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Abstract: Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and
seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate
rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of
the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The
majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin
model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, the
author discusses how this new class of models differs dramatically from those based on Hill-type repression in several
fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators.
Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and
mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein
sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful
modelling of transcriptional repression mechanisms in molecular circadian clocks.
1 Introduction

We wake up and sleep at the usual times mainly because the level of
the hormone melatonin in our brain is elevated and reduced at the
right times of day [1]. Our blood pressure also exhibits a daily
pattern – it is high in the morning and low at night. Similar daily
patterns are observed in other organisms: Drosophila eggs hatch
only in the morning, and Neurospora mold begins producing
spores only in the evening. These daily (24 h) rhythms, seen in
diverse behavioural, physiological, and developmental processes,
are driven by intrinsic self-sustained oscillators, circadian clocks.
With these endogenous oscillators, organisms ranging from
unicellular bacteria and insects to mammals can anticipate periodic
daily changes in the environment, and regulate their cellular
activities or behaviour to occur at the appropriate times of day and
night [2]. Moreover, this intrinsic time-tracking system enables
organisms to actively control their physiology in the face of
seasonal day-length changes [1]. For instance, mammals can
change their sleep phases according to the time of sunset or
sunrise [3]. Plants can regulate their starch degradation rate during
the night, so that starch reserves are exhausted at sunrise
regardless of day-length change [4, 5].

While molecular components underlying circadian clocks vary
among organisms, three basic properties are commonly shared,
which facilitate the appropriate phase relationships between
circadian rhythms and environmental cycles (e.g. diurnal cycle) [1,
2]. (i) Rhythms are self-sustained with a period of nearly 24 h. (ii)
The period of self-sustained rhythms is maintained over a
physiologically relevant temperature range (i.e. temperature
compensation) [6]. (iii) Rhythms can be entrained or reset by
external cues such as light or temperature [7, 8]. These dynamic
features of circadian rhythms have provided a natural setting for
mathematical modelling and led to the publication of more than
600 theoretical studies about circadian rhythms [9–13].

Long before the identification of the molecular basis of circadian
clocks, phenomenological models-focusing on the phase and/or
amplitude of limit cycle oscillators (e.g. Poincare and Van der Pol
oscillators) were widely used to study circadian rhythms [7, 14,
15]. Because this approach uses abstract limit cycle oscillators,
which are not based on underlying molecular dynamics, the
variables and parameters of those models are too abstract to
compare with physical quantities. Nonetheless, these abstract
models can provide important insight into experimental data on
phase relationship of circadian rhythms, such as phase response to
external signals [16–18], phase entrainment [19–22], and phase
regulation via coupling signal [23–26]. Furthermore, such models
have also been used recently to analyse the phase and amplitude
information from circadian time-course data [27, 28] and to
investigate circadian regulation of other systems (e.g. cell division)
[29, 30]. See [10–12] for a detailed review of this type of abstract
phase-based models.

Over the last couple of decades, the revolution in molecular
experimental techniques has led to the identification of molecular
interaction networks underlying circadian clocks in considerable
detail (see [2, 31]). In particular, intracellular transcriptional/
translational negative feedback loops (NFLs) between activators
and repressors have been uncovered as the key oscillatory
mechanisms in many organisms, including Neurospora,
Drosophila and mammals. These exciting discoveries have spurred
the development of molecular-based models in which individual
molecular reactions are described by ordinary differential
equations [9–13]. Because the typical simulation outputs of such
models are time-courses of the rise and fall of specific molecular
components, model predictions can be tested directly by
experiments. This allows for closer interactions between theories
and experiments and enhances our systemic understanding of the
molecular basis of circadian clocks. Goldbeter’s model of the
transcriptional NFL in Drosophila was among the first to use this
approach [32]. In this model, Hill functions were used to describe
transcriptional repression of the NFL following the lead of
Goodwin, who was the first person to model oscillations in a
simple genetic NFL [33]; see also [34–37]. Since Goodwin’s and
Goldbeter’s pioneering studies, Hill functions have been widely
used to model the NFL in circadian clocks of diverse organisms,
including Neurospora [38–40], Drosophila [41–46] and mammals
[47–53]. In this review, we refer to this class of models as
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Hill-type repression based models (HT models). The properties of
these models and their contributions to the circadian clock field
have been reviewed in [9–13, 35–37].

