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Motivation
• K =

{
equivalent classes of topological knots

}
• G =

{
grid diagrams

}
• B =

{
equivalent classes of braids modulo conjugation and exchange

}
• L =

{
equivalent classes of Legendrian knots

}
• T =

{
equivalent classes of transverse knots

}
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Motivation(cont.)

Let G = G/{(Cm), (Tr)}.

Theorem 1

(1) [Khandhawit-Ng] The diagram (a) commutes,

(2) [Ozsváth-Szabó-D. Thurston, Ng-D. Thurston] For G, there are
bijections induced by the canonical maps.

B ←→ G/{(NE), (SE)}

L ←→ G/{(NE), (SW)}

T ←→ G/{(NE), (SW), (SE)}

K ←→ G/{(NE), (SW), (SE), (NW)}
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Goal

We extend the scope of the study in (a) in terms of singular links.
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Grid diagram

A grid diagram of size n is a link diagram which consists only of n vertical
and n horizontal line segments in such a way that at each crossing the
vertical line segment crosses over the horizontal line segment and no two
line segments are colinear.

In short, a grid diagram of size n is an n × n matrix of 8 kinds of the
symbols, called grid tiles, representing a link such that no more than two
corners exist in any vertical and horizontal line.
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Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite
sequence of the following elementary moves.

◦ Stabilization and Destabilization;

◦ Commutation(Cm) : interchanging adjacent two non-interleaved vertical edges
or horizontal edges, respectively;

◦ Translation(Tr) : cyclic permutation of vertical (horizontal) edges.

In this talk, we will frequently use “knot” to mean either a knot or a link.
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G/ {(De)stabilization} → K

• G : the set of all grid diagrams
• G : G/ {(Cm),(Tr)}
• K : the set of all equivalent classes of knots

Proposition 1. (Cromwell)

The map G −→ K induces a bijection

G/ {(De)stabilization} → K .
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Four types of (De)stabilizations

A grid diagram with grid number n
can be defined as an n × n square
grid with n X’s and n O’s placed in
distinct squares, such that each row
and each column contain exactly
one X and one O.
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Braid

B [Markov Theorem] The closures of two braids B and B′ represent
the same link if and only if one braid can be deformed into the other by
a sequence of braid isotopies and Markov moves

… …… …… … … …

B The exchange move can be generated by conjugations and
(+)-(de)stabilizations.

• B =
{
equivalent classes of braids modulo conjugation and exchange

}
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G/ {(NE),(SE)} → B

Proposition 2. (Ng-D.Thurston)

The map G −→ B induces a bijection

G/ {(NE),(SE)} → B
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Legendrian and transverse knots

The standard contact structure assigns to the point p = (x, y, z) the plane

ξp = ker(dz − ydx),

where we orient R3 via the Right Hand Rule.

x

y

z
wikipedia
on contact geometry

A Legendrian knot and a transverse knot are topological knots which are
tangent and transverse to the standard contact structure, respectively.
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Front projections

xz-projections of Legendrian knots and transverse knots, called front
projections, can be characterized;

• For Legendrian knots, (1) there are no vertical tangencies, and (2) an
arc having lower slope is lying over an arc having higher slope at each
crossing.

• Any regular projections without forbidden projections can be realized
as a front projection of a transverse knot.
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G/ {(NE),(SW)} → L
G/ {(NE),(SW),(SE)} → T

- L : the set of all equivalent classes of Legendrian links in (R3, ξ0), where
ξ0 = ker(dz − ydx) is the standard contact structure.

- T : the set of all equivalent classes of oriented transverse links in (R3, ξ0).

Proposition 3. (Ozsváth-Szabó-D. Thurston)

The maps G −→ L and G −→ T induce bijections

G/ {(NE),(SW)} → L and G/ {(NE),(SW),(SE)} → T ,

respectively.
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Singular link and relatives

A singular knot is an immersion of a circle in R3

having only transverse double point singularities,
called singular points and a singular link is a
disjoint union of singular knots.

- SK : the set of equivalent classes of singular knots.
- SB : the set of equivalent classes of singular braids up to conjugation

and exchange moves.
- SL : the set of equivalent classes of singular Legendrian knots

- ST : the set of equivalent classes of singular transverse knots
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Conventions on SL and ST
The front projectin πF : R3 → R2

xz is defined as the projection onto the
xz-plane.

