Jeon's work on superbridge index

February 17, 2020
Knots and Spatial Graphs 2020
KAIST

Bridge number and bridge index (Schubert 1954)

Given a knot K and a unit vector \vec{v} in \mathbb{R}^{3}, we define $b_{\vec{v}}(K)$ as the number of connected components of the preimage of the set of local maximum values of the orthogonal projection $K \rightarrow \mathbb{R} \vec{v}$. The figure illustrates an example of $b_{\vec{v}}(K)=3$.

The bridge number of K is defined by the formula

$$
b(K)=\min _{\|\vec{v}\|=1} b_{\vec{v}}(K)
$$

The bridge index of a knot K is defined by the formula

$$
b[K]=\min _{K^{\prime} \in[K]} b\left(K^{\prime}\right)=\min _{K^{\prime} \in[K]} \min _{\|\vec{v}\|=1} b_{\vec{v}}\left(K^{\prime}\right) .
$$

Superbridge number and superbridge index (Kuiper 1987)

The superbridge number of K is defined by the formula

$$
s(K)=\max _{\|\vec{v}\|=1} b_{\vec{v}}(K)
$$

The superbridge index of a knot K is defined by the formula

$$
s[K]=\min _{K^{\prime} \in[K]} s\left(K^{\prime}\right)=\min _{K^{\prime} \in[K]\|\vec{v}\|=1} \max _{\vec{v}}\left(K^{\prime}\right)
$$

Theorem (1)
For any nontrivial knot $K, b[K]<s[K]$.
Theorem (2)
For any two coprime integers p and q, satisfying $2 \leq p<q$, the superbridge index of the torus knot of type (p, q) is $\min \{2 p, q\}$.

2-bridge knots and 3-superbridge knots

We know that nontrivial knots have bridge index at least 2 and that there are infinitely many 2-bridge knots.

Theorem (1) implies that nontrivial knots have superbridge index at least 3 and that all 3-superbridge knots are 2-bridge knots.

Theorem (2) implies that there are infinitely many $2 p$-superbridge knots for $p \geq 2$.

Proposition

The trefoil knot and the figure eight knot have superbridge index 3.
Question
Are there infinitely many 3-superbridge knots?

Quadrisecant of a knot

Theorem (Pannwitz, Kuperberg, Morton-Mond)
Every nontrivial knot has a quadrisecent.

This figure shows a figure eight knot which has the z-axis as a quadrisecant.

3-superbridge knots

Theorem (Jeon-J, JKTR 10(2001) no.2)
There are only finitely many 3-superbridge knots.
Proof. A 3-superbridge knot has a very simple projection in \mathcal{Q}^{\perp} where \mathcal{Q} is a quadrisecant. It consists of four simple loops with a common base point as in the figure (a) and (b) with each box containing half twists of up to 3 crossings. At the projection of \mathcal{Q}, there are 18 possible patterns as shown at the bottom. \square

3-superbridge knots are 2-bridge knots up to 9 crossings

The projection of figure (a) gives diagrams of up to 9 crossings.
The projection of figure (b) can be deformed as shown below to have no more than 10 crossings without changing the knot type.

The result gives nonalternating diagrams.
As 2-bridge knots are alternating knots, the diagrams are not of minimal crossings.

3-superbridge knot candidates

Theorem (Jeon-J, JKTR 11(2002) no.3)
No knots other than $3_{1}, 4_{1}, 52,6_{1}, 6_{2}, 6_{3}, 7_{2}, 7_{3}, 7_{4}, 8_{4}, 8_{7}$ and 8_{9} have superbridge index 3 .

Theorem (Adams 2011)
$s\left[8_{7}\right]=4$
Proof. In the proof of (Jeon-J, 2002), each possibility of 8_{7} shows that the quadrisecant used is not alternating. Therefore $s\left[8_{7}\right]>3$. On the other hand $s\left[8_{7}\right] \leq 2 b\left[8_{7}\right]=4$. \square

Proof of (Jeon-J, 2002)

C	Arc levels	[0]	[2]
	xyzw, xywz, xzwy, xwzy, yxzw, yxwz, yzwx, ywzx, zxyw, zyxw, zwxy, zwyx, wxyz, wyxz, wzxy, wzyx	\bigcirc	\bigcirc
	xzyw, ywxz, wxzy	\bigcirc	$\star 4_{1}$
	xwyz	$\star 3_{1}$	$\star 5_{2}$
	yzxw, zxwy, wyzx	\bigcirc	31
	zywx	31	\bigcirc