Recently, a new class of circadian clock models has been
developed, which uses protein sequestration-based transcriptional
repression rather than Hill-type repression [54–65]. Interestingly,
this class of models, which we refer to as protein
sequestration-based models (PS models), shows qualitatively
different properties from the HT models in several important
aspects: conditions for rhythm generation, robust feedback loop
designs, and coupling-induced period change. This review
describes the differences between these two classes of models,
focusing on simple representative examples of each class: the
Goodwin model [33–37] and the Kim–Forger model [59]. In
addition, we present experimental results that support the
conclusion that the properties of circadian clocks also differ
among diverse organisms depending on their key repression
mechanisms. Overall, the properties of PS models match well with
data from Drosophila and mammals, while the properties of HT
models are consistent with data from Neurospora. These
differences-depending on the repression mechanisms-indicate that
the relevant repression mechanism should be carefully considered
in developing models of the circadian clock in specific organisms.
2 Two classes of transcriptional NFL models

Although different kinds of molecules are used, a transcription-translation
NFL is the common core of the circadian oscillators in diverse organisms,
Fig. 1 Repression mechanisms closing the core transcriptional NFL of
circadian clocks

a In the core transcriptional NFL of circadian clocks, the activator (A) binding to the
promoter of repressor genes leads to the transcription of the repressor mRNA (M ) and
then the translation of the repressor protein (C ) in the cytoplasm. The nuclear
translocated repressor protein (R) suppresses the transcriptional activity of the
activator, which is described with the function f(R) in the Goodwin model and the
Kim–Forger model (1)–(3)
b List of the activator and repressor proteins in the circadian clocks of Neurospora,
Drosophila and mammals
c With the phosphorylation-based repression mechanism, the repressor inhibits the
activator by triggering phosphorylation at multiple sites of the activator. If the
phosphorylation occurs in a distributive and cooperative manner on a fast time-scale,
the fraction of the transcriptionally active activator that is not fully phosphorylated is
described with the sigmoidal Hill function of the effective repressor concentration (R/
Ki) (2). NH and Ki represent the number of phosphorylation sites and the
concentration of phosphatase, respectively
d With the protein sequestration-based repression mechanism, the repressor inhibits the
activator via forming the 1:1 stoichiometric complex. If the binding and unbinding
occurs with a high affinity on a fast time-scale, the fraction of the free activator,
which is transcriptionally active, is the approximate piecewise linear function of the
molar ratio (R/A) (3)
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including Neurospora, Drosophila, and mammals (Figs. 1a and b) (see
[2, 31] for details). In the transcriptional NFL, the binding of activator
(A) to the promoter region of the repressor gene triggers the
transcription of repressor mRNA (M), which is translated into repressor
protein (C) in the cytoplasm. Then repressor protein (R), after
translocation to the nucleus, inhibits the activator and suppresses its
own transcription. To describe this transcriptional NFL, many models
have taken inspiration from the Goodwin model, which was developed
as a hypothetical genetic oscillator long before the molecular
components of circadian clocks were identified. The Goodwin model
[33, 34] is

Ṁ = aM f (R)− bMM ,

Ċ = aCM − bCC,

Ṙ = aRC − bRR,

(1)

where αi and βi are production rates and clearance rates of species,
respectively. In the Goodwin model, transcriptional repression is
described by a Hill function ( f(R)), which describes how
transcriptional activity decreases as repressor concentration (R) increases

f (R) = 1

1+ (R/Ki)
NH

. (2)

The Hill function describes various types of repression mechanisms
based on multiple cooperative reactions, such as transcriptional
repression via the binding of cooperatively polymerised repressors
to the promoter [35, 36, 66, 67]. In this case, the exponent (NH) of
the Hill function represents the number of monomers in the
polymer, which is rarely large in biological systems [35, 36, 66,
67]. Alternatively, repression based on multiple phosphorylations
has been proposed as a more realistic mechanism that can be
described by the Hill function with a large Hill exponent [36, 68].
Specifically, when the repressor distributively and cooperatively
phosphorylates multiple sites of the activator on a fast timescale,
the fraction of activator that is not fully phosphorylated and thus
transcriptionally still active is described by a Hill function
(Fig. 1c) (see [36, 68] for details). In this case, NH represents the
number of phosphorylation sites on the activator, which can be
large, and Ki represents the concentration of phosphatase.
Following the Goodwin model (1) and (2), the Hill function has
been widely used to describe transcriptional repression in other
molecular circadian clock models (HT models) of diverse
organisms: Neurospora [38–40], Drosophila [32, 41–46] and
mammals [47–53].

Since the early 2000s, a different transcriptional repression
mechanism, based on protein sequestration or protein titration, has
been proposed to describe the NFL underlying circadian oscillators
[35, 55, 57, 69]. In this case, repressors tightly bind activators to
form an inactive 1:1 stoichiometric complex (Fig. 1d ). Assuming
rapid binding between repressors and activators, the fraction of
activators that are not sequestered by the repressors and that are
thus transcriptionally active is described by following
protein-sequestration function (Fig. 1d ) [59, 70–72]

f (R) =
A− R− Kd +

�������������������������
(A− R− Kd)

2 + 4AKd

√
2A

−−−�Kd�0 1− R

A

R

A
≤ 1

0
R

A
. 1

⎧⎪⎨
⎪⎩ ; 1− R

A

⌊ ⌋ (3)

where Kd is the dissociation constant of the repressor-activator
complex. For the case of tight binding (i.e. Kd is small), the
protein-sequestration function is approximated by a piecewise
linear function of the molar ratio between repressors and activators
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in the nucleus 1− R

