Grid diagram for singular links

Hwa Jeong Lee
(Dongguk University - Gyeongju)
joint with Byunghee An
(IBS-CGP)

February 18, 2020
Knots and Spatial Graphs 2020 (A workshop in memory of Choon Bae Jeon)
KAIST, Korea

Table of Contents

(1) Motivation

(2) Known Results

Grid diagram and relatives

3 Singular link and relatives
Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram Singular grid moves

Table of Contents

(1) Motivation

(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot
Singular grid diagram
Singular grid moves

Table of Contents

(1) Motivation
(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Table of Contents

(1) Motivation
(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Table of Contents

(1) Motivation

(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

二 $\sqrt{\square} \xrightarrow{\rightarrow} \in \mathcal{B}$

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

$$
\overline{=} \sqrt{G} \underset{\rightarrow}{\rightarrow} \in \mathcal{B}
$$

Motivation

- $\mathcal{K}=\{$ equivalent classes of topological knots $\}$
- $\mathcal{G}=\{$ grid diagrams $\}$
- $\mathcal{B}=$ \{ equivalent classes of braids modulo conjugation and exchange $\}$
- $\mathcal{L}=\{$ equivalent classes of Legendrian knots $\}$
- $\mathcal{T}=$ \{equivalent classes of transverse knots \}

$$
\overline{=} \sqrt{\square} \vec{G}^{\in \mathcal{B}}
$$

Motivation(cont.)

$$
\text { Let } \overline{\mathcal{G}}=\mathcal{G} /\{(\mathrm{Cm}),(\mathrm{Tr})\} .
$$

[Khandhawit-Ng] The diagram (a) commutes,
 'Ozsváth-Szabón. Thutston, Nz-D. Thuirston' For \bar{G}, there are bijections induced by the canonical maps.

Motivation(cont.)

Let $\overline{\mathcal{G}}=\mathcal{G} /\{(\mathrm{Cm}),(\mathrm{Tr})\}$.

Theorem 1

(1) [Khandhawit-Ng] The diagram (a) commutes,
(2) [Ozsváth-Szabó-D. Thurston, Ng-D. Thurston] For $\overline{\mathcal{G}}$, there are bijections induced by the canonical maps.

$$
\begin{aligned}
& \mathcal{B} \longleftrightarrow \overline{\mathcal{G}} /\{(N E),(S E)\} \\
& \mathcal{L} \longleftrightarrow \overline{\mathcal{G}} /\{(N E),(S W)\} \\
& \mathcal{T} \longleftrightarrow \overline{\mathcal{G}} /\{(N E),(S W),(S E)\} \\
& \mathcal{K} \longleftrightarrow \overline{\mathcal{G}} /\{(N E),(S W),(S E),(N W)\}
\end{aligned}
$$

Goal

We extend the scope of the study in (a) in terms of singular links.

Goal

We extend the scope of the study in (a) in terms of singular links.

Table of Contents

(1) Motivation
(2) Known Results

Grid diagram and relatives

3 Singular link and relatives
Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Grid diagram

A grid diagram of size n is a link diagram which consists only of n vertical and n horizontal line segments in such a way that at each crossing the vertical line segment crosses over the horizontal line segment and no two line segments are colinear.

In short, a grid diagram of size n is an $n \times n$ matrix of 8 kinds of the
symbols, called grid tiles, representing a link such that no more than two
corners exist in any vertical and horizontal line.

Grid diagram

A grid diagram of size n is a link diagram which consists only of n vertical and n horizontal line segments in such a way that at each crossing the vertical line segment crosses over the horizontal line segment and no two line segments are colinear.

In short, a grid diagram of size n is an $n \times n$ matrix of 8 kinds of the symbols, called grid tiles, representing a link such that no more than two corners exist in any vertical and horizontal line.