Table C

D	Arc levels	[1]	[3]
	xyzw, xywz, xzwy, xwzy, yxzw, yxwz, yzwx, ywzx, zxyw, zyxw, zwxy, zwyx, wxyz, wyxz, wzxy, wzyx	\bigcirc	\bigcirc
	xzyw, ywxz, wxzy	3_{1}	\rightleftarrows
	xwyz	4_{1}	\rightleftarrows
	yzxw, zxwy, zywx, wyzx	\bigcirc	\rightleftarrows

Table D

Proof of (Jeon-J, 2002) - continued

E	Arc levels	[0,1]	[0,3]	[2,1]	[2,-1]	[2,3]	[2,-3]
	xy	\bigcirc	3_{1}	\bigcirc	$3{ }_{1}$	\bigcirc	\$7
	yx	\bigcirc	31	4_{1}	\bigcirc	$\star 6_{2}$	52

Table E

\mathbf{F}	Arc levels	$[1,1]$	$[1,-1]$	$[1, \pm 3]$	$[3, \pm 3]$
	xy	\bigcirc	\bigcirc	\rightleftarrows	\rightleftarrows
	yx	3	\bigcirc	\rightleftarrows	\rightleftarrows

Table F

Proof of (Jeon-J, 2002) - continued

G	Arc levels	[0,0]	[0,2]	[2,2]	[2,-2]
	xyz, yxz	\bigcirc	\bigcirc	\bigcirc	52
	xzy	\bigcirc	3_{1}	\bigcirc	\bigcirc
	yzx	\bigcirc	4_{1}	62	\% ${ }_{1}$
	zxy, zyx	\bigcirc	\bigcirc	41	3_{1}

Table G

\mathbf{H}	Arc levels	$[0,1]$	$[0,3]$	$[2,1]$	$[2,-1]$	$[2, \pm 3]$
	xyz, yxz	\bigcirc	\bigcirc	\bigcirc	4_{1}	\rightleftarrows
	xzy	\bigcirc	4_{1}	\bigcirc	\bigcirc	\rightleftarrows
	yzx	3_{1}	5_{2}	5_{2}	\bigcirc	\rightleftarrows
	zxy, zyx	\bigcirc	\bigcirc	3_{1}	\bigcirc	\rightleftarrows

Table H

Proof of (Jeon-J, 2002) - continued

\mathbf{I}	Arc levels	$[1,1]$	$[1,-1]$	$[1,3]$	$[1,-3]$	$[3, \pm 3]$
	xyz, yxz	\bigcirc	3_{1}	\bigcirc	$\not 夕_{1}$	\rightleftarrows
	xzy, zxy, zyx	\bigcirc	\bigcirc	3_{1}	3_{1}	\rightleftarrows
	yzx	4_{1}	\bigcirc	6_{2}	5_{2}	\rightleftarrows

Table I

J	Arc levels	$[0,0]$	[0,2]	$[2,2]$	[2,-2]
	xyz, zyx	\bigcirc	\bigcirc	31	4_{1}
	xzy	\bigcirc	4_{1}	\bigcirc	\bigcirc
	yxz	\bigcirc	\bigcirc	\bigcirc	$\star 6_{1}$
	yzx	\bigcirc	3_{1}	$5{ }_{2}$	61
	zxy	\bigcirc	\bigcirc	52	\bigcirc

Table J

Proof of (Jeon-J, 2002) - continued

K	Arc levels	[0,1]	[0,3]	[2,1]	[2,-1]	[2, $\pm 3]$
	xyz, zyx	\bigcirc	\bigcirc	\bigcirc	31	\rightleftarrows
	xzy	3_{1}	52	\bigcirc	\bigcirc	\rightleftarrows
	yxz	\bigcirc	\bigcirc	3_{1}	52	\rightleftarrows
	yzx	\bigcirc	4_{1}	3_{1}	\% ${ }_{1}$	\rightleftarrows
	zxy	\bigcirc	\bigcirc	4_{1}	\bigcirc	\rightleftarrows

Table K

L	Arc levels	[0,0]	[0,2]	[2,2]	[2,-2]
	xyzw, xywz, xwyz, yxzw, yxwz, zywx, zwxy, zwyx, wzxy, wzyx	\bigcirc	\bigcirc	31	41
	xzyw, xzwy, xwzy	\bigcirc	41	\bigcirc	\bigcirc
	yzxw	3_{1}	5_{2}	$\star 7_{4}$	\bigcirc
	yzwx, ywzx, wyzx	\bigcirc	3_{1}	52	61
	ywxz, wxyz, wyxz	\bigcirc	\bigcirc	\bigcirc	6_{1}
	zxyw, zxwy, zyxw	\bigcirc	\bigcirc	52	\bigcirc
	wxzy	31	\bigcirc	\bigcirc	\bigcirc

