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Motivation
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Motivation(cont.)

Let G = G/{(Cm), (Tr)}.
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Motivation(cont.)

Let G = G/{(Cm), (Tr)}.

Theorem 1
(1) [Khandhawit-Ng] The diagram (a) commutes,

(2) [Ozsvath-Szabd-D. Thurston, Ng-D. Thurston]  For @, there are
bijections induced by the canonical maps.

B —> G/{(NE), (SE)}

L «> G/{(NE),(SW)}

T > G/{(NE),(SW), (SE)}

K «— G/{(NE), (SW), (SE), (NW)}

o/l
s
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Goal

1/

c
hd
k/c

We extend the scope of the study in (a) in terms of singular links.
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Grid diagram

A grid diagram of size n is a link diagram which consists only of n vertical
and n horizontal line segments in such a way that at each crossing the
vertical line segment crosses over the horizontal line segment and no two
line segments are colinear.
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In short, a grid diagram of size n is an n X n matrix of 8 kinds of the
symbols, called grid tiles, representing a link such that no more than two
corners exist in any vertical and horizontal line.
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Elementary Moves on Grid Diagrams
Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite
sequence of the following elementary moves.
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o Commutation(Cm) : interchanging adjacent two non-interleaved vertical edges
or horizontal edges, respectively;
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Elementary Moves on Grid Diagrams

Cromwell(1995)

Two grid diagrams of the same link can be obtained from each other by a finite
sequence of the following elementary moves.

o Stabilization and Destabilization;

o Commutation(Cm) : interchanging adjacent two non-interleaved vertical edges
or horizontal edges, respectively;

o Translation(Tr) : cyclic permutation of vertical (horizontal) edges.

-y -

In this talk, we will frequently use “knot” to mean either a knot or a link.
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G/ {(De)stabilization} —» K

® G : the set of all grid diagrams
* G:G/{(Cm),(Tn)

® %K : the set of all equivalent classes of knots
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G/ {(De)stabilization} —» K

® G : the set of all grid diagrams
* G:G/{(Cm),(Tn)

® %K : the set of all equivalent classes of knots

Proposition 1. (Cromwell)
The map G — % induces a bijection

G/ {(De)stabilization} — K.
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Four types of (De)stabilizations

A grid diagram with grid number n
can be defined as an n X n square
grid with n X’s and n O’s placed in
distinct squares, such that each row
and each column contain exactly
one X and one O.
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Braid

> [Markov Theorem] The closures of two braids B and B’ represent
the same link if and only if one braid can be deformed into the other by
a sequence of braid isotopies and Markov moves

= - > conjugation 1T  — 1 : % 1— —
Y Bi|Ba| 1 ——> | BBy Bl (+) - braid ‘| B . N
n —> n — n > stab. n \/_}_}

n4el—
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> The exchange move can be generated by conjugations and
(+)-(de)stabilizations.

1 ) 1

! :.: ! : R -
n— ¢ n-1

n— ~ n S~
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Braid

> [Markov Theorem] The closures of two braids B and B’ represent
the same link if and only if one braid can be deformed into the other by
a sequence of braid isotopies and Markov moves
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Y Bi|Ba| 1 ——> | BBy Bl (+) - braid ‘| B . N
n —> n — n > stab. n \/_}_}

n4el—

> The exchange move can be generated by conjugations and
(+)-(de)stabilizations.

1 ) 1

! :.: ! : R -
n— ¢ n-1

n— ~ n S~

® B = {equivalent classes of braids modulo conjugation and exchange }
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G/ {(NE),(SE)} —» &
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G/ {(NE),(SE)} —» &

Proposition 2. (Ng-D.Thurston)

The map G — B induces a bijection

G/{(NE),(SE)} — B
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Legendrian and transverse knots

The standard contact structure assigns to the point p = (x,y, z) the plane
&, = ker(dz — ydx),

where we orient R? via the Right Hand Rule.

z

wikipedia
on contact geometry
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Legendrian and transverse knots

The standard contact structure assigns to the point p = (x,y, z) the plane
&, = ker(dz — ydx),

where we orient R? via the Right Hand Rule.

z

wikipedia
on contact geometry

A Legendrian knot and a transverse knot are topological knots which are
tangent and transverse to the standard contact structure, respectively.
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Front projections

xz-projections of Legendrian knots and transverse knots, called front
projections, can be characterized;
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Front projections

xz-projections of Legendrian knots and transverse knots, called front
projections, can be characterized;

® For Legendrian knots, (1) there are no vertical tangencies, and (2) an
arc having lower slope is lying over an arc having higher slope at each
crossing.

