Jeon's work on superbridge index

February 17, 2020

Knots and Spatial Graphs 2020

KAIST

Bridge number and bridge index (Schubert 1954)

Given a knot K and a unit vector \vec{v} in \mathbb{R}^3 , we define $b_{\vec{v}}(K)$ as the number of connected components of the preimage of the set of local maximum values of the orthogonal projection $K \to \mathbb{R}\vec{v}$. The figure illustrates an example of $b_{\vec{v}}(K) = 3$.

The bridge number of K is defined by the formula

$$b(K) = \min_{\|\vec{v}\|=1} b_{\vec{v}}(K).$$

The *bridge index* of a knot K is defined by the formula

$$b[\mathcal{K}] = \min_{\mathcal{K}' \in [\mathcal{K}]} b(\mathcal{K}') = \min_{\mathcal{K}' \in [\mathcal{K}]} \min_{\|\vec{v}\| = 1} b_{\vec{v}}(\mathcal{K}').$$

Superbridge number and superbridge index (Kuiper 1987)

The superbridge number of K is defined by the formula

$$s(K) = \max_{\|ec{v}\|=1} b_{ec{v}}(K).$$

The superbridge index of a knot K is defined by the formula

$$s[K] = \min_{K' \in [K]} s(K') = \min_{K' \in [K]} \max_{\|\vec{v}\|=1} b_{\vec{v}}(K').$$

Theorem (1)

For any nontrivial knot K, b[K] < s[K].

Theorem (2)

For any two coprime integers p and q, satisfying $2 \le p < q$, the superbridge index of the torus knot of type (p,q) is min $\{2p,q\}$.

2-bridge knots and 3-superbridge knots

We know that nontrivial knots have bridge index at least 2 and that there are infinitely many 2-bridge knots.

Theorem (1) implies that nontrivial knots have superbridge index at least 3 and that all 3-superbridge knots are 2-bridge knots.

Theorem (2) implies that there are infinitely many 2*p*-superbridge knots for $p \ge 2$.

Proposition

The trefoil knot and the figure eight knot have superbridge index 3.

Question

Are there infinitely many 3-superbridge knots?

Quadrisecant of a knot

Theorem (Pannwitz, Kuperberg, Morton-Mond) Every nontrivial knot has a quadrisecent.

This figure shows a figure eight knot which has the *z*-axis as a quadrisecant.

3-superbridge knots

Theorem (Jeon-J, JKTR 10(2001) no.2)

There are only finitely many 3-superbridge knots.

Proof. A 3-superbridge knot has a very simple projection in Q^{\perp} where Q is a quadrisecant. It consists of four simple loops with a common base point as in the figure (a) and (b) with each box containing half twists of up to 3 crossings. At the projection of Q, there are 18 possible patterns as shown at the bottom. \Box

3-superbridge knots are 2-bridge knots up to 9 crossings

The projection of figure (a) gives diagrams of up to 9 crossings.

The projection of figure (b) can be deformed as shown below to have no more than 10 crossings without changing the knot type.

The result gives nonalternating diagrams.

As 2-bridge knots are alternating knots, the diagrams are not of minimal crossings.

3-superbridge knot candidates

Theorem (Jeon-J, JKTR 11(2002) no.3)

No knots other than 3_1 , 4_1 , 5_2 , 6_1 , 6_2 , 6_3 , 7_2 , 7_3 , 7_4 , 8_4 , 8_7 and 8_9 have superbridge index 3.

Theorem (Adams 2011)

 $s[8_7] = 4$

Proof. In the proof of (Jeon-J, 2002), each possibility of 8_7 shows that the quadrisecant used is not alternating. Therefore $s[8_7] > 3$. On the other hand $s[8_7] \le 2b[8_7] = 4$. \Box

Proof of (Jeon-J, 2002)

С	Arc levels	[0]	[2]
	xyzw, xywz, xzwy, xwzy, yxzw, yxwz, yzwx, ywzx, zxyw, zyxw, zwxy, zwyx, wxyz, wyxz, wzxy, wzyx	0	0
	xzyw, ywxz, wxzy	0	$\star 4_1$
z	xwyz	$*3_{1}$	$\star 5_{2}$
	yzxw, zxwy, wyzx	0	31
	zywx	3_1	0