Table L

Proof of (Jeon-J, 2002) - continued

M	Arc levels	$[0,1]$	[0,3]	[2,1]	[2,-1]	$[2, \pm 3]$
	xyzw, xywz, xwyz, yxzw, yxwz, zywx, zwxy, zwyx, wzxy, wzyx	\bigcirc	\bigcirc	\bigcirc	31	\rightleftarrows
	xzyw, xzwy, xwzy	31	$5{ }_{2}$	\bigcirc	\bigcirc	\rightleftarrows
	yzxw	4_{1}	61	62	31	\rightleftarrows
	yzwx, ywzx, wyzx	\bigcirc	4_{1}	31	$\not \$_{1}$	\rightleftarrows
	ywxz, wxyz, wyxz	\bigcirc	\bigcirc	31	$5{ }_{2}$	\rightleftarrows
	zxyw, zxwy, zyxw	\bigcirc	\bigcirc	4_{1}	\bigcirc	\rightleftarrows
	wxzy	\bigcirc	31	\bigcirc	\bigcirc	\rightleftarrows

Table M

Proof of (Jeon-J, 2002) - continued

N	Arc levels	$[0,1]$	[0,3]	[2,1]	[2,-1]	[2,3]	[2,-3]
	xyzw, yxzw, yzxw	\bigcirc	\bigcirc	\bigcirc	52	41	$\star 7_{3}$
	xwzy	\bigcirc	52	\bigcirc	\bigcirc	3_{1}	31
	yzwx	4_{1}	62	61	\bigcirc	$\star 8_{4}$	$\star 7_{2}$
	wxzy, wzxy, wzyx	3_{1}	\%1	\bigcirc	\bigcirc	3_{1}	31

Reducible to "xy" in Table E : xywz, xzyw, xzwy, xwyz, yxwz, zxyw, zxwy, zyxw
Reducible to "yx" in Table E : ywxz, ywzx, zywx, zwxy, zwyx, wxyz, wyxz, wyzx Table N

\mathbf{O}	Arc levels	$[1,1]$	$[1,-1]$	$[1, \pm 3]$	$[3, \pm 3]$
\because	xyzw, yxzw, yzxw	\bigcirc	4_{1}	\rightleftarrows	\rightleftarrows
	xwzy	\bigcirc	3_{1}	\rightleftarrows	\rightleftarrows
	yzwx	5_{2}	\bigcirc	\rightleftarrows	\rightleftarrows
	wxzy,wzxy,wzyx	\bigcirc	\bigcirc	\rightleftarrows	\rightleftarrows

Reducible to "xy" in Table F : xywz, xzyw, xzwy, xwyz, yxwz, zxyw, zxwy, zyxw Reducible to "yx" in Table F : ywxz, ywzx, zywx, zwxy, zwyx, wxyz, wyxz, wyzx Table O

Proof of (Jeon-J, 2002) - continued

P	Arc levels	[0,1]	[0,3]	[2,1]	[2,-1]	[2,3]	[2,-3]
	xyzw, xzyw, xzwy	3_{1}	$\%_{1}$	\bigcirc	\bigcirc	\ni	3_{1}
	yxzw	3_{1}	\% ${ }_{1}$	62	41	\ni	\bigcirc
	ywzx, wyzx, wzyx	\bigcirc	\bigcirc	\bigcirc	52	4_{1}	\ni
	wzxy	\bigcirc	\bigcirc	31	\%	\bigcirc	\ni

Reducible to "xy" in Table E : xywz, xwyz, xwzy, zxyw, zxwy, zwxy, wxyz, wxzy
Reducible to "yx" in Table E : yxwz, yzxw, yzwx, ywxz, zyxw, zywx, zwyx, wyxz Table P

\mathbf{Q}	Arc levels	$[0,0]$	$[0,2]$	$[2,2]$	$[2,-2]$
	xyzw, xywz	\bigcirc	\bigcirc	4_{1}	3_{1}
	xzyw	3_{1}	5_{2}	\bigcirc	\bigcirc
	zxyw	\bigcirc	\bigcirc	6_{1}	\bigcirc
	zwyx, wzyx	\bigcirc	\bigcirc	\bigcirc	5_{2}
	wyxz	\bigcirc	\bigcirc	3_{1}	7_{2}
	wyzx	3_{1}	\bigcirc	3_{1}	7_{3}

Reducible to "xyz" in Table G : xwyz, yxzw, yxwz, ywxz, wxyz
Reducible to "xzy" in Table G : xzwy, xwzy, wxzy
Reducible to "yzx" in Table G : yzxw, yzwx, ywzx
Reducible to "zxy" in Table G: zxwy, zyxw, zywx, zwxy, wzxy
Table Q

