Ruled surfaces with a k-section of zero self-intersection (k = 1, 2, 3, 4)

김정섭

KAIST 수리과학과

2020년 10월 24일

2020년도 대한수학회 가을 연구발표회

- All varieties are defined over \mathbb{C} .
- C is a smooth projective curve of genus $g \ge 2$.
- *E* is a vector bundle on *C* of rk E = 2 and deg $E = \deg c_1(E) = d$.
- $X = \mathbb{P}_{C}(E)$ is the ruled surface with projection $\Pi : \mathbb{P}_{C}(E) \to C$.
- C_1 is a divisor on X satisfying $\Pi_* \mathcal{O}_X(C_1) = E$.

- $\operatorname{Pic}(X) = \{ D \sim_{\operatorname{lin}} kC_1 + \mathfrak{b}f \mid k \in \mathbb{Z}, \, \mathfrak{b} \in \operatorname{Pic}(C) \}$
- $N_1(X) = \{ D \equiv_{\mathsf{num}} kC_1 + bf \mid k, b \in \mathbb{Z} \}$
 - \triangleright $N_1(X) \otimes \mathbb{Q}$ is a 2-dimensional \mathbb{Q} -vector space.
 - \triangleright We choose a Q-divisor $D_0 \equiv C_1 + bf$ as it to be $D_0^2 = 0$.
 - ▷ Note that $D_0 f = 1$ and $f^2 = 0$.

For $k \geq 1$, a divisor $D \equiv kC_1 + bf$ on X is called

- a k-secant divisor,
- a *k*-section if *D* is effective, i.e. realized as a curve.
 - \triangleright When k = 1, it is just called a *section*.
 - \triangleright It is more likely to be effective as $b \to \infty$.

 $\frac{D_1 \equiv 3D_0 - f}{D_1 \text{ is not effective}}$

 $\frac{D_2 \equiv 3D_0}{D_2 \text{ is effective}}$

 $D_3 \equiv 3D_0 + f$ D_3 is effective and \exists many 3-sections $\sim D_3$

- $NE(X) = \{ D \in N_1(X) \otimes \mathbb{Q} \mid D \text{ is } \mathbb{Q}\text{-effective} \}$
 - \triangleright The cone of curves NE(X) is convex.
 - ▷ A k-section may have negative self-intersection.
 - \triangleright NE(X) is not necessarily closed.

There is a 1-to-1 correspondence between

Then it follows that

$$D^{2} = (kC_{1} + bf)^{2} = 0$$

$$\updownarrow$$

$$L^{-1} \rightarrow S^{k}E \text{ with } \deg L^{-1} = \frac{\deg S^{k}E}{\operatorname{rk} S^{k}E}$$

$$\Leftrightarrow L^{-1} \text{ destabilizes } S^{k}E.$$

A vector bundle V on C is *(semi-)stable* if every nontrivial proper subbundle $F \rightarrow V$ satisfies

$$\frac{\deg F}{\operatorname{rk} F} < \frac{\deg V}{\operatorname{rk} V} \left(\frac{\deg F}{\operatorname{rk} F} \le \frac{\deg V}{\operatorname{rk} V} \right).$$

If V is semi-stable but not stable, then V is said to be *strictly semi-stable*.

If E is semi-stable, then it is known that

•
$$\mathsf{NE}(X) \subseteq \mathbb{Q}_{\geq 0} \cdot D_0 + \mathbb{Q}_{\geq 0} \cdot f$$
,
 $\triangleright \ \forall D \in \mathsf{NE}(X), \ D^2 \geq 0$

•
$$\overline{\mathsf{NE}}(X) = \mathbb{Q}_{\geq 0} \cdot D_0 + \mathbb{Q}_{\geq 0} \cdot f$$
.

From now on, E is assumed to be semi-stable.

Recall the correspondence

$$\begin{array}{l} \exists \ {\rm section} \ D \sim C_1 + \mathfrak{b}f \ {\rm with} \ D^2 = 0 \\ & \textcircled{} \quad L = \mathcal{O}_C(\mathfrak{b}) \\ E \ {\rm is} \ {\rm destabilized} \ {\rm by} \ {\rm a} \ {\rm line} \ {\rm subbundle} \ L^{-1} \rightarrow E. \end{array}$$

Since rk E = 2, E is not stable if and only if

• *E* is destabilized by a line subbundle.

Therefore,

 \exists section D on X with $D^2 = 0 \iff E$ is strictly semi-stable.

Similarly from the correspondence

$$\begin{array}{l} \exists \ 2\text{-section} \ D\sim 2C_1+\mathfrak{b}f \ \text{with} \ D^2=0 \\ & \textcircled{} \ L=\mathcal{O}_C(\mathfrak{b}) \\ S^2E \ \text{is destabilized by a line subbundle} \ L^{-1}\to S^2E. \end{array}$$

Since $\operatorname{rk} S^2 E = 3$, $S^2 E$ is not stable only if

- S^2E is destabilized by a line subbundle, or
- S^2E is destabilized by a subbundle of rank 2.

From some dualities, we can observe that

 S^2E is destabilized by "rk 1" \Leftrightarrow S^2E is destabilized by "rk 2".

That is, S^2E is not stable if and only if it is destabilized by "rk 1".

Therefore,

 \exists 2-section D on X with $D^2 = 0 \iff S^2 E$ is strictly semi-stable.

 $\exists \text{ section } D \text{ on } X \text{ with } D^2 = 0 \iff E \text{ is strictly semi-stable} \\ \Downarrow B := kD$

 \exists k-section B on X with $B^2 = 0 \iff S^k E$ is destabilized by "rk 1"

In particular for k = 2, if E is not stable, then S^2E is not stable.