Grid diagram

A grid diagram of size n is a link diagram which consists only of n vertical and n horizontal line segments in such a way that at each crossing the vertical line segment crosses over the horizontal line segment and no two line segments are colinear.

In short, a grid diagram of size n is an $n \times n$ matrix of 8 kinds of the symbols, called grid tiles, representing a link such that no more than two corners exist in any vertical and horizontal line.

Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite sequence of the following elementary moves.

Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite sequence of the following elementary moves.

- Stabilization and Destabilization;

Translation(Tr) : cyclic permutation of vertical (horizontal) edges.

Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite sequence of the following elementary moves.

- Stabilization and Destabilization;

- Commutation (Cm) : interchanging adjacent two non-interleaved vertical edges or horizontal edges, respectively;

In this talk, we will frequently use "knot" to mean either a knot or a link

Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite sequence of the following elementary moves.

- Stabilization and Destabilization;
- Commutation (Cm) : interchanging adjacent two non-interleaved vertical edges or horizontal edges, respectively;
- Translation(Tr) : cyclic permutation of vertical (horizontal) edges.

In this talk, we will frequently use "knot" to mean either a knot or a link.

Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite sequence of the following elementary moves.

- Stabilization and Destabilization;
- Commutation(Cm) : interchanging adjacent two non-interleaved vertical edges or horizontal edges, respectively;
- Translation(Tr) : cyclic permutation of vertical (horizontal) edges.

In this talk, we will frequently use "knot" to mean either a knot or a link.

$\overline{\mathcal{G}} /\{($ De) stabilization $\} \rightarrow \mathcal{K}$

- \mathcal{G} : the set of all grid diagrams
- $\overline{\mathcal{G}}: \mathcal{G} /\{(\mathrm{Cm}),(\mathrm{Tr})\}$
- \mathcal{K} : the set of all equivalent classes of knots

Proposition 1. (Cromwell)
The map $G \longrightarrow K$ induces a bijection
$\overline{\mathcal{G}} /\{(\mathrm{De})$ stabilization $\} \rightarrow \mathcal{K}$.

$\overline{\mathcal{G}} /\{(\mathrm{De})$ stabilization $\} \rightarrow \mathcal{K}$

- \mathcal{G} : the set of all grid diagrams
- $\overline{\mathcal{G}}: \mathcal{G} /\{(\mathrm{Cm}),(\mathrm{Tr})\}$
- \mathcal{K} : the set of all equivalent classes of knots

Proposition 1. (Cromwell)

The map $\mathcal{G} \longrightarrow \mathcal{K}$ induces a bijection

$$
\overline{\mathcal{G}} /\{(\mathrm{De}) \text { stabilization }\} \rightarrow \mathcal{K} .
$$

Four types of (De)stabilizations

A grid diagram with grid number n can be defined as an $n \times n$ square grid with n X's and n O's placed in distinct squares, such that each row and each column contain exactly one X and one O .

Four types of (De)stabilizations

A grid diagram with grid number n can be defined as an $n \times n$ square grid with n X's and n O's placed in distinct squares, such that each row and each column contain exactly one X and one O .

Four types of (De)stabilizations

A grid diagram with grid number n can be defined as an $n \times n$ square grid with n X's and n O's placed in distinct squares, such that each row and each column contain exactly one X and one O .

Four types of (De)stabilizations

A grid diagram with grid number n can be defined as an $n \times n$ square grid with n X's and n O's placed in distinct squares, such that each row and each column contain exactly one X and one O .

Four types of (De)stabilizations

A grid diagram with grid number n can be defined as an $n \times n$ square grid with n X's and n O's placed in distinct squares, such that each row and each column contain exactly one X and one O .

Braid

\triangleright [Markov Theorem] The closures of two braids B and B^{\prime} represent the same link if and only if one braid can be deformed into the other by a sequence of braid isotopies and Markov moves

The exchange move can be generated by conjugations and $(+)$-(de)stabilizations.

