a_{2}=3 \sum_{3,3} \mathrm{Ik}^{2}-63, \quad \sum_{8} a_{2} \equiv 3 \quad(\bmod 6), \\
21 \leq \sum_{8} a_{2} \leq 189, \\
112 \leq \sum_{3,5} \mathrm{Ik}^{2}=2 \sum_{4,4} \mathrm{Ik}^{2}=\sum_{3,4} \mathrm{Ik}^{2}=4 \sum_{3,3} \mathrm{Ik}^{2} \leq 336 .
\end{gathered}
$$

Conjecture. (given in [Jeon et al. IWSG2013]) $\forall f_{r} \in \operatorname{RSE}\left(K_{8}\right), f_{r}\left(K_{8}\right)$ contains a figure eight knot 4_{1} or a (2,4)-torus link 42 .

- They examined over 50,000,000 random rectilinear spatial embeddings of K_{8} and could not find a counterexample.
- By Cor. 2.3, Cor. 2.5, Cor. 3.4 and Cor. 4.1,

$$
\begin{gathered}
\sum_{8} a_{2}=3 \sum_{3,3} \mathrm{Ik}^{2}-63, \quad \sum_{8} a_{2} \equiv 3 \quad(\bmod 6), \\
21 \leq \sum_{8} a_{2} \leq 141, \\
112 \leq \sum_{3,5} \mathrm{Ik}^{2}=2 \sum_{4,4} \mathrm{Ik}^{2}=\sum_{3,4} \mathrm{I}^{2}=4 \sum_{3,3} \mathrm{Ik}^{2} \leq 272 .
\end{gathered}
$$