Proof of (Jeon-J, 2002) - continued

R	Arc levels	[0,1]	[0,3]	[2,1]	[2,-1]	$[2, \pm 3]$
	xyzw, xywz	\bigcirc	\bigcirc	3_{1}	\bigcirc	\rightleftarrows
	xzyw	4_{1}	61	\bigcirc	\bigcirc	\rightleftarrows
	zxyw	\bigcirc	\bigcirc	52	31	\rightleftarrows
	zwyx, wzyx	\bigcirc	\bigcirc	\bigcirc	4_{1}	\rightleftarrows
	wyxz	\bigcirc	\bigcirc	4_{1}	61	\rightleftarrows
	wyzx	\bigcirc	3_{1}	\bigcirc	61	\rightleftarrows

Reducible to "xyz" in Table H : xwyz, yxzw, yxwz, ywxz, wxyz
Reducible to "xzy" in Table H : xzwy, xwzy, wxzy
Reducible to "yzx" in Table H : yzxw, yzwx, ywzx
Reducible to "zxy" in Table H : zxwy, zyxw, zywx, zwxy, wzxy
Table R

Proof of (Jeon-J, 2002) - continued

S	Arc levels	$[1,1]$	$[1,-1]$	$[1,3]$	$[1,-3]$	$[3, \pm 3]$
	xyzw, xywz	\bigcirc	\bigcirc	31	3_{1}	\rightleftarrows
	xzyw, zxyw	$3{ }_{1}$	\bigcirc	$\not{ }^{\prime}$	\bigcirc	\rightleftarrows
	zwyx, wzyx	\bigcirc	31	\bigcirc	\% 1	\rightleftarrows
	wyxz	$3{ }_{1}$	$\not \$_{1}$	\bigcirc	71	\rightleftarrows
	wyzx	\bigcirc	52	4_{1}	73	\rightleftarrows

Reducible to "xyz" in Table I : xwyz, yxzw, yxwz, ywxz, wxyz
Reducible to "xzy" in Table I : xzwy, xwzy, wxzy, zxwy, zyxw, zywx, zwxy, wzxy Reducible to "yzx" in Table I : yzxw, yzwx, ywzx

Table S

Proof of (Jeon-J, 2002) - continued

T	Arc levels	$[0,1]$	$[0,3]$	[2,1]	$[2,-1]$	[2,3]	[2,-3]
	xyzw, xzyw	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\ni	31
	xywz, zxyw	\bigcirc	31	\bigcirc	4_{1}	\ni	62
	xzwy	41	62	\bigcirc	\bigcirc	\ni	3_{1}
	yxzw	\bigcirc	\bigcirc	3_{1}	$\star 6_{3}$	\ni	$\star 8_{7}$
	ywzx	\bigcirc	52	3_{1}	62	\ni	$\star 8_{9}$
	zwyx, wyxz	\bigcirc	31	52	3_{1}	\ni	63
	wyzx, wzyx	3_{1}	\$1	\% 1	3_{1}	\ni	\bigcirc
	wzxy	3_{1}	$\not \psi_{1}$	52	\bigcirc	\ni	4_{1}

© or \bigcirc : xwyz, xwzy, yxwz, yzxw, yzwx, ywxz, zxwy, zyxw, zywx, zwxy, wxyz, wxzy Table T

Proof of (Jeon-J, 2002) - continued

Proof of (Jeon-J, 2002) - continued

V	Arc levels	[1,1]	[1,-1]	[1,3]	$[1,-3]$	[3,3]	$[3,-3]$
	xyzw	\bigcirc	\bigcirc	\ni	31	\ni	\bigcirc
	xywz	\bigcirc	\bigcirc	\ni	31	\ni	63
	xzyw	\bigcirc	3_{1}	\bigcirc	¢8 ${ }_{1}$	\ni	3_{1}
	xzwy	\bigcirc	\bigcirc	31	31	\ni	62
	yxzw	\bigcirc	4_{1}	\ni	62	\ni	89
	ywzx	52	3_{1}	\ni	63	\ni	8_{7}
	zxyw	\bigcirc	3_{1}	\bigcirc	\square_{1}	\ni	87
	zwyx	\bigcirc	4_{1}	5	$6{ }_{2}$	\ni	89
	wyxz	52	\bigcirc	\ni	41	\ni	62
	wyzx	\% 7_{1}	3_{1}	\ni	\bigcirc	\ni	3_{1}
	wzxy	\bigcirc	\bigcirc	31	31	\ni	63
	wzyx	31	\bigcirc	\% ${ }_{1}$	\bigcirc	\ni	\bigcirc

© or \bigcirc : xwyz, xwzy, yxwz, yzxw, yzwx, ywxz, zxwy, zyxw, zywx, zwxy, wxyz, wxzy Table V

Thank you