Braid

\triangleright [Markov Theorem] The closures of two braids B and B^{\prime} represent the same link if and only if one braid can be deformed into the other by a sequence of braid isotopies and Markov moves

\triangleright The exchange move can be generated by conjugations and (+)-(de)stabilizations.

Braid

\triangleright [Markov Theorem] The closures of two braids B and B^{\prime} represent the same link if and only if one braid can be deformed into the other by a sequence of braid isotopies and Markov moves

\triangleright The exchange move can be generated by conjugations and (+)-(de)stabilizations.

- $\mathcal{B}=\{$ equivalent classes of braids modulo conjugation and exchange $\}$

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S E})\} \rightarrow \mathcal{B}$

$\overline{\mathcal{G}} /\{\mathbf{N E}),(\mathbf{S E})\} \rightarrow \mathcal{B}$

The map $\mathcal{G} \longrightarrow \mathcal{B}$ induces a bijection
$\bar{G} /\{(N E),(S E)\} \rightarrow \mathcal{B}$

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S E})\} \rightarrow \mathcal{B}$

The map $\mathcal{G} \longrightarrow \mathcal{B}$ induces a bijection
$\bar{G} /\{(N E),(S E)\} \rightarrow \mathcal{B}$

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S E})\} \rightarrow \mathcal{B}$

Proposition 2. (Ng-D.Thurston)

The map $\mathcal{G} \longrightarrow \mathcal{B}$ induces a bijection

$$
\overline{\mathcal{G}} /\{(\mathrm{NE}),(\mathrm{SE})\} \rightarrow \mathcal{B}
$$

Legendrian and transverse knots

The standard contact structure assigns to the point $p=(x, y, z)$ the plane

$$
\xi_{p}=\operatorname{ker}(d z-y d x),
$$

where we orient \mathbb{R}^{3} via the Right Hand Rule.

tangent and transverse to the standard contact structure, respectively.

Legendrian and transverse knots

The standard contact structure assigns to the point $p=(x, y, z)$ the plane

$$
\xi_{p}=\operatorname{ker}(d z-y d x),
$$

where we orient \mathbb{R}^{3} via the Right Hand Rule.

A Legendrian knot and a transverse knot are topological knots which are tangent and transverse to the standard contact structure, respectively.

Front projections

$x z$-projections of Legendrian knots and transverse knots, called front projections, can be characterized;

- For Legendrian knots, (1) there are no vertical tangencies, and (2) an arc having lower slope is lying over an arc having higher slope at each crossing.
- Any regular projections without forbidden projections can be realized as a front projection of a transverse knot.

Front projections

$x z$-projections of Legendrian knots and transverse knots, called front projections, can be characterized;

- For Legendrian knots, (1) there are no vertical tangencies, and (2) an arc having lower slope is lying over an arc having higher slope at each crossing.

- Any regular projections without forbidden projections can be realized as a front projection of a transverse knot.

Front projections

$x z$-projections of Legendrian knots and transverse knots, called front projections, can be characterized;

- For Legendrian knots, (1) there are no vertical tangencies, and (2) an arc having lower slope is lying over an arc having higher slope at each crossing.

- Any regular projections without forbidden projections can be realized as a front projection of a transverse knot.

forbidden projections

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W})\} \rightarrow \mathcal{L}$ $\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W}),(\mathbf{S E})\} \rightarrow \mathcal{T}$

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W})\} \rightarrow \mathcal{L}$ $\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W}),(\mathbf{S E})\} \rightarrow \mathcal{T}$

\mathcal{L} : the set of all equivalent classes of Legendrian links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$, where $\xi_{0}=\operatorname{ker}(d z-y d x)$ is the standard contact structure.
T : the set of all equivalent classes of oriented transverse links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$.