=T

15/35



Front projections

xz-projections of Legendrian knots and transverse knots, called front
projections, can be characterized;

® For Legendrian knots, (1) there are no vertical tangencies, and (2) an
arc having lower slope is lying over an arc having higher slope at each
crossing.

OB e,

® Any regular projections without forbidden projections can be realized
as a front projection of a transverse knot.

(A

forbidden projections
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_ G/{(NE),(SW)) - £
G/ {(NE),(SW),SE)} — T
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_ G/{(NE),(SW)) - £
G/ {(NE),(SW),SE)} — T



_ G/{(NE),(SW)) - £
G/ {(NE),(SW),SE)} — T



_ G/H{(NE)L(SW)} —
G/ {(NE),(SW),SE)} — T

() apX

- L : the set of all equivalent classes of Legendrian links in (R3, &), where
& = ker(dz — ydx) is the standard contact structure.

- 7 : the set of all equivalent classes of oriented transverse links in (R?, &)).
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_ G/H{(NE)L(SW)} —
G/ {(NE),(SW),SE)} — T

() apX

- L : the set of all equivalent classes of Legendrian links in (R3, &), where
& = ker(dz — ydx) is the standard contact structure.

- 7 : the set of all equivalent classes of oriented transverse links in (R?, &)).

Proposition 3. (Ozsvath-Szabo6-D. Thurston)

The maps G — L and G — 7 induce bijections
G/{(NE),(SW)} > £ and G/{(NE),(SW),(SE)} - T

respectively.
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Singular link and relatives

A singular knot is an immersion of a circle in R3
having only transverse double point singularities,
called singular points and a singular link is a
disjoint union of singular knots.
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Singular link and relatives

A singular knot is an immersion of a circle in R?
having only transverse double point singularities,
called singular points and a singular link is a
disjoint union of singular knots.

- 8K : the set of equivalent classes of singular knots.

- 8B : the set of equivalent classes of singular braids up to conjugation
and exchange moves.

- 8L : the set of equivalent classes of singular Legendrian knots

- 8T : the set of equivalent classes of singular transverse knots
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Conventions on SL and 87

The front projectin ng : R — Rﬁz is defined as the projection onto the
xz-plane.
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Conventions on SL and S7

The front projectin ng : R — Rﬁz is defined as the projection onto the
xz-plane.

® For any L € SL, np(L) near each singular point looks like
because the same y-coordinate yields the same slope dz/dx.

[ | 3| 3
| < |

® For any T € ST, the front projection 7nx(T) locally looks a transverse
intersection near a singular point of 7 in general. However 7x(T) has
forbidden projections shown in the figure below.

(A X))
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Two maps to ST

* O : 88— ST

* () SL-> ST
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Two maps to ST

* (V) :SB- 8T

* ()W SL-> ST
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Two maps to ST

* () SL-> ST

LSy X O
ol 111111110
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Resolutions

For each K € 8B,SL, ST or SK, the e-resolution R, at a singular point p
for each € € {+, —, 0} is defined as follows.

K R, (p) R_

S

Ro(p)

><eS‘K,S7',SB X \/' X
et [ 3=yt [ <

v

PR
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For each K € 8B,SL, ST or SK, the e-resolution R, at a singular point p
for each € € {+, —, 0} is defined as follows.
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Ro(p)
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A commutative diagram

There is a commutative diagram (a) which extends the previous maps
between non-singular objects.

SLC

l“* 16

SB——> ST

[© SK
(a)
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A commutative diagram

There is a commutative diagram (a) which extends the previous maps
between non-singular objects.

SL SG—> 8L
SB—> ST SB—>ST

O)r \Q Or \Q
HO SK HO SK
(a) (b)
We want to complete the diagram (b) in which all maps commute with

resolutions.
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A commutative diagram

There is a commutative diagram (a) which extends the previous maps
between non-singular objects.