A

⌊ ⌋( )
(Fig. 1d ). Specifically, when the molar

ratio is greater than 1:1, most activators are sequestered and
transcription is almost completely suppressed. On the other hand,
as repressor concentration decreases from the 1:1 molar ratio, the
released activators account for an approximately linear increase of
transcription rate. The approximately piecewise linear curve with
the critical point of 1:1 molar ratio (Fig. 1d ) is qualitatively
different from the sigmoidal curve of the Hill function (Fig. 1c)
[61]. The Kim–Forger model modifies the Goodwin model (1) by
replacing the Hill function (2) with the protein-sequestration
function (3) [59, 61]. Protein sequestration-based repression
(Fig. 1c) has also been used in other circadian clock models (PS
models) [54–65]. While not discussed in detail in this review,
some circadian clock models use a mixture of protein
sequestration and Hill-type regulations [73–76].

Although the specific transcriptional repression mechanism is not
fully understood in many organisms, protein sequestration (Fig. 1d )
appears to be responsible for transcriptional repression in Drosophila
and mammals [77–82]. Specifically, in these organisms, repressors
sequester activators in a 1:1 stoichiometric complex, which
inhibits the transcriptional activity of activators. This protein
sequestration is the necessary repression step in Drosophila, as
even after all identified phosphorylation sites are mutated at the
activator (CLOCK), the mutated activator is still repressed by the
repressor (PER-TIM) [83]. While phosphorylation is not essential
for repression in Drosophila, it is critical for repression in
Neurospora: the repressor (FRQ) promotes phosphorylation at
multiple sites of the activator (WCC), which prevents WCC from
binding to the frq gene promoter (Fig. 1c) [84–88]. Furthermore,
the transcriptional activity of WCC is not suppressed only by
direct complex formation with the FRQ (i.e. protein sequestration)
[87]. The fact that different organisms employ different
mechanisms of transcriptional repression indicates that the
repression should be carefully considered when modelling
circadian clocks in a specific organism as the properties of models
differ dramatically depending on the repression mechanisms
described below.
3 Conditions for rhythm generation

Under what conditions a circadian clock fails to generate rhythms
and how the disrupted rhythms can be restored have been
important and fundamental issues. Moreover, these problems are
tightly related to human health, as the disruption of circadian
rhythms increases the risk of getting various diseases such as
insomnia, depression, cancer and diabetes [89]. The essential
molecular mechanisms for rhythm generation have been
investigated with both HT and PS models. For both the Goodwin
model and the Kim–Forger model to generate rhythms, the
transcription repression functions (2) and (3) need to show an
ultrasensitive response to repressor change in a relative sense at
the steady state of the models. That is, a large change in relative
transcription activity is required for a small change in relative
repressor concentration, which can be measured by logarithmic
sensitivity (|dlogf (R)/dlogR|= |(df (R)/dR)(R/f(R))|). In particular,
for both models, it has been shown that the logarithmic sensitivity
should be greater than 8 at the steady state (see Appendix for
detailed analysis) [34, 59, 90–92]. Importantly, conditions to
achieve such high logarithmic sensitivity differ depending on the
repression mechanisms, as described below.

The logarithmic sensitivity of the Hill function is

d log f (R)

d logR

∣∣∣∣
∣∣∣∣ = R

f (R)

df (R)

dR

∣∣∣∣
∣∣∣∣ = NH

(R/Ki)
NH

1+ (R/Ki)
NH

≤ NH, (4)

which increases as the Hill exponent (NH) or the effective repressor
concentration (R/Ki) increases (Fig. 2a), and thus the Goodwin
model is more likely to generate rhythms with higher amplitudes
(Fig. 2b). In particular, since the maximal logarithmic sensitivity
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cannot be greater than the Hill exponent (Fig. 2a), a Hill exponent
greater than 8 is required for the Goodwin model to generate
rhythms (Fig. 2b) [34, 90–92]. Since a large Hill exponent is often
difficult to achieve in biological systems, various mechanisms to
reduce the required Hill exponent have been identified. For
instance, the required Hill exponent decreases as more
intermediate steps are included to generate a time delay in the
NFL (1), which is known as the secant condition (see Appendix
for details) [90–93]. The Michaelis–Menten type of repressor
clearance also reduces the necessary Hill exponent as it can serve
as an additional source of non-linearity [35, 94–97]. By including
such additional mechanisms, the majority of HT models generate
rhythms with the Hill exponents of ∼4, which are lower than those
in the Goodwin model, but still fairly large [40–45, 47–53].