• For any L ∈ SL, πF(L) near each singular point looks like
because the same y-coordinate yields the same slope dz/dx.

• For any T ∈ ST , the front projection πF(T) locally looks a transverse
intersection near a singular point of T in general. However πF(T) has
forbidden projections shown in the figure below.
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Two maps to ST

? (̂·)T : SB → ST

? (·)+ : SL → ST
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Resolutions

For each K ∈ SB,SL,ST or SK , the ε-resolution Rε at a singular point p
for each ε ∈ {+,−, 0} is defined as follows.

K R+(p) R−(p) R0(p)

∈ SK ,ST ,SB

, ∈ SL , , ,
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A commutative diagram

There is a commutative diagram (a) which extends the previous maps
between non-singular objects.

We want to complete the diagram (b) in which all maps commute with
resolutions. In this case, we say that SG gives a unified description for
SB, SL, ST , and SK .
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Singular point tiles

Considering SG, we can naturally consider the following two tiles t× and t•
with transverse intersection and non-transverse intersection near the singular
point, respectively:

t× = and t• = .

Let SG× and SG• be the set of all grid diagrams extended by t× and t•,
respectively.

(a) (b)
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On SG×

Theorem 2. (An-L.)

SG× does not give a unified description whatever the resolutions and maps
on SG× are defined.

We can define easily the maps from SG× to SB,ST and SK which extend
corresponding maps between non-singular objects and commute with
resolutions.

� //



&&

? ∈ SL

‖(·)+‖
vv

∈ SB,ST ,SK

However, it is NOT possible to define SG× → SL such that SG× gives a
unified description.
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On SG•

Theorem 3. (An-L.)

The set SG• gives a unified description for SB,SL,ST and SK .

In other words, the diagram

SG•
‖·‖SL //

flip

��

‖·‖ST

!!

‖·‖

��

SL

(·)+

��
‖·‖

��

SB
(̂·)

//

‖(̂·)‖ ..

ST

‖·‖

!!
SK

is commutative and all maps commute with resolutions.
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Sketch of the proof of Theorem 3.
• SG• → SB

SG•

��

_

��
_
��

_
��

_
��

_
��

_

��
_
��

_

��
SB

• SG• → SL

SG•

��

_
��

_

��

_

��

_
��

_

��

_

��

_

��

_

��
SL

• SG• → ST := SG• → SL
(·)+
−→ ST .
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Sketch of the proof of Theorem 3.

R+ R− R0
For example, SG• → SB commutes with
(+)-resolutions since

R+

ww

‖·‖SB

''‖·‖SB //// =
R+oo

From now on, we use SG instead of SG•.
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Singular grid moves – Translation

In SG, translations are not always possible.

Right−to−Leftoo Left−to−Right //

Bottom−to−Top

OO

Top−to−Bottom
��
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Singular grid moves – Translation

So, we define generalized translations for admissible decompositions, which
are horizontal or vertical decompositions of a singular grid diagram into two
parts such that all segments connecting two parts end only at corners.

Admissible Non-admissible

The translation (Tr) on an admissible decomposition is defined as follows.

oo (Tr) // oo (Tr) //
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Singular grid moves – Commutation
We say that two contiguous columns (or rows) in G are non-interleaving if
their vertical (or horizontal) segments are non-interleaving, otherwise they
are interleaving.
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Singular grid moves – (De)Stabilizations

X:NW

X:NE

X:SW

X:SE
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Singular grid moves – Rotations, Swirl
and Flype

t• =
(Rot−) //(Rot+)oo

(Swirl) // oo(Flype) //
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Main Result

Main Theorem. (An-L.)

Let SG := SG/{(Tr),(Cm)}. Then the following holds.

SB = SG/{(NE), (SE), (Flype), (Swirl), (Rot∗±)}

SL = SG/{(NE), (SW), (Rot±)}

ST = SG/{(NE), (SW), (SE), (Flype), (Rot±)}

SK = SG/{(NE), (NW), (SE), (SW), (Flype), (Rot±)}
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Thank you.
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