SLC SG—>SL
l“* 1] l \ l“* 161
SB——>ST SB——>S8T

HO SK H(\) SK
(a) (b)

We want to complete the diagram (b) in which all maps commute with

resolutions. In this case, we say that SG gives a unified description for
88, SL, ST, and SK.
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Singular point tiles

Considering SG, we can naturally consider the following two tiles ¢« and t,
with transverse intersection and non-transverse intersection near the singular
point, respectively:
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Let SG, and SG, be the set of all grid diagrams extended by ¢« and #,,
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On SG,

Theorem 2. (An-L.)

8G, does not give a unified description whatever the resolutions and maps
on SG, are defined.
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On SG,

Theorem 2. (An-L.)

8G, does not give a unified description whatever the resolutions and maps
on SG, are defined.

We can define easily the maps from SG, to SB, ST and SK which extend
corresponding maps between non-singular objects and commute with
resolutions.

i} ?7 €S8SL

> € 88,8T,SK

However, it is NOT possible to define SG, — SL such that SG,, gives a
unified description.
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On SG,

Theorem 3. (An-L.)
The set SG, gives a unified description for S8, SL, ST and SK.

In other words, the diagram

sz

SG. SL

_ [lls7
flip (OM
[l
)
JI-I1

IOl SK

is commutative and all maps commute with resolutions.
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Sketch of the proof of Theorem 3.

* SG., > SB
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Sketch of the proof of Theorem 3.
* SG., > SB

SG.

l

S8
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S = T e T I e ol
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° SG., > ST
°* SG, » SK



Sketch of the proof of Theorem 3.

* SG., > SB

° SG, - SL

o 8SG. > ST :=8G. —» SL- L ST
o SG. - SK =86, - S£-L s M, sk



Sketch of the proof of Theorem 3.
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Sketch of the proof of Theorem 3.
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For example, SG, — SB commutes with
e < (+)-resolutions since
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Sketch of the proof of Theorem 3.

Ry R Ro
- - i
] F’
T 150 |5
L L0l :
SR
L= | -

For example, SG, — SB commutes with
(+)-resolutions since

From now on, we use SG instead of SG,.
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Singular grid moves — Translation

In SG, translations are not always possible.
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Singular grid moves — Translation

So, we define generalized translations for admissible decompositions, which
are horizontal or vertical decompositions of a singular grid diagram into two
parts such that all segments connecting two parts end only at corners.

B - g
‘ H—
—

f
§

Admissible Non-admissible
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Singular grid moves — Translation

So, we define generalized translations for admissible decompositions, which
are horizontal or vertical decompositions of a singular grid diagram into two
parts such that all segments connecting two parts end only at corners.

L
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Admissible

Non-admissible

The translation (Tr) on an admissible decomposition is defined as follows.
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Singular grid moves — Translation

So, we define generalized translations for admissible decompositions, which
are horizontal or vertical decompositions of a singular grid diagram into two
parts such that all segments connecting two parts end only at corners.
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Admissible Non-admissible

The translation (Tr) on an admissible decomposition is defined as follows.

i —— 1l..1 T
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Singular grid moves — Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if
their vertical (or horizontal) segments are non-interleaving,

T<

EDE—I
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Singular grid moves — Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if
their vertical (or horizontal) segments are non-interleaving, otherwise they

are interleaving.
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Singular grid moves — Commutation

We say that two contiguous columns (or rows) in G are non-interleaving if
their vertical (or horizontal) segments are non-interleaving, otherwise they

are interleaving.

11« [ J- ©m) C *tl:»II

! )

m
i
|

e B

=T S
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Singular grid moves — (De)Stabilizations

Jﬁ rp

X:NE

X:SW

X:SE
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Singular grid moves — Rotations, Swirl
and Flype

-]

.

—|—— (Rot,) f\ = /Lf/ (Rot-) o _"T’_I

+_ —_ : : i
L

CETD (Swird | | (Flype) ]
== e ], e T
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Main Result

Main Theorem. (An-L.)
Let SG := SG/{(Tr),(Cm)}. Then the following holds.

S8 = SG/{(NE), (SE), (Flype), (Swirl), (Rot}))
SL = SG/{(NE), (SW), (Rot..)}

ST = SG/{(NE), (SW), (SE), (Flype), (Rot..)}

SK = SG/{(NE), (NW), (SE), (SW), (Flype), (Rot.))
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Thank you.
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