The logarithmic sensitivity of the protein-sequestration function
(3) is

d log f (R)

d logR

∣∣∣∣
∣∣∣∣ = R/A������������������������������

(1− R/A− Kd/A)
2 + Kd/A

√
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
−−−�Kd�0 R/A

1− R/A
∣∣ ∣∣ ,

(5)

which increases as the dissociation constant (Kd) decreases or the
molar ratio between repressor and activator (R/A) becomes closer
to 1:1 (Fig. 2c) since a sharp transition occurs when the molar
ratio is around 1:1 (Fig. 1d ) [59, 70, 72]. Consistently, as binding
between the repressor and the activator becomes tighter (Kd→ 0)
or as the average molar ratio throughout a cycle (<R/A>) becomes
closer to 1:1, the Kim–Forger model generates rhythms with
higher amplitudes (Fig. 2d ). The importance of the 1:1 molar ratio
is also commonly observed in other PS models [55, 57–59]. For
instance, in a detailed mammalian PS model, simulated mutant
phenotypes with molar ratios far from 1:1 become arrhythmic
[59]. Consistently, in a Drosophila PS model, all the simulated
wild type and rhythmic mutants have molar ratios of about 1:1,
though this was not noted in the original work [58]. Similar to the
HT models [90–92], time delay via intermediate steps is also
important in the PS models. For instance, when an intermediate
step for the nuclear translocation of repressor is removed in the
NFL (i.e. the translated repressor (C) immediately sequesters the
activator (A) in Fig. 1a), including the slow binding/unbinding of
the activator to the repressor promoter becomes critical to generate
rhythms because it can function as an additional intermediate step
[69, 98, 99].

Due to the different repression mechanisms, HT and PS models
have their own unique requirements to generate rhythms: a large
Hill exponent and a 1:1 molar ratio between repressor and
activator, respectively (Figs. 2b and d ). Consistently, Neurospora,
Drosophila and mammals lose rhythms under different conditions,
depending on their key transcriptional repression mechanisms. For
instance, as a large Hill exponent is critical for HT models to
generate rhythms (Fig. 2b), a large number of phosphorylation
sites at the activator (WCC) is required in Neurospora.
Specifically, as the number of mutated phosphorylation sites
increases, the circadian rhythms become weaker and finally
arrhythmic [86]. In contrast, even after the mutation of all
identified phosphorylation sites at the activator (CLOCK), the
circadian clocks of Drosophila still generate rhythms [83].
Consistent with PS models (Fig. 2d ), the 1:1 molar ratio is critical
in the mammalian circadian clocks: as the molar ratio between the
repressor (PER1/2) and the activator (BMAL1) becomes closer to
1:1 in mice fibroblasts, the amplitude and sustainability of
circadian rhythms are considerably enhanced [77]. Furthermore,
the molar ratio is around 1:1 in both the liver tissue of mammals
[100] and the S2 cells of Drosophila [78]. On the other hand, the
molar ratio is much less than 1:1 in the nucleus of Neurospora
[87] as the molar ratio is not critical for HT models to generate
rhythms (Fig. 2b).
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Fig. 2 Conditions for autonomous rhythm generation differ depending on the transcriptional repression mechanisms

a As the Hill exponent (NH) or the effective repressor concentration (R/Ki) increases, the logarithmic sensitivity (dlogf (R)/dlogR) of the Hill-function (4) increases. If the logarithmic
sensitivity is less than 8, which is represented as a darker region, the Goodwin model cannot generate rhythms due to the lack of ultrasensitive response in a relative sense (see Appendix
for detailed analysis)
b As the NH or the average of effective repressor concentration (〈R/Ki〉) increases, the Goodwin model generates rhythms with higher amplitudes. kR/Kil =


t
0 R/Ki dt, where t is the

period of the simulated limit cycle. Here Ki is changed to perturb 〈R/Ki〉, and αi = βi = 1 is assumed in (1) (see Appendix for the rationale underlying this assumption)
c As the molar ratio between repressor and activator (R/A) becomes closer to 1:1 or the dissociation constant (Kd) decreases, the logarithmic sensitivity of the protein sequestration
function (5) increases. If the logarithmic sensitivity is less than 8, which is represented as a darker region, the Kim–Forger model cannot generate rhythms. Here, A = 0.0659 (a.u.)
and the unit of Kd is the same as that of A
d As the average molar ratio between repressor and activator (〈R/A〉) becomes closer to 1:1 or the Kd decreases, the Kim–Forger model generates rhythms with higher amplitudes. Here A
is changed to perturb 〈R/A〉, and αi = βi = 1 is assumed in (1) (see Appendix for the rationale underlying this assumption)

Fig. 3 Role of additional feedback loops in generating robust rhythms
differs depending on the repression mechanisms

aMolecular circadian clocks have additional PFLs and/or NFLs with which the activator
promotes and suppresses its own gene expression, respectively
b Mediator proteins of the additional PFLs and NFLs in the circadian clocks of
Neurospora, Drosophila and mammals
c Fast additional PFL generates a relaxation oscillation based on hysteresis, which
reduces the required Hill exponent (i.e. the number of phosphorylation sites) for HT
models to generate rhythms and enhances the robustness of amplitude
d Additional NFL and the core NFL synergistically regulate the molar ratio. For
instance, when the molar ratio is perturbed to less than 1:1 (i.e. excess of activator),
the additional NFL strongly suppresses the activator expression, but the core NFL
weakly suppresses the repressor expression. This restores the 1:1 molar ratio and
enables PS models to sustain rhythms with a robust period
4 Robust designs of interlocked transcriptional
feedback loops