TABLE C

D	Arc levels	[1]	[3]
	xyzw, xywz, xzwy, xwzy, yxzw, yxwz, yzwx, ywzx, zxyw, zyxw, zwxy, zwyx, wxyz, wyzz, wzzy, wzyx	0	0
	xzyw, ywxz, wxzy	3_1	⇒
z	xwyz	41	${\Rightarrow}$
- w C	yzxw, zxwy, zywx, wyzx	0	\rightleftharpoons

E	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	[2,3]	[2, -3]
	ху	0	3_1	0	3_1	0	5 1
	ух	0	3_1	41	0	*6 ₂	5_{2}

TABLE E

F	Arc levels	[1,1]	[1, -1]	$[1,\pm 3]$	$[3,\pm 3]$
	ху	0	0	\downarrow	Ţ
	yx	31	0	$\stackrel{\rightarrow}{\leftarrow}$,

TABLE F

G	Arc levels	[0,0]	[0,2]	[2,2]	[2, -2]
	xyz, yxz	0	0	0	5_2
y x	xzy	0	3_1	0	0
	yzx	0	41	6_{2}	$\frac{5}{2}$ 1
	zxy, zyx	0	0	41	3_1

TABLE G

Н	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	$[2,\pm 3]$
	xyz, yxz	0	0	0	41	${\rightarrow}$
	xzy	0	41	0	0	${\Rightarrow}$
Z .	yzx	3_{1}	5_{2}	5_{2}	0	$\stackrel{\longrightarrow}{\leftarrow}$
	zxy, zyx	0	0	3_1	0	$\stackrel{\rightarrow}{\leftarrow}$

TABLE H

I	Arc levels	[1,1]	[1, -1]	[1,3]	[1, -3]	$[3,\pm 3]$
	xyz, yxz	0	3_1	0	\overline{p}_1	\downarrow
V.X.	xzy, zxy, zyx	0	0	3_1	3_1	${\Rightarrow}$
Z	yzx	41	0	6_2	5_2	$\stackrel{\rightarrow}{\leftarrow}$
\Box						

TABLE I

J	Arc levels	[0,0]	[0,2]	[2,2]	[2, -2]
	xyz, zyx	0	0	3_1	41
	xzy	0	41	0	0
	yxz	0	0	0	$*6_{1}$
Z	yzx	0	3_1	5_2	6_{1}
Ŭ	zxy	0	0	5_2	0

TABLE J

К	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	$[2,\pm 3]$
	xyz, zyx	0	0	0	3_1	${\Rightarrow}$
	xzy	3_{1}	5_{2}	0	0	$\stackrel{\rightarrow}{\leftarrow}$
	yxz	0	0	3_1	5_{2}	$\stackrel{\rightarrow}{\leftrightarrows}$
ž.	yzx	0	4_1	3_{1}	\tilde{p}_1	$\stackrel{\rightarrow}{\leftarrow}$
Ŭ	zxy	0	0	41	0	$\stackrel{\rightarrow}{\leftarrow}$

TABLE K

L	Arc levels	[0,0]	[0,2]	[2,2]	[2, -2]
	xyzw, xywz, xwyz, yxzw, yxwz, zywx, zwxy, zwyx, wzxy, wzyx	0	0	3_{1}	41
	xzyw, xzwy, xwzy	0	4_{1}	0	0
y x	yzxw	3_1	5_{2}	$\star 7_4$	0
	yzwx, ywzx, wyzx	0	3_1	5_{2}	6_{1}
z	ywxz, wxyz, wyxz	0	0	0	6_{1}
	zxyw, zxwy, zyxw	0	0	5_2	0
	wxzy	3_1	0	0	0

м	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	$[2,\pm 3]$
	xyzw, xywz, xwyz, yxzw, yxwz, zywx, zwxy, zwyx, wzxy, wzyx	0	0	0	31	₹
	xzyw, xzwy, xwzy	3_1	5_{2}	0	0	$\stackrel{\longrightarrow}{\leftarrow}$
	yzxw	41	6_1	6_{2}	3_1	$\stackrel{\longrightarrow}{\leftarrow}$
Z	yzwx, ywzx, wyzx	0	4_{1}	3_1	\overline{p}_1	\rightleftharpoons
	ywxz, wxyz, wyxz	0	0	3_1	5_2	$\stackrel{\rightarrow}{\leftarrow}$
	zxyw, zxwy, zyxw	0	0	4_{1}	0	$\stackrel{\longrightarrow}{\leftarrow}$
	wxzy	0	3_1	0	0	\rightleftharpoons