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W})\} \rightarrow \mathcal{L}$ $\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W}),(\mathbf{S E})\} \rightarrow \mathcal{T}$

\mathcal{L} : the set of all equivalent classes of Legendrian links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$, where $\xi_{0}=\operatorname{ker}(d z-y d x)$ is the standard contact structure.
\mathcal{T} : the set of all equivalent classes of oriented transverse links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$.

Proposition 3. (Ozsváth-Szabó-D. Thurston)
The maps $O \rightarrow \mathcal{R}$ and $\Omega \rightarrow T$ induce bijections
$\bar{G} /\{(\mathrm{NE}),(\mathrm{SW})\} \rightarrow \mathcal{L}$ and $\bar{G} /\{(\mathrm{NE}),(\mathrm{SW}),(\mathrm{SE})\} \rightarrow \mathcal{T}$
respectively.

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W})\} \rightarrow \mathcal{L}$ $\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W}),(\mathbf{S E})\} \rightarrow \mathcal{T}$

- \mathcal{L} : the set of all equivalent classes of Legendrian links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$, where $\xi_{0}=\operatorname{ker}(d z-y d x)$ is the standard contact structure.
- \mathcal{T} : the set of all equivalent classes of oriented transverse links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$.

The maps $\mathcal{G} \longrightarrow \mathcal{L}$ and $\mathcal{G} \longrightarrow \mathcal{T}$ induce bijections

$$
\bar{G} /\{(\mathrm{NF})(\mathrm{SW})\} \rightarrow \Gamma \text { and } \bar{G} /\{(\mathrm{NE})(\mathrm{SW}),(\mathrm{SE})\} \rightarrow \mathcal{T}
$$

respectively.

$\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W})\} \rightarrow \mathcal{L}$ $\overline{\mathcal{G}} /\{(\mathbf{N E}),(\mathbf{S W}),(\mathbf{S E})\} \rightarrow \mathcal{T}$

- \mathcal{L} : the set of all equivalent classes of Legendrian links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$, where $\xi_{0}=\operatorname{ker}(d z-y d x)$ is the standard contact structure.
- \mathcal{T} : the set of all equivalent classes of oriented transverse links in $\left(\mathbb{R}^{3}, \xi_{0}\right)$.

Proposition 3. (Ozsváth-Szabó-D. Thurston)

The maps $\mathcal{G} \longrightarrow \mathcal{L}$ and $\mathcal{G} \longrightarrow \mathcal{T}$ induce bijections

$$
\overline{\mathcal{G}} /\{(\mathrm{NE}),(\mathrm{SW})\} \rightarrow \mathcal{L} \quad \text { and } \quad \overline{\mathcal{G}} /\{(\mathrm{NE}),(\mathrm{SW}),(\mathrm{SE})\} \rightarrow \mathcal{T},
$$

respectively.

Table of Contents

(1) Motivation
(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Singular link and relatives

A singular knot is an immersion of a circle in \mathbb{R}^{3} having only transverse double point singularities, called singular points and a singular link is a disjoint union of singular knots.

$S \mathcal{S}$: the set of equivalent classes of singular knots.
SR : the set of equivalent classes of singular braids up to conjugation
and exchange moves.
$\mathcal{S L}$: the set of equivalent classes of singular Legendrian knots
ST : the set of equivalent classes of singular transuorse knots

Singular link and relatives

A singular knot is an immersion of a circle in \mathbb{R}^{3} having only transverse double point singularities, called singular points and a singular link is a disjoint union of singular knots.