Molecular circadian clocks often contain additional positive
feedback loops (PFLs) and/or NFLs regulating activator gene
expression (Fig. 3a) on top of the core transcriptional NFL
(Fig. 1a) [2, 31]. In the additional NFL, the activator promotes the
transcription of Rev-erbs (mammals) [101–103], Vrille
(Drosophila) [104–106] or Csp-1 (Neurospora) [107], which
represses the expression of the activator gene (Figs. 3a and b). On
the other hand, in the additional PFL, the activator promotes the
transcription of Rors (mammals) [108–111] or Pdp1 (Drosophila)
[106], which upregulates the transcription of the activator (Figs. 3a
and b). The role of these additional feedback loops was puzzling
because theoretically the core transcriptional NFL alone can
generate rhythms (Figs. 2b and d ). This puzzle has triggered
extensive modelling studies to investigate a hypothesis that
additional feedback loops enhance the robustness of rhythms.

The additional PFL can generate hysteresis, which provides a time
delay in the core NFL [35]. Thus, when the additional PFL is added,
the Goodwin model can generate rhythms even with a lower Hill
exponent (Fig. 3c) [95]. Similarly, the additional PFL allows other
HT models to generate rhythms over a wider range of parameters
[35, 46, 112, 113]. This PFL becomes more effective when its
timescale is faster than that of the core NFL (e.g. the targeting
component (A) has a shorter half-life than the repressor (R)) as it
leads to a robust relaxation oscillation (Fig. 3c) [35, 95, 112].
While such a relaxation oscillator based on hysteresis can maintain
rhythms with a nearly constant amplitude over a wide range of
parameters, its period becomes sensitive and tunable [112, 114].
This raises the question as to whether this function of the
additional PFL is beneficial for circadian clocks, whose periods
128
should be robust [114]. In contrast to an additional PFL, an
additional NFL in HT models has little effect on the robustness of
amplitude and period of oscillations [50]. In fact, an additional
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NFL often leads to less robust HT models, which generate rhythms
over a narrower range of parameters [112]. On the other hand, some
studies based on HT models have proposed an advantage of having
an additional NFL since it can function as an alternative rhythm
generator when the core NFL does not function properly [42, 47,
52]. However, this function as an alternative oscillator needs
further experimental validation because the disruption of the core
NFL leads to arrhythmic phenotypes in mammals [56, 115],
Drosophila [116] and Neurospora [117, 118].

Similar to HT models, PS models with an additional PFL also
have a robust amplitude [55, 57] but a sensitive period [59]. On
the other hand, an additional NFL increases the parameter range of
rhythm generation with a nearly constant period in the Kim–
Forger model and in a detailed mammalian PS model [59].
Specifically, the additional NFL and the core NFL synergistically
maintain the 1:1 molar ratio between activator and repressor
(Fig. 3d ), which is critical for PS models to generate robust
rhythms (Fig. 2d ). Consistently, the additional NFL also enhances
the robustness of period in a Drosophila PS model [58].
Interestingly, in contrast to the PFL, as the half-life of the
targeting component (A) becomes longer, the additional NFL leads
to more robust PS models [59].

An additional NFL is critical for the core NFL to generate robust
rhythms in PS models [58, 59], but not in HT models [50, 112].
Consistent with these theoretical results, in Drosophila,
elimination of the additional NFL (i.e. cycling vrille) results in an
arrhythmic phenotype [104]. Due to the mild period phenotype of
Rev-erbα−/− mice [101] and modest rhythmic phenotype of partial
Rev-erbβ depletion of Rev-erbα−/− cultured cells [119], Rev-erbs
have not been considered as core components for robust rhythm
generation. However, in a recent study, inducible Rev-erbα/β
double knockout mice show severely fragmented free-running
behaviour [102, 103], supporting the critical role of Rev-erbs in
generating robust rhythms. Furthermore, just as the slower
additional NFL is more effective in PS models [59], the half-lives
of activators are also considerably longer than those of repressors
in mammals [120–124], Drosophila [125, 126] and Neurospora
[76]. Tight regulation of activator level via an additional NFL
Fig. 4 Synchronised periods have different relationships with the mean periods

a Master circadian clock of mammals consists of heterogeneous individual oscillators with diffe
positions of arrows, respectively (top). When these cells are coupled via VIP, in many HT
uncoupled oscillators (bottom left). On the other hand, the synchronised periods of the PS mo
b PRC of the Kim–Forger model to VIP has balanced advance and delay regions due to the line
model has the PRC with the unbalanced advance and delay regions due to the sigmoidal char
c When intercellular coupling is disrupted with either enzymatic dispersion or VIP−/−, the dist
little change. (top) WT SCN: 23.3+/−1 and dispersed SCN: 22.7+/−2.9. (bottom) WT SCN: 23.
et al. [134] and Aton et al. [135], respectively, with permission from Nature Publishing Grou
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(Fig. 3d ) is also observed [59, 127–129]. While an additional NFL
also leads to active regulation of WCC level in Neurospora, its
elimination (Csp1−/−) has little effect on the robustness of
rhythms [75, 107]. This is consistent with the prediction of HT
models that an additional NFL is not essential for robust rhythms
[50, 112] because its active regulation of activator level and thus
the 1:1 molar ratio is not important in HT models (Figs. 2a and b).