TABLE M

N	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	[2,3]	[2, -3]
	xyzw, yxzw, yzxw	0	0	0	5_{2}	41	$\star 7_{3}$
	xwzy	0	5_2	0	0	3_1	3_1
	yzwx	41	6_{2}	6_1	0	$\star 8_{4}$	$\star 7_2$
w w	wxzy, wzxy, wzyx	3_1	\mathfrak{F}_1	0	0	3_1	3_1

Reducible to "xy" in Table E : xywz, xzyw, xzwy, xwyz, yxwz, zxyw, zxwy, zyw
 Reducible to "yx" in Table E : ywxz, ywzx, zywz, zwxy, zwyz, wyzz, wyzz
, wyzx TABLE N

0	Arc levels	[1,1]	[1, -1]	$[1,\pm 3]$	$[3,\pm 3]$
	xyzw, yxzw, yzxw	0	41	${\rightleftharpoons}$	$\stackrel{\rightarrow}{\leftarrow}$
V.X.	xwzy	0	3_1	${\Rightarrow}$	$\stackrel{\rightarrow}{\rightarrow}$
	yzwx	5_{2}	0	$\stackrel{\rightarrow}{\leftarrow}$	$\stackrel{\longrightarrow}{\leftarrow}$
- WW	wxzy,wzxy,wzyx	0	0	\rightleftharpoons	\rightleftharpoons

Reducible to "xy" in Table F : xywz, xzyw, xzwy, xwyz, yxwz, zxyw, zxwy, zyxw Reducible to "yx" in Table F : ywxz, ywzx, zywz, zwxy, zwyz, wyzz, wyzz, wyzz TABLE O

Р	Arc levels	[0,1]	[0,3]	[2,1]	[2,-1]	[2,3]	[2, -3]
Z. W	xyzw, xzyw, xzwy	3_1	\overline{p}_1	0	0	Э	3_1
	yxzw	3_1	$\frac{5}{2}$ 1	62	41	Э	0
	ywzx, wyzx, wzyx	0	0	0	5_{2}	4_{1}	۲
	wzxy	0	0	3_{1}	\overline{p}_1	0	Э

Reducible to "xy" in Table E : xywz, xwyz, xwzy, zxyw, zxwy, zwxy, wxyz, wxzy Reducible to "yx" in Table E : yxwz, yzxw, yzwx, ywxz, zyxw, zywx, zwyx, wyxz TABLE P

Q	Arc levels	[0,0]	[0,2]	[2,2]	[2, -2]
	xyzw, xywz	0	0	41	3_1
y x zw	xzyw	3_1	5_{2}	0	0
	zxyw	0	0	6_{1}	0
	zwyx, wzyx	0	0	0	5_{2}
	wyxz	0	0	3_1	7_{2}
	wyzx	3_1	0	3_1	7_{3}

Reducible to "xyz" in Table G : xwyz, yxzw, yxwz, ywxz, wxyz Reducible to "xzy" in Table G : xzwy, xwzy, wxzy Reducible to "yzx" in Table G : yzxw, yzwx, ywzx Reducible to "zxy" in Table G : zxwy, zyxw, zywx, zwxy, wzxy TABLE Q

R	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	$[2,\pm 3]$
V.X.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V	xyzw, xywz	0	0	3_1	0	${\Rightarrow}$
	xzyw	41	6_{1}	0	0	${\Rightarrow}$
	zxyw	0	0	5_{2}	3_1	${\Rightarrow}$
	zwyx, wzyx	0	0	0	41	\rightleftharpoons
	wyxz	0	0	41	6_{1}	\rightleftharpoons
	wyzx	0	3_1	0	6_1	$\stackrel{\rightarrow}{\leftrightarrows}$