- SK : the set of equivalent classes of singular knots.
- $\mathcal{S B}$: the set of equivalent classes of singular braids up to conjugation and exchange moves.
- $\mathcal{S L}$: the set of equivalent classes of singular Legendrian knots
- $\mathcal{S T}$: the set of equivalent classes of singular transverse knots

Conventions on $\mathcal{S L}$ and $\mathcal{S T}$

The front projectin $\pi_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in S \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

Conventions on $\mathcal{S L}$ and $\mathcal{S T}$

The front projectin $\boldsymbol{\pi}_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in \mathcal{S} \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

Conventions on $\mathcal{S L}$ and $\mathcal{S T}$

The front projectin $\boldsymbol{\pi}_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in \mathcal{S} \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

Conventions on $\mathcal{S} \mathcal{L}$ and $\mathcal{S T}$

The front projectin $\boldsymbol{\pi}_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in \mathcal{S} \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

- For any $T \in \mathcal{S T}$, the front projection $\pi_{F}(T)$ locally looks a transverse intersection near a singular point of T in general. However $\pi_{F}(T)$ has forbidden projections shown in the figure below.

Conventions on $\mathcal{S} \mathcal{L}$ and $\mathcal{S T}$

The front projectin $\boldsymbol{\pi}_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in \mathcal{S} \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

- For any $T \in \mathcal{S T}$, the front projection $\pi_{F}(T)$ locally looks a transverse intersection near a singular point of T in general. However $\pi_{F}(T)$ has forbidden projections shown in the figure below.

Conventions on $\mathcal{S L}$ and $\mathcal{S T}$

The front projectin $\pi_{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}_{x z}^{2}$ is defined as the projection onto the $x z$-plane.

- For any $L \in \mathcal{S} \mathcal{L}, \pi_{F}(L)$ near each singular point looks like because the same y-coordinate yields the same slope $d z / d x$.

- For any $T \in \mathcal{S T}$, the front projection $\pi_{F}(T)$ locally looks a transverse intersection near a singular point of T in general. However $\pi_{F}(T)$ has forbidden projections shown in the figure below.

Two maps to $\mathcal{S T}$

$\star\left(\widehat{\cdot}_{\mathcal{T}}: \mathcal{S B} \rightarrow \mathcal{S T}\right.$
$\star(\cdot)^{+}: \mathcal{S} \mathcal{L} \rightarrow \mathcal{S T}$

Two maps to $\mathcal{S T}$

$\star \widehat{(\cdot)}_{\mathcal{T}}: \mathcal{S B} \rightarrow \mathcal{S T}$

$\star(\cdot)^{+}: \mathcal{S L} \rightarrow \mathcal{S T}$

Two maps to $\mathcal{S T}$

$\star \widehat{(\cdot)}_{\mathcal{T}}: \mathcal{S B} \rightarrow \mathcal{S T}$

$\star(\cdot)^{+}: \mathcal{S L} \rightarrow \mathcal{S T}$

$$
\begin{aligned}
& \mathcal{S L}\rangle\rangle 入 \nless \lll<
\end{aligned}
$$

Resolutions

For each $K \in \mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ or $\mathcal{S K}$, the ϵ-resolution \mathcal{R}_{ϵ} at a singular point p for each $\epsilon \in\{+,-, 0\}$ is defined as follows.

K	$\mathcal{R}_{+}(p)$	$\mathcal{R}_{-}(p)$	$\mathcal{R}_{0}(p)$
$<\in \mathcal{S K}, \mathcal{S T}, \mathcal{S B}$			

Resolutions

For each $K \in \mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ or $\mathcal{S K}$, the ϵ-resolution \mathcal{R}_{ϵ} at a singular point p for each $\epsilon \in\{+,-, 0\}$ is defined as follows.

K	$\mathcal{R}_{+}(p)$	$\mathcal{R}_{-}(p)$	$\mathcal{R}_{0}(p)$
$<\in \mathcal{S K}, \mathcal{S T}, \mathcal{S B}$			

Resolutions

For each $K \in \mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ or $\mathcal{S K}$, the ϵ-resolution \mathcal{R}_{ϵ} at a singular point p for each $\epsilon \in\{+,-, 0\}$ is defined as follows.