As the addition of a PFL reduces the robustness of period in both
HT and PS models [59, 112, 114], its role in generating robust
circadian rhythms has not been observed. In Neurospora, an
additional transcriptional PFL has not been identified (Fig. 3b). In
Drosophila, Pdp1ɛ knockdown or overexpression does not alter the
circadian oscillation function [130]. Rorα, Rorβ and Rorα/g mutant
mice still show robust free-running with a slight change in period
[108–111]. Recent studies show that these additional PFLs appear
to function to regulate oscillator output rather than generating robust
rhythms: Pdp1ɛ links the circadian clock output to the locomotor
activity in Drosophila [130], and Rorg plays a role for the circadian
regulation of metabolic genes in mammals [109].
5 Synchronised periods of coupled oscillators

In mammals, the circadian clocks in peripheral tissues (i.e. peripheral
clocks) are orchestrated by the master clock, residing in the
suprachiasmatic nucleus (SCN) of the hypothalamus [131]. The
master clock consists of ∼20,000 neurons, each of which generates
rhythms with their own periods and phases. Intercellular coupling
synchronises these rhythms, which allows precise timekeeping of
the SCN [132–134]. Among various intercellular coupling signals,
the most essential one is known to be vasoactive intestinal
polypeptide (VIP), which is rhythmically released from a subset of
SCN neurons and then promotes the transcription of repressor in
other neurons in the SCN [132, 135]. The roles of VIP in the
master clock have been widely investigated with mathematical
models. Specifically, modelling studies show that for both HT and
PS models, VIP signals can synchronise heterogeneous rhythms
under various types of couplings, including all-to-all coupling [61,
of uncoupled cells depending on the repression mechanisms

rent periods and phases, which are represented with the different sizes of circles and the
models, synchronised periods are considerably different from the mean periods of the
dels are similar to the population mean periods (bottom right)
ar characteristic of the protein-sequestration function (Fig. 1d ). In contrast, the Goodwin
acteristic of the Hill function (Fig. 1c)
ributions of periods become broader among individual cells, but the mean periods show
6+/−1.7 and VIP−/−: 25+/−4. The top panel and bottom panel are reproduced from Ono
p Ltd
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Fig. 5 Diverse properties of circadian clock models differ dramatically depending on the repression mechanisms

a When phosphorylation-based repression is used, a large number of phosphorylation sites at activators (i.e. a large Hill exponent) is usually required for models to generate rhythms.
Furthermore, with a fast additional PFL regulating activator level, but no additional NFL, the core NFL can generate rhythms with a robust amplitude. When individual oscillators are
coupled with excitatory signals (e.g. VIP in SCN), the synchronised periods of coupled cells (green curves) and the mean periods of uncoupled cells (black curves) are considerably
different in many HT models
b When protein sequestration-based repression is used, models are more likely to generate rhythms when the average molar ratio between repressor and activator becomes closer to 1:1.
Furthermore, when a slow additional NFL is included to regulate activator level and thus the molar ratio, the core NFL can generate rhythms with a robust period. The synchronised
periods of coupled cells are similar to the mean periods of uncoupled cells in PS models
115, 136, 137], part-to-all coupling [63], local-diffusion coupling
[138–141], random coupling [139, 141], and scale-free network
coupling [141, 142]. Furthermore, coupling via VIP also enhances
the robustness of both classes of models against external or
internal perturbations such as entrainment signals [19, 63] and
genetic mutations [74, 115]. Recently, the role of another
important coupling signal GABA [64, 143] has been investigated
with both classes of models [64, 65, 144–146].

While many properties regarding intercellular coupling are
commonly shared between HT and PS models, one distinguishing
property has been recently reported [61, 147]. When
heterogeneous oscillators with different periods are coupled, they
can be synchronised with a specific period. This synchronised
period with VIP differs considerably by ∼3–6 h from the
population mean period of uncoupled oscillators in many HT
models (Fig. 4a left-hand side) [61, 136, 139–141]. On the other
hand, VIP synchronises rhythms of PS models with a period
similar to their mean period (Fig. 4a right-hand side) [61, 63].
This difference regarding synchronised periods can be explained
by analysing the phase response curve (PRC) to VIP signal [61,
147]. As VIP promotes repressor gene expression, it can advance
or delay the phase of individual oscillators depending on the phase
when VIP is given (Fig. 4b). The advance region and delay region
of the PRC are similar in the Kim–Forger model, indicating that
the coupling signal speeds up and slows down a population of
cells in balance. Hence, after coupling, the synchronised period
stays near the population mean period of uncoupled cells in the
Kim–Forger model. However, the Goodwin model typically has an
unbalanced PRC due to the sigmoidal character of the Hill
function (Fig. 1c) (see [61] for a detailed analysis).