Reducible to "xyz" in Table H : xwyz, yxzw, yxwz, ywxz, wxyz Reducible to "xzy" in Table H : xzwy, xwzy, wxzy Reducible to "yzx" in Table H : yzxw, yzwx, ywzx Reducible to "zxy" in Table H : zxwy, zyxw, zywy, zwxy, wzxy TABLE R

S	Arc levels	[1,1]	[1, -1]	[1,3]	[1, -3]	$[3,\pm 3]$
V.X.	xyzw, xywz	0	0	3_1	3_1	${\Rightarrow}$
	xzyw, zxyw	3_1	0	\mathbb{F}_1	0	${\leftarrow}$
	zwyx, wzyx	0	3_{1}	0	\overline{p}_1	⇒
	wyxz	3_{1}	\overline{p}_1	0	71	${\Rightarrow}$
	wyzx	0	5_{2}	4_1	7_{3}	$\stackrel{\rightarrow}{\leftarrow}$

Reducible to "xyz" in Table I : xwyz, yxzw, yxwz, ywxz, wxyz Reducible to "xzy" in Table I : xzwy, xwzy, wxzy, zxwy, zyxw, zywx, zwxy, wzxy Reducible to "yzx" in Table I : yzxw, yzwx, ywzx

TABLE S

Т	Arc levels	[0,1]	[0,3]	[2,1]	[2, -1]	[2,3]	[2, -3]
	xyzw, xzyw	0	0	0	0	۲	3_1
	xywz, zxyw	0	3_1	0	41	Э	6_{2}
	xzwy	41	6_{2}	0	0	Э	3_{1}
y x	yxzw	0	0	3_1	$*6_{3}$	∋	* 8 ₇
Z	ywzx	0	5_{2}	3_1	6_{2}	Э	$\star 8_{9}$
2 WW	zwyx, wyxz	0	3_1	5_{2}	3_1	∋	6_{3}
	wyzx, wzyx	3_1	\overline{p}_1	\overline{p}_1	3_1	۲	0
	wzxy	3_1	5/1	5_{2}	0	۲	4_{1}

 \odot or \bigcirc : xwyz, xwzy, yxwz, yz
xw, yzwx, ywxz, zxwy, zyxw, zywx, zwxy, wxyz, wxzy

TABLE T

U	Arc levels	[0,0]	[0,2]	[2,2]	[2, -2]
	xyzw	0	0	M	0
	xywz	0	3_1	Ð	4_{1}
	xzyw	3_1	0	0	3_1
	xzwy	0	4_{1}	0	3_1
	yxzw	0	0	D	6_{3}
	ywzx	0	5_{2}	D	6_{2}
Z	zxyw	0	0	0	6_{2}
\bigvee "	zwyx	0	0	5_2	6_{3}
	wyxz	0	3_1	Ð	3_1
	wyzx	3_1	51	M	3_1
	wzxy	0	3_{1}	5_2	4_{1}
	wzyx	0	3_1	\overline{p}_1	0

⊙ or ◯ : xwyz, xwzy, yxwz, yzxw, yzwx, ywxz, zxwy, zyxw, zywx, zwxy, wxyz, wxzy

TABLE U

v	Arc levels	[1,1]	[1, -1]	[1,3]	[1, -3]	[3,3]	[3, -3]
	xyzw	0	0	Ð	3_1	Ð	0
	xywz	0	0	Э	3_1	Э	63
	xzyw	0	3_{1}	0	\mathcal{J}_1	Э	3_{1}
	xzwy	0	0	3_1	3_1	Э	6_{2}
	yxzw	0	41	Э	6_{2}	Э	89
	ywzx	5_{2}	3_1	Э	63	Э	87
Z	zxyw	0	3_1	0	\tilde{p}_1	Ð	87
	zwyx	0	41	5_{2}	6_{2}	Э	8_9
	wyxz	5_{2}	0	Ð	41	Ð	6_{2}
	wyzx	\mathbb{Z}_1	3_1	Э	0	Ð	3_{1}
	wzxy	0	0	3_1	3_1	Э	63
	wzyx	3_1	0	\mathbb{F}_1	0	Э	0
⊚ or ⊖ : xwyz, xwz	y, yxwz, yzxw, yzwx	, ywxz,	zxwy, z	yxw, zy	wx, zwx	y, wxy	z, wxzy

TABLE V

Thank you