K	$\mathcal{R}_{+}(p)$	$\mathcal{R}_{-}(p)$	$\mathcal{R}_{0}(p)$
$>\in \mathcal{S K}, \mathcal{S T}, \mathcal{S B}$	λ	y	\Re
$\downarrow,><\in \mathcal{L} \mathcal{L}$, ,	\rangle	

Resolutions

For each $K \in \mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ or $\mathcal{S K}$, the ϵ-resolution \mathcal{R}_{ϵ} at a singular point p for each $\epsilon \in\{+,-, 0\}$ is defined as follows.

K	$\mathcal{R}_{+}(p)$	$\mathcal{R}_{-}(p)$	$\mathcal{R}_{0}(p)$
$>\in \mathcal{S K}, \mathcal{S T}, \mathcal{S B}$	λ	y	\Re
$\mathcal{L}, \mathcal{L} \in \mathcal{L}$, ,	λ,\rangle	

Resolutions

For each $K \in \mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ or $\mathcal{S K}$, the ϵ-resolution \mathcal{R}_{ϵ} at a singular point p for each $\epsilon \in\{+,-, 0\}$ is defined as follows.

K	$\mathcal{R}_{+}(p)$	$\mathcal{R}_{-}(p)$	$\mathcal{R}_{0}(p)$
$>\in \mathcal{S K}, \mathcal{S T}, \mathcal{S B}$	λ	y	
$\mathcal{L}, \mathcal{L} \in \mathcal{L}$	$1,1$	$\lambda,$	

A commutative diagram

There is a commutative diagram (a) which extends the previous maps between non-singular objects.

(a)

We want to complete the diagram (b) in which all maps commute with resolutions. In this case, we say that $\mathcal{S} G$ gives a unified description for $\mathcal{S B}, \mathcal{S}, S T$, and $S \mathcal{K}$.

A commutative diagram

There is a commutative diagram (a) which extends the previous maps between non-singular objects.

(a)

(b)

We want to complete the diagram (b) in which all maps commute with resolutions.

A commutative diagram

There is a commutative diagram (a) which extends the previous maps between non-singular objects.

(a)

(b)

We want to complete the diagram (b) in which all maps commute with resolutions. In this case, we say that $\mathcal{S G}$ gives a unified description for $\mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$, and $\mathcal{S K}$.

Singular point tiles

Considering $\mathcal{S G}$, we can naturally consider the following two tiles t_{\times}and t_{\bullet} with transverse intersection and non-transverse intersection near the singular point, respectively:

$$
t_{\times}=\square \text { and } t_{0}=\square
$$

Let $\mathcal{S G _ { \times }}$ and $S \mathcal{G}_{\bullet}$ be the set of all grid diagrams extended by t_{\times}and $t_{\boldsymbol{0}}$,
respectively.

Singular point tiles

Considering $\mathcal{S G}$, we can naturally consider the following two tiles t_{\times}and t_{\bullet} with transverse intersection and non-transverse intersection near the singular point, respectively:

$$
t_{\times}=\square \quad \text { and } \quad t_{0}=\square
$$

Let $\mathcal{S G} \mathcal{G}_{\times}$and $\mathcal{S G}$. be the set of all grid diagrams extended by t_{\times}and $t_{\boldsymbol{\bullet}}$, respectively.

Singular point tiles

Considering $\mathcal{S G}$, we can naturally consider the following two tiles t_{\times}and t_{\bullet} with transverse intersection and non-transverse intersection near the singular point, respectively:

$$
t_{\times}=\square \quad \text { and } \quad t_{0}=\frac{\square}{\square}
$$

Let $\mathcal{S G} \mathcal{G}_{\times}$and $\mathcal{S G}$. be the set of all grid diagrams extended by t_{\times}and t_{\bullet}, respectively.

On $\mathcal{S G} \times$

Theorem 2. (An-L.)

$\mathcal{S G}_{\times}$does not give a unified description whatever the resolutions and maps on $\mathcal{S} \mathcal{G}_{\times}$are defined.