How does intercellular coupling affect the periods and phases of
cells in the SCN? When intercellular coupling is disrupted by
enzymatic dispersion (Fig. 4c top) or through the knockout of VIP
(Fig. 4c bottom), the standard deviation of periods dramatically
increases by 2-to-3 fold [134, 135]. On the other hand, the mean
periods of uncoupled cells and of coupled cells show little
130
difference, less than 5% (Fig. 4c), consistent with PS models
(Fig. 4a right-hand side). In agreement with this feature of the
SCN, optogenetic manipulation of the SCN firing rate leads to a
balanced PRC in a VIP-dependent manner [148]. PRC responses
to VIP have different features depending on the dose of VIP: the
PRCs become more unbalanced as dose increases [149].

Because peripheral clocks do not have intercellular coupling, they
behave like the uncoupled SCN [115], and their periods are similar to
the population mean period of the uncoupled SCN [150]. Thus,
when coupling synchronises a period similar to the population
mean of the uncoupled SCN, the periods of the master clock can
be kept similar to the periods of peripheral clocks (Fig. 4c). This
helps the master clock to orchestrate and synchronise peripheral
clocks, which are less likely to be entrained by the master clock as
their period difference increases. To achieve this advantageous
property for the master clock in mammals, a transition from
phosphorylation-based repression in Neurospora to protein
sequestration appears to be essential, according to observed
differences between HT and PS models (Fig. 4a) [61, 147].

Note that models based on phosphorylation-based repression can
also have a synchronised period that is similar to the population
mean if a different type of intercellular coupling is used, such as
sharing a common enzyme for phosphorylation [151]. This type of
coupling via sharing a common molecule is possible in
Neurospora due to incomplete cross walls between cells in most
strains. This may explain how the fused strains of Neurospora
circadian clocks synchronise rhythms with their mean period [152].
6 Conclusion

In this review, we compare two classes of circadian clock models,
which are based on different transcriptional repression mechanisms:
Hill-type repression and protein sequestration-based repression
(Fig. 5). This difference of repression mechanisms alone leads to
dramatic differences in fundamental properties of the models, such
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as the conditions for autonomous rhythm generation, the robust
transcriptional feedback loop designs, and the synchronised periods
induced by intercellular coupling (see Fig. 5 for details).
Surprisingly, these properties of ‘HT models’ and ‘PS models’ are
in good agreement with experimental data from the circadian clocks
of Neurospora, and of Drosophila and mammals, respectively.

While models with a simple phosphorylation-based repression or
protein sequestration-based repression (Figs. 1c and d ) successfully
capture key properties of the circadian clocks in specific organisms
(Fig. 5), the actual repression mechanism appears to be more
complex. For instance, in Neurospora, FRQ not only inhibits
WCC via phosphorylation but also triggers the clearance of WCC
from the nucleus by forming an FRQ-WCC complex [76]. In
mammals, mechanisms for the displacement of the activator from
the gene promoter have not been confirmed, which leaves open the
possibility of additional repression mechanisms [82]. Furthermore,
to repress BMAL-CLOCK, PER forms a large complex with other
molecules [153, 154], which can potentially lead a Hill-type
repression via cooperative multi-subunit complex formation.
Molecular detail of the repression mechanisms, which could be a
combination of phosphorylation and protein sequestration, should
be investigated in future experimental studies and model-building
because the properties of circadian clocks strongly depend on the
repression mechanisms (Fig. 5).

For properties of circadian clocks other than those considered in this
review (Fig. 5), the major difference between HT and PS models has
not been reported or investigated, to our knowledge. Future work can
also investigate whether PS models follow the entrainment properties
[37, 45, 47, 141, 155–157] or temperature compensation mechanisms
[38, 40, 42, 158–165] identified with HT models. Furthermore,
stochastic simulations of HT models commonly indicate that
circadian clocks can maintain rhythms even with low numbers of
molecules [166–169]. An additional PFL, but no additional NFL,
enhances the robustness of HT models against the stochasticity [75,
113]. Investigating whether these findings can be generalised to PS
models will be interesting future work.

While this review focuses on Neurospora, Drosophila and
mammals, interlocked transcriptional NFLs and PFLs also exist in
the circadian clocks of other organisms [2, 31]. In particular, in
plants, the core transcriptional NFL consists of series of
transcriptional repressions, which has a similar design as the
repressilator or quadripressilator [5, 170–172]. While the detailed
transcriptional repression mechanism has not been fully identified,
currently models have assumed Hill-type repression [170, 173–
176]. Further research should be undertaken to investigate which
type of transcriptional repression mechanism is most appropriate
for plant circadian clock models.