Question

 $\exists E$ such that

• *E* is stable but S^2E is destabilized by "rk 1" (\Leftrightarrow not stable)? That is, $\exists X$ which admits

• no section D with $D^2 = 0$ but a 2-section B with $B^2 = 0$?

It is answered in [Choi-Park(최영욱-박의성) '15]. They construct such examples using elementary transformations.

[Choi-Park '15] starts with the ruled surface associated to $\mathcal{O}_C \oplus M$ which admits an irreducible 2-section B with $B^2 = 0$. They show that elementary transformations at general points on B yield stable E.

When deg *E* is even and S^2E is not stable, the construction generates *orthogonal bundles*. According to the classification of [Mumford '71], an orthogonal bundle is given by π_*R for some $R \in \Pr(B/C)$ and unramified 2-covering $\pi : B \to C$.

Let $\pi: B \to C$ be a nontrivial unramified 2-covering. Then the Prym of *B* over *C* is defined by

$$\Pr(B/C) = \{R \in J^0(B) \mid \operatorname{Nm}_{B/C}(R) = \mathcal{O}_C\}.$$

Here, $Nm_{B/C}$ is for instance defined by

$$\operatorname{Nm}_{B/C}(\mathcal{O}_B(p-q)) = \mathcal{O}_C(\pi(p) - \pi(q)).$$

Note that

- $E \approx \prod_* \mathcal{O}_X(D Pf)$ up to normalization (twist by line bundles),
- $\mathcal{O}_B(D Pf) = \mathcal{O}_B(p q) \in \Pr(B/C).$

We have $\Pi_* \mathcal{O}_X(D - Pf) \cong \pi_* \mathcal{O}_B(D - Pf)$ by pushing forward

$$0 \rightarrow \mathcal{O}_X(-C_1 + \mathfrak{b}f) \rightarrow \mathcal{O}_X(D - Pf) \rightarrow \mathcal{O}_B(D - Pf) \rightarrow 0.$$

Question

 $\exists E$ such that

• *E* is stable but S^3E is destabilized by "rk 1"?

That is, $\exists X$ which admits

• no section of zero self-intersection but a 3-section D with $D^2 = 0$?

Because if we take an elementary transformation at a point on

- a 2-section B of $B^2 = 0 \rightarrow B'^2 = 0$,
- a 3-section D of $D^2 = 0 \rightarrow D'^2 \neq 0$,

it seems no longer effective to apply elementary transformations.

Theorem [K. '20]

Let E be a stable bundle on C of rank 2 with even degree. Then

 S^3E is destabilized by "rk 1" \Rightarrow S^2E is strictly semi-stable,

and \Leftarrow holds whenever $E \approx \pi_* R$ for some $R \in J_6(B) \setminus \pi^* J^0(C)$ with $R \in \Pr(B/C)$ associated to a nontrivial unramified 2-covering $\pi : B \to C$ up to normalization.

Remark

There are only finitely many

- unramified 2-coverings $\pi: B \to C$,
- 6-torsion line bundles on B.

Hence the number of such E's is finite if det E is fixed.

Question

 $\exists E$ such that

- S^2E is stable but S^4E is destabilized by "rk1"?
- That is, $\exists X$ which admits
 - no 2-section B with $B^2 = 0$ but a 4-section of zero self-intersection?

(Answer) Yes.

Let

- $\pi: D \to C$ be an unramified cyclic 3-covering,
- $M \in J_2(D)$.

Then $\pi_*M = S^2E \otimes A$ for some 2-bundle E and line bundle A. We can check that

- π is nontrivial $\Rightarrow S^4 E$ is destabilized by "rk 1",
- $M \in \pi^* J^0(C) \iff S^2 E$ is destabilized by "rk 1".

So a desired example comes from nontrivial π and $M \in J_2(D) \setminus \pi^* J^0(C)$.

Theorem [K. '20]

Let E be a stable bundle on C of rank 2 with even degree. Then

 S^4E is destabilized by a "rk 1" $\Leftrightarrow S^2E$ is strictly semi-stable ,

except the previous example up to normalization.

Remark

There are only finitely many

- unramified 3-coverings $\pi: D \to C$,
- 2-torsion line bundles on D,
- *F*'s satisfying $S^2 E \cong S^2 F$.

Hence the number of such E's is finite if det E is fixed.

(k) $X = \mathbb{P}_{C}(E)$ has a k-section of zero self-intersection.

(k) $X = \mathbb{P}_{C}(E)$ has a *k*-section of zero self-intersection. (1)

(k) $X = \mathbb{P}_{C}(E)$ has a *k*-section of zero self-intersection. (1) \subsetneq (3)

for $X = \mathbb{P}_{C}(E)$ with semi-stable *E* of even degree

(k) $X = \mathbb{P}_{C}(E)$ has a k-section of zero self-intersection. (1) \subsetneq (3) \subsetneq (2)

(k) $X = \mathbb{P}_{C}(E)$ has a k-section of zero self-intersection. (1) \subsetneq (3) \subsetneq (2) \subsetneq (4)

References

- D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971) 181–192.
- Y. Choi, E. Park, On higher syzygies of ruled surfaces III, J. Pure Appl. Algebra 219(10) (2015) 4653–4666.
- J.-S. Kim, Stability of symmetric cubes of vector bundles on a curve of rank two with even degree, arXiv:2006.11733.

감사합니다.