We can define easily the maps from $\mathcal{S G} \times$ to $\mathcal{S B}, \mathcal{S T}$ and $\mathcal{S K}$ which extend corresponding maps between non-singular objects and commute with resolutions.

However, it is NOT possible to define $\mathcal{S} \mathcal{G}_{\times} \rightarrow \mathcal{S} \mathcal{L}$ such that $\mathcal{S} \mathcal{G}_{\times}$gives a unified description.

On $\mathcal{S G} \times$

Theorem 2. (An-L.)

$\mathcal{S G}_{\times}$does not give a unified description whatever the resolutions and maps on $\mathcal{S} \mathcal{G}_{\times}$are defined.

We can define easily the maps from $\mathcal{S G}_{\times}$to $\mathcal{S B}, \mathcal{S T}$ and $\mathcal{S K}$ which extend corresponding maps between non-singular objects and commute with resolutions.

However, it is NOT possible to define $\mathcal{S} G_{\times} \rightarrow \mathcal{S} \mathcal{L}$ such that $\mathcal{S} \mathcal{G}_{\times}$gives a unified description.

On $\mathcal{S G} \times$

Theorem 2. (An-L.)

$\mathcal{S G}_{\times}$does not give a unified description whatever the resolutions and maps on $\mathcal{S} \mathcal{G}_{\times}$are defined.

We can define easily the maps from $\mathcal{S G}_{\times}$to $\mathcal{S B}, \mathcal{S T}$ and $\mathcal{S K}$ which extend corresponding maps between non-singular objects and commute with resolutions.

However, it is NOT possible to define $\mathcal{S} \mathcal{G}_{\times} \rightarrow \mathcal{S} \mathcal{L}$ such that $\mathcal{S} \mathcal{G}_{\times}$gives a unified description.

On $\mathcal{S G}$.

Theorem 3. (An-L.)

The set $\mathcal{S G}$. gives a unified description for $\mathcal{S B}, \mathcal{S} \mathcal{L}, \mathcal{S T}$ and $\mathcal{S K}$.
In other words, the diagram

is commutative and all maps commute with resolutions.

Sketch of the proof of Theorem 3.

- $\mathcal{S G} . \rightarrow \mathcal{S B}$
- $\mathcal{S G} . \rightarrow \mathcal{S} \mathcal{L}$

- $\mathcal{S G} . \rightarrow \mathcal{S T}$
- SG. \rightarrow SK

Sketch of the proof of Theorem 3.

- $\mathcal{S G} . \rightarrow \mathcal{S B}$
- $\mathcal{S G} . \rightarrow \mathcal{S} \mathcal{L}$

- SG. \rightarrow ST
- SG. \rightarrow SK

Sketch of the proof of Theorem 3.

- $\mathcal{S G} . \rightarrow \mathcal{S B}$

$$
\begin{aligned}
& \rightarrow \rightarrow+4 \rightarrow 4
\end{aligned}
$$

- $\mathcal{S G} . \rightarrow \mathcal{S L}$

- $\mathcal{S G} . \rightarrow \mathcal{S T}$
- SG. \rightarrow SK

Sketch of the proof of Theorem 3.

- $\mathcal{S G} . \rightarrow \mathcal{S B}$

$$
\begin{aligned}
& \text { } \rightarrow \rightarrow-4 \rightarrow 4
\end{aligned}
$$

- $\mathcal{S G} . \rightarrow \mathcal{S} \mathcal{L}$

- $\mathcal{S G} . \rightarrow \mathcal{S T}:=\mathcal{S G} . \rightarrow \mathcal{S L} \xrightarrow{(\cdot)^{+}} \mathcal{S T}$.
- $\mathcal{S G} . \rightarrow \mathcal{S K}:=\mathcal{S G} . \rightarrow \mathcal{S L} \xrightarrow{(\cdot)^{+}} \mathcal{S T} \xrightarrow{\|\cdot\|} \mathcal{S K}$.