Besides circadian clocks, there are many other biological
oscillators [177] such as segmentation clocks [178, 179], cell
cycle oscillators [180–182], p53 oscillators [183, 184], and
synthetic oscillators [185, 186]. While Hill-type regulations have
frequently been used in models of these biological oscillators
[187–195], the critical roles of protein sequestration were also
reported [71, 196]. It would be interesting in future work to
explore whether diverse biological oscillators show different
properties depending on their key repression mechanisms, as
presented in this review (Fig. 5).
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9 Appendices

9.1 Non-dimensionalisation of the Goodwin model and
the Kim–Forger model

To reduce the number of parameters discussed in Fig. 2, we assumed
that clearance rates are the same (i.e. βM = βP = βR = β) and
non-dimensionalised the Goodwin model and the Kim–Forger
models described in [59]. Specifically, we scaled the variables and
time as

M = aM

b
M , C = aMaC

b2 C, R = aMaCaR

b3 , t = 1

b
t.

We also scaled Ki in the Hill function (2) and Kd and A in the
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protein-sequestration function (3) as

Ki =
aMaCaR

b3 Ki, Kd =
aMaCaR

b3 Kd , A = aMaCaR

b3 A.

With these scalings, (1) becomes

Ṁ = f (R)−M ,

Ċ = M − C,

Ṙ = C − R,

where

f (R) = 1

1+ (R/Ki)
NH

or

f (R) =
(A− R− Kd)+

�������������������������
(A− R− Kd)

2 + 4AKd

√
2A

.

Note that the non-dimensionalised system depends on two
non-dimensionalised parameters, NH and Ki of the Hill function or
A and Kd of the protein-sequestration function. This is why we
considered only these parameters and simply assumed αi = βi = 1
in Fig. 2.

9.2 Secant condition

Here, we describe the secant condition introduced in Section 3 (see
[90–93] for further details). The order of reaction g(S) with respect to
S is defined as dlog(g(S))/dlog(S). For instance, if g(S) = kSn, then
the order of reaction becomes n. For the NFL described in (1), the
necessary condition for instability at the steady state is

d log (aM f (R))

d log (R)

d log (aCM )

d log (M )

d log (aRC)

d log (C)
d log (bMM )

d log (M )

d log (bCC)

d log (C)

d log (bRR)

d log (R)

≥ Sec
p

3

( )3
= 8,

which is known as the secant condition due to the secant function
of the right-hand side. The numerator of the left-hand side
consists of the orders of clearance reactions at the steady state.
The denominator consists of the orders of production reactions
with respect to prior species in the feedback loop. Since the
order of linear reaction is 1, the above secant condition is
simplified as

d log (aM f (R))

d log (R)
≥ Sec

p

3

( )3
= 8.

If the clearance rates of all species are equal (βM = βP = βR = β) as
we assumed in Figs. 2b and d, the above condition with strict
inequality becomes a sufficient and necessary condition for the
instability of the steady state. Therefore, if the logarithmic
sensitivities of the Hill function (2) or the protein-sequestration
function (3) are greater than 8, the steady state becomes
unstable. It has also been shown that the unstable steady state
leads to periodic solutions in the negative feedback loop [197,
198] as seen in Figs. 2b and d.

Note that the secant condition indicates that conditions for rhythm
generation depend on the sensitivity of response in a relative sense
(i.e. the logarithmic sensitivity) rather than the sensitivity of response
in an absolute sense. This explains how the approximately piecewise
linear function (Fig. 1d), which is not stiff and thus has a low
absolute sensitivity, can generate rhythms (Fig. 2d). Furthermore, it is
not true that HT models are more likely to generate rhythms as the
IET Syst. Biol., 2016, Vol. 10, Iss. 4, pp. 125–135
& The Institution of Engineering and Technology 2016



steady state become closer to the stiffest point of Hill-function (i.e. R/Ki
= 1), where absolute sensitivity, but not relative sensitivity, is the highest
(Fig. 2b). Note that the curves of both the Hill-function and the
protein-sequestration function have abrupt bends from ‘decreasing’ to
‘nearly flat’ at points where relative sensitivity is high (Figs. 1c and
d). This local similarity between the two curves indicates that the
Goodwin model and the Kim–Forger model generate rhythms with
an equivalent mechanism in the mathematical sense. However, the
steady states of the two models are located at the points of the
IET Syst. Biol., 2016, Vol. 10, Iss. 4, pp. 125–135
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curves, where the relative sensitivity is high, under different
biological conditions as seen in Figs. 2a and c.

For the NFL models (1) with n intermediate steps, the right-hand side
of the secant condition becomes Sec(π/n)n, which decreases as n
increases. For instance, as n= 3 increases to n= 4, Sec(π/n)n decreases
from 8 to 4. Therefore, as more intermediate steps are included,
which leads to more time delay, the secant condition becomes less
restrictive, and lower logarithmic sensitivities of Hill functions or
protein-sequestration functions are required to generate rhythms.
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