Sketch of the proof of Theorem 3.

Sketch of the proof of Theorem 3.

Sketch of the proof of Theorem 3.

For example, $\mathcal{S G} . \rightarrow \mathcal{S B}$ commutes with $(+)$-resolutions since

Sketch of the proof of Theorem 3.

For example, $\mathcal{S G} . \rightarrow \mathcal{S B}$ commutes with $(+)$-resolutions since

From now on, we use $\mathcal{S G}$ instead of $\mathcal{S G}$.

Singular grid moves - Translation

In $\mathcal{S G}$, translations are not always possible.

Singular grid moves - Translation

In $\mathcal{S G}$, translations are not always possible.

Singular grid moves - Translation

In $\mathcal{S G}$, translations are not always possible.

Singular grid moves - Translation

In $\mathcal{S G}$, translations are not always possible.

Singular grid moves - Translation

In $\mathcal{S G}$, translations are not always possible.

Singular grid moves - Translation

So, we define generalized translations for admissible decompositions, which are horizontal or vertical decompositions of a singular grid diagram into two parts such that all segments connecting two parts end only at corners.

Admissible

Non-admissible

The translation $(T r)$ on an admissible decomposition is defined as follows.

Singular grid moves - Translation

So, we define generalized translations for admissible decompositions, which are horizontal or vertical decompositions of a singular grid diagram into two parts such that all segments connecting two parts end only at corners.

Admissible

Non-admissible

The translation $(T r)$ on an admissible decomposition is defined as follows.

Singular grid moves - Translation

So, we define generalized translations for admissible decompositions, which are horizontal or vertical decompositions of a singular grid diagram into two parts such that all segments connecting two parts end only at corners.

Admissible

Non-admissible

The translation (Tr) on an admissible decomposition is defined as follows.

Singular grid moves - Translation

So, we define generalized translations for admissible decompositions, which are horizontal or vertical decompositions of a singular grid diagram into two parts such that all segments connecting two parts end only at corners.

Admissible

Non-admissible

The translation (Tr) on an admissible decomposition is defined as follows.

Singular grid moves - Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if their vertical (or horizontal) segments are non-interleaving,

Singular grid moves - Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if their vertical (or horizontal) segments are non-interleaving, otherwise they are interleaving.

Singular grid moves - Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if their vertical (or horizontal) segments are non-interleaving, otherwise they are interleaving.

Singular grid moves - (De)Stabilizations

Singular grid moves - Rotations, Swirl and Flype

Table of Contents

(1) Motivation
(2) Known Results

Grid diagram and relatives
(3) Singular link and relatives

Singular link
Singular braid, Singular Legendrian knot, Singular transverse knot Singular grid diagram
Singular grid moves
(4) Main Reult

Main Result

Main Theorem. (An-L.)

Let $\overline{\mathcal{S G}}:=\mathcal{S G} /\{(\mathrm{Tr}),(\mathrm{Cm})\}$. Then the following holds.

$$
\begin{aligned}
& \mathcal{S B}=\overline{\mathcal{S G}} /\left\{(N E),(\text { SE }),(\text { Flype }),(\text { Swirl }),\left(\text { Rot }_{ \pm}^{*}\right)\right\} \\
& \mathcal{S \mathcal { L }}=\overline{\mathcal{S G}} /\left\{(N E),(S W),\left(\text { Rot }_{ \pm}\right)\right\} \\
& \mathcal{S T}=\overline{\mathcal{S G}} /\left\{(N E),(S W),(\text { SE }),(\text { Flype }),\left(\text { Rot }_{ \pm}\right)\right\} \\
& \mathcal{S K}=\overline{\mathcal{S G}} /\left\{(N E),(N W),(S E),(\text { SW }),(\text { Flype }),\left(\text { Rot }_{ \pm}\right)\right\}
\end{aligned}
$$

Thank you.

